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1 Abstracts of Contributions

Magnetic droplets and dynamical skyrmions

J. Åkermana

a. Department of Physics, University of Gothenburg, Fysikgränd 3, 412 96 Gothenburg, Sweden.

Nanocontact spin-torque oscillators (NC-STOs) provide an excellent environment for studying
nano-magnetic phenomena such as localized and propagating auto-oscillatory spin wave (SW)
modes [1]. The recent experimental observation of magnetic droplet solitons in NC-STOs with
perpendicular magnetic anisotropy (PMA) free layers [2], and the numerical [3] and experimental
[4] demonstrations of spin transfer torque (STT) nucleated skyrmions in similar magnetic thin
films add two interesting and useful nanoscale magnetic objects. Due to the competition be-
tween exchange, anisotropy, and, in the case of skyrmions, the Dzyaloshinskii-Moriya interaction
(DMI), the droplet and the skyrmion are extremely compact, on the order of 10-100 nm. One of
the main differences between a magnetic dissipative droplet soliton and a skyrmion is that the
former is a dynamical object with all its spins precessing around an effective field and stabilized
by STT, exchange, and PMA, while the latter has static spins and an internal structure stabilized
by DMI, exchange, and PMA. The dissipative droplet is furthermore a non-topological soliton,
while the skyrmion is topologically protected. In this work we report on our most recent droplet
experiments, including droplet collapse at very high fields, droplets excited in nano-wire based
NC-STOs, and studies of the field-current droplet nucleation boundary. We also demonstrate nu-
merically and analytically that STT driven precession can stabilize so-called dynamical skyrmions
even in the absence of DMI, and we describe their very promising properties in detail. From a
more fundamental perspective, precession is hence a third independent possibility to stabilize a
skyrmion, without the need for the conventional stabilization from either dipolar energy or DMI
[5].

References

[1] S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio, P. Muduli, F. Mancoff, A. Slavin, and
J. Åkerman, Experimental Evidence of Self-Localized and Propagating Spin Wave Modes
in Obliquely Magnetized Current-Driven Nanocontacts, Phys. Rev. Lett, 105 (2010), p.
217204.

[2] S. M. Mohseni, S. R. Sani, J. Persson, T. N. Anh Nguyen, S. Chung, Ye. Pogoryelov, P.
K. Muduli, E. Iacocca, A. Eklund, R. K. Dumas, S. Bonetti, A. Deac, M. Hoefer, and J.
Åkerman, Spin Torque-Generated Magnetic Droplet Solitons, Science, 339 (2013), p. 1295.

[3] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nucleation, stability and current-
induced motion of isolated magnetic skyrmions in nanostructures, Nature Nanotechn., 8
(2013), pp. 839–44.

[4] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A.
Kubetzka, and R. Wiesendanger, Writing and Deleting Single Magnetic Skyrmions, Science,
341 (2013), pp. 636–639.

[5] Y. Zhou, E. Iacocca, A. Awad, R. K. Dumas, F. C. Zhang, H. B. Braun, J. Åkerman,
Dynamical Magnetic Skyrmions, arXiv:1404.3281 (2014).
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Non-local and Local Nonlinear Shrödinger Equation from Geometric Curve
Flows in some low dimensional Hermitian symmetric space Sp(2)/U(2) and
SU(3)/U(3)

S.C. Anco, E. Asadia, and A.M.G. Ahmed

a. Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.

In recent work of [1], several nonlocal generalization of the nonlinear Shrödinger equation have
been obtained together with their Lax pair, bi-Hamiltonian operators which are U(1)- invariant.
These nonlocal Schrödiner generalization are derived from a geometrical flows utilized by a geo-
metrical parallel moving frame on the flows in the Riemannian symmetric space SO(2n)/U(n).
In this set up, which is adaption of a more general result [3], the Cartan structure equation
encode bi-Hamiltonian structure and Lax pair for the nonlinear nonlocal Schrödineger.

In the Hermitian symmetric spaces SP (2)/U(2) and SU(3)/U(3) there are a natural complex
structure compatible with the Riemannian metric. The frame bundle of these spaces have
subgroup U(2) and U(3) as a gauge group respectively. For arclength parametrized curves in this
geometry, there is a natural parallel frame whose equivalence group is U(1). The components
of Cartan connection matrix of this frame, known as Hasimoto variables, yield a real-valued
differential covariant of the curve in addition to a complex valued differential covariant. The
resulting generalization of the NLS equation are U(1)− invariant integrable systems in which a
real variable is coupled to a complex scaler variable. We use the Hermitian structure to complexify
the Hasimoto real varianble in a natural way.

The main result is utilizing two representation of singular elements in a Cartan subspaces of
sp(2)/u(2) and one singular element in su(3)/u(3) generating center respectively in the gauge
Lie subalgebras u(2) and u(3) of maximal dimension. The parallel frame araising in this manner
in the first case yields two different new generalized non-local nonlinear Schroödinger equations
for a real variable u and complex Hasimoto like variable u in the first case and local nonlinear
Schroödinger equations in the second case. The nonlocal one is given as

ut = u|u|2 +Re(ūxD
−1
x (uu)) (1)

ut = i
(1
4
uxx +

1

2
u|u|2 ++u2u+ uxD

−1
x (uu) + 2u|D−1

x (uu)|2
)

(2)

We also give the flow equations which is variant of Schrödinger map equation and is invariant
under isometry group.

These result may also viewed as a generalization as well as a geometric interpretation of AKNS
method [4] on Hermitian symmetric spaces in which they only have found local generalization
of Schrödinger equation, while by construction we obtain a nonlocal one in the first case.

Toward the classification of all integrable hierarchies like generalized Sine-Gordon, local and
nonlocal NLS and mKdV system by studying the geometric curve flows in all irreducible sym-
metric spaces, which are classified by Satake diagram, one can illustrate the whole picture and
classification, by attaching to a specific vertex of each Satake diagaram all these integrable sys-
tems in each case. The present work is an example of attempt to build this correspondence in
general case. The idea goes back to the different approaching the classification of KdV type
equations corresponding to an arbitrary simple Lie algebras of Drinfeld and Sokolov [5] , which
is actually is using normalized Lax pair in the context of Kac-Moody algebra associated to the
simple Lie algebra under consideration

References

[1] Stephen C. Anco, and A. M. G. Ahmed, arXiv:1408.5290. submitted to J. Phys. A: Math.
and Gen(2015).
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[2] Stephen C. Anco, and E. Asadi, A. Dogunchi , arXiv:1410.1230.(2015)

[3] S. C. Anco, . J. Geom. Phys. 58 (2008), 1-37

[4] , AP. Fordy and P.P. Kullish , Commun. Math. Phys. 89(1983), 417-228

[5] V.G. Drinfeld and V. V. Sokolov, Soviet Math. Dokl. vol. 23(1981), 3

On a discrete number operator and its eigenvectors associated with the
5D discrete Fourier transform

M.K. Atakishiyeva, N.M. Atakishiyeva, and J. Méndez Franco

a. Instituto de Matemáticas, Unidad Cuernavaca, UNAM, 62210 Cuernavaca, Morelos, México.

We construct an explicit form of a difference analogue of the quantum number operator in
terms of the raising and lowering operators that govern eigenvectors of the 5D discrete (finite)
Fourier transform. Eigenvalues of this difference operator are represented by distinct nonnegative
numbers so that it can be used to sistematically classify, in complete analogy with the case of the
continuous classical Fourier transform, eigenvectors of the 5D discrete Fourier transform, thus
resolving the ambiguity caused by the well-known degeneracy of the eigenvalues of the discrete
Fourier transform.

Optical solitons of NLSM Systems in PT -Symmetric lattice with a va-
cancy defect

M. Bağcıa, İ. Bakırtaşa, and N. Antara

a. Department of Mathematics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.

In many applications the leading nonlinear polarization effect in optical materials are quadratic;
they are referred to as χ(2) materials. The pulse dynamics in multidimensional nonresonant χ(2)

materials can be described by generalized nonlinear Schrödinger (NLS) equation with coupling
to a mean term (hereafter denoted as NLSM Systems) [1].

Recently, the regions of collapse and collapse dynamics in the NLSM systems have been
investigated [2, 3]. Also, it was pointed out that NLSM collapse can be arrested by small
nonlinear saturation [4].

Another way of arresting wave collapse is adding an external potential (lattice) to the gov-
erning equation. The purpose of this study is to investigate soliton properties in NLSM Systems
with Parity-Time (PT ) Symmetric external potentials (which include a vacancy defect or not).
The model is given by

iuz +
1

2
∆u+ |u|

2
u− ρφu− V (x, y)u = 0, φxx + νφyy = (|u|

2
)xx. (1)

where u(x, y, z) is the normalized amplitude of the envelope of the electric field (which
associated with the first-harmonic), V (x, y) is external potential, φ(x, y, z) is the normalized
static field, ρ is a coupling constant, and ν is the coefficient that comes from the anisotropy of
the material [1, 3].

In this study, we consider a PT -symmetric lattice with a vacancy defect as external potential
(which should satisfy V (x, y) = V ∗(−x,−y) [5]),

V (x, y) =
V0

25

∣∣∣2cos(kxx) + 2cos(kyy) + eiθ(x,y)
∣∣∣
2

+ iV0W0[sin(2x) + sin(2y)]
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where V0 > 0 is the peak depth of the potential, ~k = (kx, ky) is a wave vector, W0 is the
relative magnitude of the imaginary component and, θ(x, y) is a phase function that is given by
θ(x, y) = tan−1(y−y0

x )− tan−1(y+y0

x ).
Physically, θ(x, y) corresponds to two first order phase dislocations displaced in the y direction

by a distance of 2y0. A vacancy defect can thus be obtained using y0 = π/K whereK = kx = ky
[6]. By setting θ(x, y) = 0, the vacancy defect in the PT -symmetric lattice is removed and the
periodic lattice counterpart of this lattice obtained.

Using a modification of spectral renormalization method [7], we numerically find the funda-
mental and dipole solitons in a PT -Symmetric lattice with a vacancy defect. The linear and
nonlinear (in)stabilities are also examined for these localized structures by direct computations
of the NLSM System and its linearized equation.

The results of stability analysis show that the fundamental and dipole solitons in a lattice
with a vacancy defect can be nonlinearly stable under suitable conditions (in the absence of
PT -Symmetry), but none of fundamental and dipole solitons in PT -Symmetric lattices (with
or without a vacancy defect) are found stable.
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Discrete integrable equations from the Bäcklund transformations of the
self-dual Yang-Mills equations

G. B. Benincasaa, and R. Halburda

a. Department of Mathematics, University College London, London WC1E 6BT, UK.

It is known that many continuous integrable systems may be obtained via reduction of the self-
dual Yang-Mills (SDYM) equation. In this talk we show how, by use of a Darboux matrix with
affine dependence on the spectral parameter, one can construct a general class of Bäcklund-
Darboux transformations for the SDYM equations. We find that Pohlmeyer’s form of the SDYM
equation is the natural setting for such construction with the resulting Bäcklund transformation
(BT) having a very symmetric form and depending on two matrices which, among other things,
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are responsible for the injection of the Bäcklund parameters in the system. One then recovers
the BTs of the various reduced equations by reduction of this system.

The Bäcklund transformations are then used to construct, via Bianchi permutability, a very
rich discrete integrable system which can be shown to have reductions to many important discrete
equations. The richness of the discrete reductions arises from the choice of the Yang matrix and
the two matrices containing the Bäcklund parameters. The latter play a fundamental role in the
whole construction.

Integrable systems related to the tetrahedral reduction group

G. Berkeleya, A. Mikhailova, and P. Xenitidisa

a. Department of Mathematics, University of Leeds, Leeds, UK.

In this talk we will present integrable systems related to the tetrahedral reduction group. Our
starting point will be a 3 × 3 Lax operator with tetrahedral symmetry. One can find a detailed
account regarding the theory of Reduction groups in [1]. By considering Darboux transformations
of this operator we will arrive at systems of differential-difference equations as well as fully discrete
systems. By construction these systems will possess Lax representations and so are integrable.
We shall see that the differential-difference equations will constitute non-local symmetries of the
fully discrete systems, as well as Bäcklund transformations of a related continuous system. Local
symmetries for the discrete systems will also be derived. Lastly, various reductions, potentiations
and Miura transformations of the found systems will be presented.
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Delay-differential equations of Painlevé

B.K. Berntsona

a. Department of Mathematics, University College London, London, UK.

Delay-differential equations are differential equations in which the argument of the unknown
function may be shifted by discrete values. Reductions of integrable lattice equations have
furnished nonlinear examples of such equations of Painlevé type. These equations have continuum
limits to differential Painlevé equations and possess special properties associated with integrable
purely differential or discrete equations.

The six nonlinear Painlevé equations were originally identified based on their simple singularity
structure. Later they were found to possess many other special properties including representation
as isomonodromy deformation problems and special (algebraic, rational, and special function)
solutions for certain choices of parameters. The philosophy behind the methods used to isolate
the Painlevé equations (singularity analysis) has more recently been applied to discrete equations.
Here the singularity confinement criterion was used to identify discrete nonlinear equations and
place them in correspondence with differential Painlevé equations. Other methods of detecting
integrable equations include algebraic entropy-based approaches and Nevanlinna theory.

There are natural analogues of integrability-detection methods for discrete equations that
can be applied to the study of delay-differential equations. We discuss these methods and give
examples of the equations they isolate. For these integrable equations, we discuss the relationship
with differential and discrete Painlevé equations as well as special solutions.
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Properties of the Zeros of the Generalized Hypergeometric, Askey and
q-Askey Scheme Polynomials

O. H. Bihuna

a. Department of Mathematics, Concordia College, 901 8th Str. South, Moorhead, MN 56562, USA.

The properties of the zeros of polynomials are a core problem of mathematics to which, over
time, an immense number of investigations have been devoted. Nevertheless, new findings in this
area continue to emerge, e.g. [1, 2, 3]. We extend a known method for construction of solvable
N -body problems to discover new and remarkable properties of several important polynomials
[4]. Generalized hypergeometric, Wilson and Racah (top of the Askey scheme) polynomials are
defined in terms of the generalized hypergeometric function

r+1Fs(α0, α1, . . . , αr;β1, . . . , βs; z) =
∞∑

j=0

(α0)j(α1)j · · · (αr)j
j!(β1)j . . . (βs)j

zj,

where the Pochhammer symbol (α)j = α(α + 1) · · · (α + j − 1) with (α)0 = 1. Because the
quantities playing the role of the arguments are defined quite differently for these polynomials,
they are not special cases of each other. The Askey-Wilson and q-Racah (top of the q-Askey
scheme) polynomials are defined in terms of the generalized basic hypergeometric function

r+1φs(a0, a1, . . . , ar; b1, . . . , bs; q; z)

=
∞∑

j=0

(a0; q)j(a1; q)j · · · (ar; q)j(−1)(s−r)jq(s−r)j(j−1)/2

(q; q)j(b1; q)j . . . (bs; q)j
zj ,

where the q-Pochhammer symbol (c; q)j = (1 − c)(1− cq) · · · (1− cqj−1) with (c; q)0 = 1.
We identify new and remarkable nonlinear algebraic relations satisfied by the zeros of the

generalized hypergeometric, Wilson, Racah, Askey-Wilson and q-Racah polynomials. We express
these zeros as the equilibria of certain solvable many-body problems – solvable by the virtue
of their equivalent formulation as linear partial, differential difference or differential q-difference
equations satisfied by polynomials with time-dependent coefficients. This method is an extension
of the technique pioneered by Stieltjes and Szëgo. By linearizing the many-body problems in
the vicinity of their equilibria, we obtain interesting matrices defined in terms of the zeros of
these polynomials [5, 6, 7, 8]. These are isospectral matrices because their eigenvalues are
given by neat expressions independent of many of the parameters of the polynomials. These
eigenvalues are integer or rational – a Diophantine property – provided that certain parameters
of the polynomials are integer or rational. Of course, these findings generate multiple theorems
on the properties of the zeros of those polynomials that are special cases of the generalized
hypergeometric polynomials or belong to the “lower levels” of the Askey or the q-Askey scheme.
It is interesting to note that the orthogonality properties of the polynomials play no role in the
proofs.
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[1] H. Alici and H. Taşeli, Unification of Stieltjes-Calogero type relations for the zeros of classical
orthogonal polynomials, Math. Meth. Appl. Sci. (12 pages) (2014).

[2] S. Odake and R. Sasaki, Equilibria of discrete integrable systems and deformations of clas-
sical orthogonal polynomials, J. Phys. A 37 (2004) pp. 11841-11876.

[3] S. Ahmed, M. Bruschi, F. Calogero, M. A. Olshanetsky and A. M. Perelomov, Properties of
the zeros of the classical polynomials and of Bessel functions, Nuovo Cimento 49B, 173-199
(1979).



Abstracts of Contributions 15

[4] F. Calogero, Motion of Poles and Zeros of Special Solutions of Nonlinear and Linear Partial
Differential Equations, and Related ”Solvable” Many Body Problems, Nuovo Cimento 43B,
177-241 (1978).

[5] O. Bihun, F. Calogero, Properties of the zeros of the polynomials belonging to the Askey
scheme, J. Math. Anal. Appl., Vol. 419, Issue 2 (2014), pp. 1076-1094.

[6] O. Bihun, F. Calogero, Properties of the zeros of the polynomials belonging to the Askey
scheme, Lett. Math. Phys., Vol. 104, Issue 12 (2014), pp. 1571-1588.

[7] O. Bihun, F. Calogero, Properties of the zeros of the polynomials belonging to the q-Askey
scheme, submitted, arXiv:1410.0549 [math-ph].

[8] O. Bihun and F. Calogero, Properties of the zeros of generalized basic hypergeometric
polynomials, (in preparation).

Integrable Equations of the Sawada-Kotera and Kaup Type: A New Hi-
erarchy Starting with an Essentially Nonlinear 5th Order Equation

A.H. Bilgea, E. Mizrahia, and G. Ozkuma

a. Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.

In a series of papers we have studied the integrability of scalar evolution equations in one space
dimension, that are of the form ut = F , using the “formal symmetry” method of [1], that is
based on the existence of a formal Laurent series R, in inverse powers of the derivative operator
D, satisfying the operator equation Rt + [R,F∗] = 0, where F∗ is the Frechet derivative of F .
The existence of such a formal series leads to an infinite sequence of conservation laws for the
so called “canonical densities”, denoted here as ρi, i = −1, 0, 1, . . . . In particular, for any mth

order evolution equation, the quantity ρ(−1) =
(

∂F
∂um

)−1/m

is conserved.

In [2] we have obtained the explicit expression of the canonical densities ρ(i), i = 1, 2, 3 for
arbitrary m. Using these, we have shown that integrable equations of order greater than or equal
to 7, are quasi-linear. There is however is a non quasi-linear candidate of integrable equation of
order 5.

Later on in [3] we have shown that if the canonical densities ρ(i), i = 1, 2, 3 are non-trivial,
then any evolution equation of order m ≥ 7 is polynomial in top three derivatives. In [4], we
have studied quasi-linear integrable fifth order equations ut = Au5 + B, where A and B are
independent of u5. Using the non-triviality of the canonical densities ρ(i), i = 1, 2, 3 we showed

that these equations are polynomial in a = A1/5 (hence in the inverse of ρ(−1)) and a has the

form (αu2
3 + βu3 + γ)−1/2. The u2 dependency of a is obtained in terms of P = 4αγ − β2 > 0

and we obtained an explicit quasi-linear but non-polynomial fifth order equation.
In the present work we study those evolution equations for which the canonical density ρ(3) is

trivial. We call such equations as “Sawada-Kotera and Kaup type” equations because for these
two hierarchies the conserved densities of orders multiples of 3 are trivial.

For generic quasi-linear equations of order m, ut = a2um + B, there is a dichotomy char-
acterized by the form of a; for non-trivial ρ(3) a = (αu2

3 + βu3 + γ)−1/2 while for trivial

ρ(3), a = (µu3 + ν)−1/3. We have obtained a preliminary classification of integrable equations
up to order m = 17 up to their top “top level” [3], our results suggesting that they belong
to certain hierarchies. The “essentially non-linear third order equation” of [1] has the form
ut = F = (αu2

3 + βu3 + γ)−1/2(2αu3 + β) + η. Computing the partial derivative of F with
respect to u3 one can see that ρ(−1) = (αu2

3 + βu3 + γ)1/2(−1/2β2 + 2αγ)−1/3, hence higher
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order generic equations with non-trivial ρ(3), (that we call “KdV-like”), belong possibly to a
hierarchy starting at the essentially nonlinear third order equation.

We have shown that the non quasi-linear equation obtained in [2] is characterized by the
triviality of ρ(3). This equation is of the form ut = − 3

2A (Au5+B)−2/3+C, where the functions
A, B and C are independent of u5, and A and C are independent of u4. It is easy to see that,
for this equation the canonical density ρ(−1) is (Au3 + B)1/3 and this equation is interpreted
as an essentially nonlinear starting symmetry of a hierarchy with trivial conserved densities at
orders that are multiples of 3.
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An integrable Hénon–Heiles system on the sphere and the hyperboloid

A. Ballesterosa, A. Blascoa, F. J. Herranza, and F. Mussob

a. Department of Physics, University of Burgos, E-09001 Burgos, Spain.

b. Istituto Comprensivo “Largo Dino Buzzati”, I-00144 Rome, Italy.

The integrable Hénon–Heiles systems can be written as particular cases of the multiparametric
family of two-dimensional Hamiltonian systems given by [1]

H =
1

2
(p21 + p22) + Ω1 q

2
1 +Ω2 q

2
2 + α

(
q21q2 + β q32

)
,

where Ω1, Ω2, α and β are real constants.
In particular, the only known Liouville integrable cases are [2, 3]:

• The Sawada–Kotera Hamiltonian (β = 1/3, Ω1 = Ω2).

• The Korteweg–de Vries (KdV) Hamiltonian (β = 2).

• The Kaup–Kupershmidt Hamiltonian (β = 16/3,Ω2 = 16Ω1).

In this contribution we present a constant curvature analogueHκ of the integrable Euclidean KdV
Hénon–Heiles Hamiltonian and its invariant Iκ, whose construction hinges on the appropriate
formulation for the curved version [4] of the Ramani homogeneous potentials [5]. The starting
point is the new curved anisotropic oscillator proposed in [6], for which the special tuning in the
frequencies (Ω2 = 4Ω1) coincides with the well known superintegrable curved 1 : 2 oscillator
system obtained in [1].
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Our approach is based on the use of the constant Gaussian curvature of the underlying spaces
as an explicit deformation parameter κ [6, 1, 8], thus connecting the Euclidean and the curved
systems (on the sphere and hyperbolic spaces) in a smooth way. This allows us to present the
integrable curved KdV Hénon–Heiles Hamiltonian in a geometric unified approach, so covering,
simultaneously, the Euclidean, spherical and hyperbolic cases. Hence, the Euclidean system is
obtained as the flat limit κ → 0 performed over the new integrable curved system Hκ and its
invariant Iκ.
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Letters, 49 (1982), pp. 1539–1541.

[6] A. Ballesteros, A. Blasco, F. J. Herranz, F. Musso, A new integrable anisotropic oscillator on
the two-dimensional sphere and the hyperbolic plane, Journal of Physics A: Mathematical
and Theoretical, 47 (2014), pp. 345204.

[7] M. F. Ra nada, M. Santander, Superintegrable systems on the 2D sphere S2 and the
hyperbolic plane H2, Journal of Mathematical Physics, 40 (1999), pp. 5026–5057.

[8] A. Ballesteros, F. J. Herranz, F. Musso, The anisotropic oscillator on the 2D sphere and
the hyperbolic plane, Nonlinearity, 26 (2013), pp. 971–990.

Long-time transition asymptotics for the Camassa-Holm equation with
non-decaying initial data

R. Buckinghama, and A. Minakova

a. Department of Mathematical Sciences, University of Cincinnati, P.O. Box 210025, Cincinnati,

Ohio, USA.

The Camassa-Holm equation

ut − utxx + 2ωux + 3uux = 2uxuxx + uuxxx, x ∈ R, t ≥ 0, ω > 0

is a completely integrable model for dispersive shallow water waves. For initial data that decays
sufficiently fast as x → ±∞, it is known [3] that in the long-time limit the solution exhibits
qualitatively different behavior in each of four regions: a solitonic sector, two sectors of slowly
decaying modulated oscillations, and a sector of rapid decay. The behavior of the solution in the
solitonic-to-oscillatory and oscillatory-to-decaying transition regions is also known [2] and can be
expressed in terms of Ablowitz-Segur solutions to the Painlevé-II equation.
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Recently, A. Minakov [6] derived the Riemann-Hilbert problem associated to step-like initial
data

u(x, 0) →

{
c > 0, x → −∞,

0, x → +∞.

A. Minakov and D. Shepelsky subsequently computed the long-time asymptotic behavior for
this initial data. In particular, for c > 3ω, there are five long-time sectors: convergence to c,
genus-two hyperelliptic oscillations, elliptic oscillations plus a decaying self-similar wave, elliptic
oscillations, and decay to zero. We present current progress on the asymptotic behavior in the
transition regions via the Deift-Zhou nonlinear steepest-descent method for Riemann-Hilbert
problems. This is the first investigation of the long-time transition asymptotics in a nonlinear
wave equation with non-decaying initial data.

There are certain novel features that distinguish the analysis from that of decaying initial
data. Most significantly, the non-decaying analysis requires the use of a so-called g-function,
leading to a dressed Riemann-Hilbert problem with jumps that do not decay on bands instead of
simply points. The transition between the elliptic and decay-to-zero regions is characterized by
the “birth of a cut” phenomenon observed in random matrix theory, small-dispersion nonlinear
wave equations, and other fields (see, for example, [4] and [5]). On the other hand, the transition
between the convergence-to-c and hyperelliptic regions is characterized by the splitting of one
band into two (see, for example, [1]).
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On a coupled system of shallow water equations admitting travelling wave
solutions

D. Burinia, S. De Lilloa, and D. Skouteris

a. Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, 06123 Perugia, Italy.

A non-local formulation of water waves for both (1+1) and (2+1) dimensions was presented in
[1], where the original equations with unknown boundary conditions are replaced by an integro-
differential equation and a nonlinear partial differential equation, both of which are formulated in
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a known domain. A generalization of the results obtained in [1] was presented in [2], where a non-
local formulation was derived, governing two ideal fluids separated by a free interface and bounded
above either by a rigid lid or by a free surface [2]. Due to the dependence on a free spectral
parameter, the corresponding equations are usually called the non-local spectral (NSP) equations
of the two-fluid system. The NSP equations were particularly useful for deriving asymptotic
approximations: we wish to point out an asymptotically (2+1)-dimensional generalization of the
intermediate long wave (ILW) equation reported in [2] which includes the KP equation and the
Benjamin-Ono equation as limiting cases. Numerical investigations indicated the existence of
lump type solutions, with a speed versus amplitude relationship shown to be linear in the shallow,
intermediate and deep water regime.
However, to the best of our knowledge the phenomenological models for more than two fluids
mentioned at the beginning of this section have not been paralleled by any analytical study. This
prompted us to develop a generalization of the NSP formulation to the case of three ideal fluids,
separated by two free interfaces and limited above by a rigid lid. Namely, we consider three
inviscid, incompressible, irrotational fluids that are confined between the rigid lids y = −h1

and y = h + H , and are separated by two free interfaces η1(x, t) and η2(x, t). We derive
the NSP equations governing the evolution of the three-fluid system. Then, after a suitable
nondimensionalization of the variables of the six equations of the NSP formulation, we obtain
the reduction to a system of shallow water equations in the weakly nonlinear limit. Finally, under
the assumption of maximal balance, we introduce travelling wave variables and study only the
(1 + 1)-dimensional case. In terms of the new variables we obtain a system of coupled nonlinear
shallow water equations which we study numerically in terms of the parameters enter in the
theory and that we show to admit solitary wave solutions.
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Finite-dimensional representations of shift operators, remarkable matrices
and matrix functional equations

F. Calogeroa,b

a. Physics Department, University of Rome “La Sapienza”, 00185 Roma, Italy.

b. Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, 00185 Roma, Italy.

In this talk I plan to report—to the extent time will permit—quite recent results. (i) The
identification of (N ×N)-matrices providing finite-dimensional representations of two types of

”shift” operators, δ̌ (x) respectively δ̂ (y), acting as follows on functions f (z) of the variable

z, δ̌ (x) f (z) = f (xz) respectively δ̂ (y) f (z) = f (z + y); representations which are exact—
in a sense that shall be explained—in the functional space spanned by polynomials of degree
less than (the arbitrary positive integer) N . [1] (ii). The identification of (N ×N)-matrices
which are explicitly expressed in terms of N arbitrary numbers or in terms of the N zeros of
named polynomials of degree N and which feature remarkable properties, such as eigenvalues
which are explicitly known and have Diophantine characteristics. [1] (iii). The identification
of matrix functional equations, such as, for instance, G (y)F (x) = F (x)G (xy)—where F (x)
respectively G (y) are (N ×N)-matrix-valued functions of the scalar variables x respectively
y—and of a class of nontrivial solutions of these functional equations [2] [3].
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The symmetry approach for higher Lagrangian systems

A. Caparrós Quinteroa, and R. Hernández Herederoa

a. Departamento de Matemática Aplicada a las TICs, ETSIS de Telecomunicación, Universidad

Politécnica de Madrid, 28031 Madrid, Spain.

In this poster we will show results on the classification of integrable Lagrangian systems of the
form

L =
1

2
L2(u, ux, uxx)u

2
t + L1(u, ux, uxx)ut + L0(u, ux, uxx) (1)

using the symmetry approach of Shabat et al. [1] as extended in [2] and with the adaptations
explained in an oral presentation in this Conference by the second author. This family of systems
includes relevant examples such as

L =
1

2

(
ut + uxx − u2

x

)2
generalised NLS

L =
1

2
(ut + uxx)

2
+

1

2
u3
x Boussinesq

L =

(
ut + uxx − 1

2R
′(u)

)2

4 (u2
x −R(u))

+
1

12
R′′(u) Landau− Lifshitz

The poster will summarize results on a complete classification of integrable Lagrangians (1) where
we found additional integrable Lagrangian systems possessing interesting symmetry properties.
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Non-commutative Bäcklund Charts1

S. Carilloa, M. Lo Schiavoa, and C. Schieboldb

a. Dipartimento SBAI, Sapienza Università di Roma, Rome, Italy.

b. Dept of Natural Sciences, Engineering and Mathematics, Mid Sweden University, Sundsvall, Swe-

den.

The term Bäcklund Chart was devised back in 1987, at the IV NEEDS Conference in Balaruc
Les Bains, when a wide net of links represented by different Bäcklund transformations was
depicted to relate hierarchies of non-linear evolution equations admitting 5th order base members
[1]. Subsequently, the same idea was adopted to relate well known hierarchies such as KdV,
mKdV and Harry Dym [3, 4]. Since then, a wide variety of interesting results were obtained
on application of Bäcklund transformations. Here generalizations to non-commutative equations
and hierarchies are considered. Specifically, our attention is focussed on our latest results [2]
wherein the study on non-commutative hierarchies, started in [5, 6], is further developped and
deals, in particular, with properties of recursion operators in this non-commutative setting.
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On the inverse scattering method for the nonlinear Schrödinger equation
on a star-graph

V. Caudreliera

a. Department of Mathematics, City University London, Northampton Square EC1V 0HB London,

UK.

We present a framework to solve the open problem of formulating the inverse scattering method
(ISM) for an integrable PDE on a star-graph. The idea is to map the problem on the graph to
a matrix initial-boundary value (IBV) problem and then to extend the unified method of Fokas
to such a matrix IBV problem. The nonlinear Schrödinger equation is chosen to illustrate the
method. The framework unifies all previously known examples which are recovered as particular
cases. The case of general Robin conditions at the vertex will be used to introduce the notion
of linearizable initial-boundary conditions. For such conditions, the method is shown to be as
efficient as the ISM on the full-line, in analogy to linearizable boundary conditions in the Fokas
method.

1dedicated to Francesco Calogero on his 80th birthday, with reverence and admiration
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KP hierarchy for a cyclic quiver and Calogero–Moser system

O. Chalykha

a. School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.

We introduce a generalization of the KP hierarchy, intimately related to the cyclic quiver on m
vertices; the case m = 1 corresponds to the usual KP hierarchy. Generalizing the result of [1], we
show that our hierarchy admits special solutions parameterised by suitable quiver varieties. Using
a link to Cherednik algebras [2], we identify the dynamics of the poles of these solutions with
the classical Calogero–Moser system for the complex reflection groups G(m, 1, n) = Zm ≀ Sn.
The constructed solutions are closely related to the bispectral operators from the work [3], which
are obtained by Darboux transformations applied to higher Bessel operators. As a result of our
work, the bispectral families from [3] are given a nice parameterization by the points of completed
phase spaces for the Calogero–Moser system of type G(m, 1, n), n = 1, 2, . . . . This is joint work
with Alexey Silantyev (Leeds).

References

[1] G. Wilson, Collisions of Calogero–Moser particles and an adelic Grassmannian (with ap-
pendix by I.G.Macdonald). Invent. Math., 133 (1998), pp. 1–41.

[2] P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and de-
formed Harish-Chandra homomorphism, Invent. Math., 147 (2002), pp. 243–348.

[3] B. Bakalov, E. Horozov, M. Yakimov, Bispectral algebras of commuting ordinary differential
operators, Comm. Math. Phys., 190 (1997), pp. 331–373.

‘Riemann Equations’ in Bidifferential Calculus

O. Chvartatskyia,b, F. Müller-Hoissena, and N. Stoilovb

a. Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.

b. Mathematisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen, Germany.

Given an associative algebra A and two derivations d, d̄ : A → Ω1 into an A-bimodule, the
equation

d̄φ− (dφ)φ = 0 (1)

resembles a Riemann (or Hopf) equation.
Depending on the choice of the bidifferential calculus (A, Ω1, d, d̄), besides a semi-discrete

and a fully discrete version of the matrix Riemann equation, the latter leads to quite different
examples. We show that realizations of (1) share a simple ‘linearization method’, which in some
cases turns out to be a (continuous or discrete) Cole-Hopf-type transformation. Such realizations
are in the class of ‘C-integrable equations’ [1, 2].

If there is an extension of the derivations d and d̄ to maps A
d,d̄
→ Ω1 d,d̄

→ Ω2, with another
A-bimodule Ω2 such that d2 = d̄2 = dd̄ + d̄d = 0, then (1) yields

dd̄φ+ dφdφ = 0 (2)

as an integrability condition. By choosing appropriate bidifferential calculi, this equation leads to
a number of prominent integrable equations, like self-dual Yang-Mills, matrix versions of the two
dimensional Toda lattice, Hirota’s bilinear difference equation, (2+1)-dimensional NLS, KP and
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Davey-Stewartson equations. The abovementioned ‘linearization method’ does not extend to
(2), for which, however, there is another universal method [3], representing an abstract version
of binary Darboux transformations.

The talk is based on a joint work with F. Müller-Hoissen and N. Stoilov [4].
O.C. is supported by a postdoctoral fellowship of the Alexander von Humboldt foundation.
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Emission of radiation from perturbed dispersive shock waves

M. Confortia, and S. Trillob

a. Laboratoire PhLAM, CNRS-University of Lille 1, Villeneuve d’Ascq, France.

b. Department of Engineering, University of Ferrara, Ferrara, Italy.

Dispersive shock waves (DSWs) are expanding regions filled with fast oscillations that stem
from the dispersive regularization of classical shock waves (SWs) [1]. Originally introduced in
collisionless plasmas and water waves, it is only recently that they have been the focus of in-
tense multidisciplinary efforts that have established their universal role in atom condensates,
light pulse (temporal) and beam (spatial) propagation, oceanography, quantum liquids, elec-
tron beams, magma flow, granular materials, and wave or material disorder. The dynamics of
DSWs is understood in terms of a weakly dispersive formulation of integrable models (and their
deformations) such as the Korteweg–De Vries, the Benjamin–Ono, or the defocusing nonlinear
Schrödinger equation (dNLSE) [2]. However, since the leading-order dispersion of such models
must be extremely weak for the phenomenon to take place, one is naturally led to wonder about
the effects of higher-order dispersion (HOD), which must be accounted for to describe the actual
dispersion in many physical situations. The aim of this work is to show that HOD corrections
lead DSWs to emit resonant radiation (RR) due to a specific phase matching with linear waves,
which can ultimately alter the shock dynamics itself. We devote our attention to the study
of fiber optic systems modeled dy dNLSE perturbed by higher order dispersion. We show that
emission of radiation is quite a general phenomenon that can take place during the propagation
of bright pulses [3], or continuous waves at different frequencies experiencing four wave mixing
[4]. Moreover, we show that emission of radiation can happen also in non Hamiltonian system
described by driven and damped dNLS, being the fiber ring cavity a representative example [5] .
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Expanded Lie group transformations and conservation laws of a general-
ized variable-coefficient Gardner equation

R. de la Rosaa, and M. S. Bruzóna

a. Department of Mathematics, University of Cádiz, Campus Universitario Ŕıo San Pedro, Cádiz,

Spain.

In recent years, there is widespread interest in solving group classification problems for several
classes of partial differential equations which are of current relevance or potential interests for ap-
plications, nonlinear equations being prominent among these. Furthermore, nonlinear equations
with variable coefficients have become increasingly important over the last years due to these
describe many nonlinear phenomena more realistically than equations with constant coefficients.

Symmetry group analysis has numerous well-known applications. They enable us to obtain
exact solutions of partial differential equations directly or via similarity solutions, classify in-
variant equations, reduce the number of independent variables or determine conservation laws.
The analysis of Lie symmetries of equations involving arbitrary functions seems rather difficult.
Equivalence transformations allow us to reduce of a class to its subclass with fewer number of
arbitrary functions.

Conservation laws play an important role in physics and mathematics. These describes that a
certain measurable property of an isolated physical system does not change over time. In mathe-
matics, the integrability of a partial differential equation is strongly related with the existence of
conservation laws. Moreover, they can be used to obtain exact solutions of a partial differential
equation.

In this work we study a generalized variable-coefficient Gardner equation with nonlinear terms
of any order and forcing term. The Gardner equation is widely used in diverse fields of physics
including fluid dynamics, quantum field theory, plasma physics and many wave phenomena in
plasma and solid state. The equation under consideration generalizes substantially interesting
equations, such as KdV, mKdV and Gardner equation [1, 2, 3, 4, 5, 6]. We perform an analysis
of Lie symmetries of the equation. We obtain the continuous equivalence transformations of the
equation in order to reduce the number of arbitrary functions. We determine the subclasses of
the equation which are nonlinearly self-adjoint. Using nonlinearly self-adjointness we construct
conservation laws of the considered equation.
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On quantum integrable systems and Schur polynomials

B. Dubrovina

a. SISSA, I-34136 Trieste, Italy.

We consider commuting operators obtained by quantization of Hamiltonians of the Hopf (aka
dispersionless KdV) hierarchy. Such operators naturally arise in the setting of Symplectic Field
Theory (SFT), see [2, 3]. A complete set of common eigenvectors of these operators is given by
Schur polynomials. Applications to SFT will also be discussed.
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Higher-rank Schlesinger transformations and difference Painlevé equa-
tions
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The relationship between isomonodromic deformations and differential Painlevé equations is quite
well-known: Schlesinger equations describing isomonodromic deformations of a two-dimensional
Fuchsian system with four poles on the Riemann sphere reduce to the most general Painlevé
VI equation, and other differential Painlevé equations can be obtained from this by coalescence.
In fact, the isomonodromic approach is one of the most powerful ways to study properties
of Painlevé equations and their solutions, the Painlevé transcendents. Similar isomonodromic
representation exists for difference Painlevé equations as well. In this case, instead of continuous
deformations of the poles of our Fuchsian system we consider Schlesinger transformations, which
are a special kind of gauge transformations that change the characteristic indices of the system
by integral shifts, and so they are also isomonodromic.

In the seminal paper [Sak01] H. Sakai suggested a unified classification scheme for both
continuous and discrete Painlevé equations that is based on Algebraic Geometry. In this scheme,
certain classes of discrete Painlevé equations are closely connected to the continuous one, but
some equations are purely discrete. The isomonodromic approach is then a natural way of
studying both types of discrete Painlevé equations in the same framework.

This motivated H. Sakai to pose the following question (Problem A in [Sak07]): how to
represent these new purely discrete equations in the isomonodromic framework? This question
was first answered by P. Boalch in [Boa09], where he identified the Fuchsian systems whose
Schlesinger transformations have the required type. However, Boalch’s approach was based on
studying the symmetries of the corresponding Fuchsian systems and no explicit equations were
written.

In [DST13] we addressed this issue and wrote explicit evolution equations for a discrete
dynamical system given by rank-one elementary Schlesinger transformations and considered their
reductions to difference Schlesinger equations. However, classes of difference Painlevé equations

that have the largest symmetry groups, E
(1)
7 and E

(1)
8 in the Sakai’s classification scheme [Sak01],

correspond to Schlesinger transformations of Fuchsian systems with degenerate eigenvalues. In
this talk we explain how to extend our evolution equations to higher-rank elementary Schlesinger
transformations and show, as an example, how to obtain difference Painlevé equations with the

symmetry group E
(1)
7 in this way. This talk is based on the recent preprint [DT14].
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Density layered fluids in 2D channels: Hamiltonian pictures and conserved
quantities.

R. Camassaa, G. Falquib, and G. Ortenzib

a. Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,

USA.

b. Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, 20125 Milano, Italy.

We discuss aspects of the theory of incompressible stratified Euler fluids in 2D channels. In
particular, our focus will be on conserved quantities, both for continuous and sharp (two-layer)
stratifications. Following [1, 5] Hamiltonian pictures (both in the full 2D case and in the long
wave 1D limit) will be discussed and specialized to our model(s) [2, 3].

In particular we shall show that in the case of sharp two layering, the long wave model may
reduce, in the dispersionless limit, to the Airy system (that is, the dispersionless defocusing NLS
system). This happens provided the so-called Boussinesq approximation, retaining stratification
only in the buoyancy terms, is enforced as in [4]. The non-Boussinesq case can be treated as a
deformation of such an integrable system.
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Scattering data computation for the Zakharov-Shabat system

L. Fermoa, C. van der Meea, and S. Seatzua.

a. University of Cagliari, Department of Mathematics and Computer Science, 09123 Cagliari, Italy.

In this talk we present a numerical method to compute the scattering data for the Zakharov-
Shabat system associated to the initial value problem for the nonlinear Schrödinger equation

{
iut + uxx ± 2|u|2u = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R
(1)

where i denotes the imaginary unit, u = u(x, t) is the unknown potential, the subscripts x and t
designate partial derivatives with respect to position and time, u0 ∈ L1(R) is the initial potential
and the ± sign depends on symmetry properties of u.
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Taking into account that a numerical method to solve (1) by means of the Inverse Scattering
Technique (IST) exists, knowing the starting data [2], this method allows us to implement the
whole procedure of the IST by simply starting from the initial potential. We also note that the
method has an independent interest in some engineering fields where the problem is to compute
the scattering data [3].

The numerical method which, at our best knowledge, is the first numerical method proposed
to compute all scattering data, is based on the following steps:

1. the computation of the so-called auxiliary functions by solving systems of structured
Volterra integral equations on unbounded domains;

2. the approximation of the transmission matrices and then of the scattering matrix;

3. the approximation of Marchenko kernels by solving structured Volterra integral equations
on unbounded domains;

4. the computation of bound states and norming constants by the identification of parameters
of proper monomial-exponential sums [1].

Numerical tests which confirm the effectiveness of the method in the focusing and defocusing
case will also illustrated.
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Some conservation laws for a generalized Fisher equation in cylindrical
coordinates

M.L. Gandariasa, and M. Rosaa

a. Department of Mathematics, University of Cádiz, 11510 Puerto Real Cadiz, Spain.

The Fisher equation which shows the spread of an advantageous gene into a population, was
proposed for population dynamics in 1930. The analysis and study of the Fisher equation is
used to model heat and reaction-diffusion problems applied to mathematical biology, physics,
astrophysics, chemistry, genetics, bacterial growth problems as well as to the development and
growth of solid tumours. For some special wave speeds the equation is shown to be of Painlevé
type and the general solution for these wave speeds were found in ref [1]. Generalizations of
the Fisher equation are needed to more accutarely model complex diffusion and reactions effects
found in many biological systems. There are many models that use nonlinear dispersal to describe
the tendency for diffusion to increase due to overcrowding [9]. The Fisher equation with the
diffusive term generalized to yield a nonlinear diffusion equation with a reaction term. It is
known that conservation laws play a significant role in the solution process of an equation or a
system of differential equations. Although not all of the conservation laws of partial differential
equations (PDEs) may have physical interpretation they are essential in studying the integrability
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of the PDEs. Moreover, the conservation laws are used for analysis, particularly, development of
numerical schemes, study of properties such as bi-Hamiltonian structures and recursion operators,
and reduction of partial differential equations. For variational problems, the Noether theorem can
be used for the derivation of conservation laws. For non variational problems there are different
methods for the construction of conservation laws In [2], Anco and Bluman gave a general
treatment of a direct conservation law method for partial differential equations expressed in a
standard Cauchy-Kovaleskaya form. In [7] a general theorem which does not require the existence
of Lagrangians has been introduced. This theorem is based on the concept of adjoint equations for
nonlinear equations. The concept of strictly self-adjoint equations has been generalized [3, 8]. In
this work we study a generalization of the well known Fisher equation in cylindrical coordinates.
We determine the subclasses of these equations which are weak self-adjoint and nonlinearly
self-adjoint. By using a general theorem on conservation laws proved by Nail Ibragimov and
the symmetry generators derived in [5], we find conservation laws for these partial differential
equations without classical Lagrangians. We also derive some conservation laws by using the
multipliers direct method of Anco and Bluman.
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Cluster Structures on Poisson-Lie Groups
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Cluster algebras are axiomatically defined commutative ring equipped with a distinguished set
of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same car-
dinality subject to some polynomial relations. They were initially introduced by S. Fomin and
A. Zelevinsky in [3] to study total positivity and (dual) canonical bases in semisimple algebraic
groups. Relations of cluster algebra type can be observed in many areas of mathematics (e.g.,
Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals,
Somos sequences and Hirota equations). The rapid development of the cluster algebra theory re-
vealed relations between cluster algebras and grassmannians, quiver representations, Teichmüller
theory Poisson geometry, spectral networks, 3d gauge theories, and many other branches of
mathematics and, of late, theoretical physics.

Of particular relevance to this workshop are recently established connections between cluster
algebras and integrable systems - see [2, 4, 6, 9, 11, 12], to name just a few recent works on
the subject. Underlying Hamiltonian structure for most of the integrable systems studied in
these papers is naturally described in the context of Poisson-Lie groups. The goal of this talk
is to report on the status of the project devoted to investigation of cluster structures on simple
complex Lie groups compatible (in the sense of [5]) with Poisson-Lie structures arising from
Belavin-Drinfeld classification [1].

To provide more details, let us consider a Lie group G equipped with a Poisson bracket {·, ·}.
G is called a Poisson–Lie group if the multiplication map

G × G ∋ (x, y) 7→ xy ∈ G

is Poisson. The tangent Lie algebra g of a Poisson-Lie group G has a natural structure of a Lie
bialgebra. We are interested in the case when G be a simple complex Lie group and its tangent
Lie bialgebra is factorizable.

A factorizable Lie bialgebra structure on a complex simple Lie algebra can be described in
terms of a classical R-matrix, r ∈ g⊗ g, a solution of the classical Yang-Baxter equation which
satisfy an additional condition that r + r21 is an element of g ⊗ g that defines an invariant
nondegenerate inner product on g. (Here r12 is obtained from r by switching factors on tensor
products.) Classical R-matrices were classified, up to an automorphism, by Belavin and Drinfeld
in [1]. Let h be a Cartan subalgebra of g, Φ be the root system associated with g, Φ+ be the
set of positive roots, and ∆ ⊂ Φ+ be the set of positive simple roots. The Killing form on g is
denoted by 〈 , 〉. A Belavin-Drinfeld (BD) triple T = (Γ1,Γ2, γ) consists of two subsets Γ1,Γ2

of ∆ and an isometry γ : Γ1 → Γ2 nilpotent in the following sense: for every α ∈ Γ1 there
exists m ∈ N such that γj(α) ∈ Γ1 for j = 0, . . . ,m − 1, but γm(α) /∈ Γ1. To each T there
corresponds a set RT of classical R-matrices that we call the BD class corresponding to T . Two
R-matrices in RT the same BD class differ by an element from h⊗ h satisfying a linear relation
specified by T . We denote by {·, ·}r the Poisson-Lie bracket associated with r ∈ RT .

Given a BD triple T for G, define the torus HT = exp hT ⊂ G.
In [7] we conjectured that there exists a classification of regular cluster structures on G that

is completely parallel to the Belavin-Drinfeld classification.

Conjecture. Let G be a simple complex Lie group. For any BD triple T = (Γ1,Γ2, γ) there
exists a cluster structure (CT , ϕT ) on G such that

(i) the number of stable variables is 2kT , and the corresponding extended exchange matrix
has a full rank;

(ii) (CT , ϕT ) is regular, and the corresponding upper cluster algebra AC(CT ) is naturally
isomorphic to O(G);

(iii) the global toric action of (C∗)2kT on C(G) is generated by the action of HT ×HT on
G given by (H1, H2)(X) = H1XH2;

(iv) for any r ∈ RT , {·, ·}r is compatible with CT ;
(v) a Poisson–Lie bracket on G is compatible with CT only if it is a scalar multiple {·, ·}r for

some r ∈ RT .
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The BD data is said to be trivial if Γ1 = Γ2 = ∅. In this case, HT = H is the Cartan
subgroup in G. The resulting Poisson bracket is called the standard Poisson–Lie structure on
G. The Conjecture 1 in this case was verified in [7]. In SLn, the Belavin-Drinfeld data of
maximal size (Γ1 = {α2, . . . , αn−1}, Γ2 = {α1, . . . , αn−2}, γ(αi) = αi−1) gives rise to the
Cremmer-Gervais Poisson structure. The strategy we recently employed in [8, 10] to prove the
conjecture above in the Cremmer-Gervais case together with an intuition gained by computer-
aided verification of the conjecture for any BD data in SLn, n ≤ 5 allow us to construct an
initial cluster and an initial exchange quiver all BD triples in SLn.

I will use the Cremmer-Gervais case to outline the key features of our approach and also
explain how the construction can be extended to finding cluster structures in the dual Poisson-
Lie group and in the Drinfeld double.
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Vortex and Dipole Solitons in PT -Symmetric Lattices with Positive and
Negative Defects

İ. Göksela, N. Antara, and İ. Bakırtaşa

a. Department of Mathematics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.

The nonlinear Schrödinger (NLS) equation containing both cubic and quintic terms describes
many physical situations and arises in particular in optics [1]. In nonlinear optics, the cubic-
quintic nonlinear Schrödinger (CQNLS) equation describes the propagation of an electromagnetic
wave in photorefractive materials. The cubic-quintic nonlinearity is due to an intrinsic nonlinear
resonance in the material, which brings along strong two-photon absorption [2].

In this talk, the existence and stability of vortex and dipole solitons in cubic-quintic media
on parity-time (PT ) symmetric lattices with positive and negative defects will be investigated.
The governing equation for the physical model that has been used in this study is the CQNLS
equation with a PT -symmetric potential in (2+1)D space:

iuz + uxx + uyy + α|u|2u+ β|u|4u+ VPT · u = 0 (1)

where u(x, y, z) corresponds to the complex-valued, slowly varying amplitude of the field in the
xy-plane, propagating in the z direction; uxx + uyy corresponds to diffraction; VPT (x, y) is the
external PT -symmetric potential; α and β are coefficients of the cubic and quintic nonlinearities,
respectively. α and β can be positive or negative, indicating that the nonlinear optical process
is self-focusing or self-defocusing, respectively. Thus, in this work, we consider four different
media, namely self-focusing cubic, self-defocusing quintic media (α = 1, β = −1); self-focusing
cubic, self-focusing quintic media (α = β = 1); self-defocusing cubic, self-defocusing quintic
media (α = β = −1) and self-defocusing cubic, self-focusing quintic media (α = −1, β = 1).

Solutions to equation (1) are obtained numerically by spectral methods [3]. The investigated
potentials satisfy the necessary condition for PT -symmetry VPT (x, y) = VPT

∗(−x,−y) [4] and
are of the following form:

VPT (x, y) = V0

∣∣∣∣2 cos (kx) + 2 cos (ky) + eiθ(x,y)
∣∣∣∣
2

+ iW0

[
sin (2x) + sin (2y)

]
(2)

where V0 and W0 represent the depths of the real and imaginary parts of the potential, respec-
tively and θ(x, y) is a phase function given by

θ(x, y) = arctan

(
y

x
−

π

kx

)
± arctan

(
y

x
+

π

kx

)
(3)

which engenders the positive and negative defect [5].
During my talk, I will show the numerical existence of vortex and dipole solitons on PT -

symmetric lattices for varying potential depths and defects. Next, I will investigate the linear
and nonlinear stability properties of the lattice solitons and discuss the effect of different defects
on the soliton stability.
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Delay Painlevé equations

R. Halburda

a. Department of Mathematics, University College London, London WC1E 6BT, UK.

Differential-delay equations, which relate derivatives and shifts of a function with respect to
a single independent variable, arise in many applications. Over the last few decades, several
examples of differential delay equations have been discovered that appear to be of Painlevé-
type. In particular, some such equations arise as reductions of integrable differential-difference
equations and are the compatibility conditions for related linear problems. Others have been
discovered using singularity confinement methods.

This talk will present methods for detecting such equations based on the value distribution
of meromorphic solutions. As is the case with difference equations, we show that within the
classes of equations studied the complexity of meromorphic solutions of the differential-difference
Painlevé equations is lower (as measured by growth in the sense of Nevanlinna) than meromorphic
solutions of other equations. This property naturally forces a kind of singularity confinement on
solutions.

Special solutions of delay Painlevé equations will also be studied. Differential-delay gener-
alisations of QRT mappings will be presented. Many of the known discrete Painlevé equations
were first discovered as deformations of QRT mappings.

Some of the results presented are from joint work with Bjorn Berntson (UCL) and some are
joint with Risto Korhonen (University of Eastern Finland).

Several nonlocal extensions of the nonlinear Schrödinger type equation

D. Q. Qiu, Z. W. Wu, and J.S. Hea

a. Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, P.R.China.

In 2013, Prof. Ablowitz and Musslimani [1] have introduced a nonlocal extension of the nonlinear
Schrodinger equation (NLS), i.e., iqt(x, t) − qxx(x, t) + 2q(x, t)q∗(−x, t)q(x, t) = 0, which is
called nonlocal NLS equation, by setting a nonlocal reduction q(x, t) = r∗(−x, t) from the
second flow of the AKNS system. In this talk, we shall provide several nonlocal extensions
of the nonlinear Schrödinger type equation from Lie algebra splittings and automorphisms [2].
Moreover, rational forms of the smooth solution for the nonlocal NLS are given explicitly [3].
For example, the first-order rational solution of the nonlocal NLS is plotted in Figure 1 [3].
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Figure 1: First-order rational solution q
[1]
1 of the nonlocal NLS equation. (a) Profile of |q

[1]
1 | on (x, t)-plane. (b)

Density plot of (a), the black line is x = 2t, the blue line is x = −2t.

The symmetry approach for higher Lagrangian systems

A. Caparrós Quinteroa, R. Hernández Herederoa

a. Departamento de Matemática Aplicada a las TICs, ETSIS de Telecomunicación, Campus Sur,

Universidad Politécnica de Madrid, 28031 Madrid, Spain.

In this talk we will explain how the symmetry approach of Shabat et al. [1] can be applied to
study the integrability of Lagrangian systems of higher order with Lagrangian

L = L(x, u, ux, ut, uxx) (1)

where u = u(x, t), ux = ∂u
∂x , etc. This family of systems includes relevant examples such as

L =
1

2

(
ut + uxx − u2

x

)2
generalised NLS

L =
1

2
(ut + uxx)

2 +
1

2
u3
x Boussinesq

L =
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ut + uxx − 1

2R
′(u)

)2

4 (u2
x −R(u))

+
1

12
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The Euler equations δL
δu = 0 of systems with Lagrangian (1) are PDEs of the form

utt = F (x, u, ux, ut, uxx, uxt, uxxx, uxxxx) (2)

which are not in evolutionary form. This implies that the symmetry approach in its original
formulation cannot be applied directly to this problem. But the extension of the approach given
in [2] can be adapted to treat equations of the form (2), and further specialise it to the Lagrangian
case.

In this talk we will explain the basics of the method and the appropriate adaptations to study
the integrability of the mentioned Lagrangian systems. A summary of results will be shown in
an accompanying poster.
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Riemann waves in inhomogeneous hydrodynamic-type systems

B. Huarda

a. Department of Mathematics and Information Sciences, Northumbria University, Newcastle upon

Tyne, UK.

The integrability properties of multidimensional dispersionless systems have been put into light
by several methods in the recent years, amongst others Lax representations and inverse scattering
transform for vector fields [2] on one hand and hydrodynamic reductions and Painlevé reductions
[1] on the other hand. Related inhomogeneous hydrodynamic systems of the Gibbons-Tsarev
type appear to possess similar features, especially Lax representations as was shown in [3]. In
this contribution, we investigate the construction of Riemann-invariant solutions for systems with
inhomogeneous part and the role of these solutions in indicating integrability. In particular, we
study the symmetries of generalised systems of the Gibbons-Tsarev type and compare with the
integrability conditions for their associated multidimensional homogeneous systems.
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Resolution of supersymmetric sigma models and constant curvature sur-
faces

L. Delisle, V. Hussina, and W. J. Zakrzewski

a. Department of Mathematics and statistics, University of Montreal, C.P. 6128, Succ. Centre-ville,

Montréal (Québec) H3C 3J7, Canada.

The study of exact solutions of integrable models is a subject of great interest in the mathematics
and physics communities. In particular, the bosonic integrable CPN−1 sigma model has found
applications in physics, biology and mathematics. For this model, a classification of such solutions
[1] is complete. For a general Grassmannian G(M,N) (M > 1) bosonic sigma model, such a
classification is not complete and has been the object of extensive research works (see, for
example, [2, 3, 4]).

The supersymmetric (SUSY) generalization of this problem has lead to some results in the
case of the SUSY CPN−1 sigma model [5, 6, 7, 8, 9]. Recently, the correspondence with
the constant curvature surfaces in the Lie algebra su(n) and a generalized Veronese curve has
been established [10]. Some assumptions have been made such as supersymmetric translational
invariance. A general construction was still missing and we are investigating a new way of
constructing general such solutions. Some hints are given to extend our analysis to general
SUSY Grassmannian models.
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On spinors, strings, integrable models and decomposed Yang-Mills theory

T. Ioannidoua

a. Aristotle University of Thessaloniki, Greece.

Based on my work with Prof Jiang and Prof Niemi:
This paper deals with various interrelations between strings and surfaces in three-dimensional
ambient space, two-dimensional integrable models, and two-dimensional and four-dimensional
decomposed SU(2) Yang-Mills theories. Initially, a spinor version of the Frenet equation is
introduced in order to describe the differential geometry of static three-dimensional stringlike
structures. Then its relation to the structure of the su(2) Lie algebra valued Maurer-Cartan
one-form is presented, while by introducing time evolution of the string a Lax pair is obtained,
as an integrability condition. In addition, it is shown how the Lax pair of the integrable nonlinear
Schrödinger equation becomes embedded into the Lax pair of the time extended spinor Frenet
equation, and it is described how a spinor-based projection operator formalism can be used to
construct the conserved quantities, in the case of the nonlinear Schrödinger equation. Then
the Lax pair structure of the time extended spinor Frenet equation is related to properties of
flat connections in a two-dimensional decomposed SU(2) Yang-Mills theory. In addition, the
connection between the decomposed Yang-Mills and the Gauss-Codazzi equation that describes
surfaces in three-dimensional ambient space is presented. In that context the relation between
isothermic surfaces and integrable models is discussed. Finally, the utility of the Cartan approach
to differential geometry is considered. In particular, the similarities between the Cartan formalism
and the structure of both two-dimensional and four-dimensional decomposed SU(2) Yang-Mills
theories are discussed, while the description of two-dimensional integrable models as embedded
structures in the four-dimensional decomposed SU(2) Yang-Mills theory are presented.
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Dirichlet to Neumann map for 1-d Cubic NLS

S. Kamvissisa

a. Mathematics Building, University of Crete, 70013 Voutes, Crete, Greece.

Initial-boundary value problems for 1-dimensional ‘completely integrable’ equations can be solved
via an extension of the inverse scattering method, which is due to Fokas and his collaborators.
An interesting feature of this method is that it requires more data than needed for a well-posed
problem. In the case of cubic NLS, knowledge of the Dirichet data suffices to make the problem
well-posed but the Fokas method also requires knowledge of some Neumann data. In this talk,
we report on recent work with D. Antonopoulou, where we provide a rigorous study of Dirichlet
to Neumann map for a large class of decaying Dirichlet data. We show that the Neumann data
are also sufficiently decaying and hence, the Fokas method can be justified.

Peakon–antipeakon solutions of the Novikov equation

M. Kardella, and H. Lundmark

a. Department of Mathematics, Linköping University, SE–581 83 Linköping, Sweden.
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In recent years, there has been considerable interest in peakon solutions to partial differential
equations such as Camassa–Holm [1, 2, 3] and other related equations. In this talk, we are
interested in the Novikov equation [4, 5], which, like its Camassa–Holm relative, is also of the form
ut − uxxt = f(u, ux, uxx, uxxx), though the right hand side here contains cubic nonlinearities.

The talk is based on an upcoming article, which covers peakon–antipeakon solutions of the
Novikov equation on the basis of known solution formulas [6] from the pure peakon case. A
priori, these formulas are valid only for some interval of time and only for some initial values. The
aim of the article is to study the Novikov multipeakon solution formulas in detail, to overcome
these problems.

We find that the formulas for locations and heights of the peakons are valid for all times, at
least in an ODE sense. Also, we suggest a procedure of how to deal with multipeakons where
the initial conditions are such that the usual spectral data are not well-defined as residues of
single poles of a Weyl function.

In particular we cover the interaction between one peakon and one antipeakon, revealing
some unexpected properties. For example, with complex spectral data, the solution is shown to
be periodic, except for a translation, with an infinite number of collisions between the peakon
and the antipeakon.

Also, plotting solution formulas for larger number of peakons shows that there are similarities
to the phenomenon called “waltzing peakons” [7].
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Bispectrality and Duality of Integrable Systems

A. Kasmana

a. Department of Mathematics, College of Charleston, Charleston, SC 29424 USA.

Two classical integrable systems are dual when their “action-angle maps” are inverses. At the
quantum level, this is nicely represented by the bispectrality of the Hamiltonian operators (i.e.
the operators share an eigenfunction, but with the role of the spatial and spectral parameters
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reversed). Strangely, bispectrality also arises as a consequence of duality at the classical level,
in the form of bispectral Lax operators for an associated soliton equation. This talk will re-
view numerous examples of this bispectrality-duality correspondence, focusing especially on the
bispectral representation of the self-duality of the Calogero-Moser system and it generalizations.
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Localized Solutions of the Linear and Nonlinear Wave Equations

L.M. Kovacheva

a. Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradcko shossee 72,1784 Sofia,

Bulgaria.

Following the tradition in the nano and picosecond optics, the basic theoretical studies continue
to investigate the processes of linear propagation of shorter, femtosecond and atosecond laser
pulses through the corresponding envelope equation in paraxial spatio-temporal approximation.
I will present mathematical arguments and proof, that paraxial optics is not valid for large band
attosecond and phase-modulated femtosecond pulses. In air, due to the small dispersion, the
wave equation as well as the 3D + 1 non-paraxial amplitude equation describe more accurate
the pulse dynamics. In my presentation new exact localized solutions of the linear wave and
non-paraxial amplitude equations will be presented. The solutions describe the real diffraction of
the laser pulses without Fresnel or Fraunhofer approximation to be used [1]. They discover one
new law of diffraction of the localized optical waves - with initial enlarging of their spectra the
Fraunhofer zone become closer and closer to the source. The analytical results are compared
with the diffraction experiments of atosecond pulses and numerical investigations. Thus, in the
nonlinear theory one important question appear: How broad spectrally must be the initial pulse
to be in the regime of the Fraunhofer diffraction and, in addition, to has sufficient power for a
non-linear mode of propagation. In this nonlinear regime we solve the corresponding nonlinear
scalar and vector equations and obtain Lorentz type solitary waves [2]. Progress in the nonlinear
wave optics encouraged us to examine the task, set in the 30s of the 20th century by Euler,
Kockel and Heisenberg [3] of nonlinear polarization of vacuum. We investigate wave dynamics in
nonlinear vacuum in the frame of a system of nonlinear wave vector equations. The corresponding
solitary solution admits shock wave dynamics in 3D+1 space [4].
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1+1-dimensional Yang-Mills equations and mass as quasiclassical correc-
tion to action

S. Leblea

a. Department of Applied Physics and Mathematics, Gdansk University of Technology, 80-223,

Poland.

Two-dimensional Yang-Mills models in a pseudo-euclidean space are considered from a point of
view of a class of nonlinear Klein-Gordon-Fock equations. Underlying ideas for this investigation
were taken from works of Baseyan [1], Corrigan [2] and Nahm [3].

This paper is a direct development of author’s results [4] in which one dimensional model
immersed in SU(2) Yang-Mills theory was studied in the context of Nahm model. The author’s
main result [4] is a demonstration of existence and evaluation of nonzero quantum correction to
action against classical zero mass as a consequence of the proposed model. The one-dimensional
Yang-Mills-Nahm models were considered from algebrogeometric points of view. A quasiclas-
sical quantization of the models is based on path integral construction and its zeta function
representation in terms of a Green function diagonal for an auxiliary heat equation with an el-
liptic potential. The Green function diagonal and, hence, the generalized zeta function and its
derivative are expressed via solutions of Drach equation [5] and, alternatively, by means of Its-
Matveev [6] formalism in terms of Riemann theta-functions. The weak point of the description
is namely the one-dimensionality of the reduction that provoke ambiguity of the interpretation
of the correction as the mass.

The task of this work is the derivation and solution of the field equations for a class of the
two dimensional models. The result of the reduction of the basic Yang-Mills equations and the
corresponding Lagrangian is similar to the one-dimensional one: we obtain 1+1 φ4 (Ginzburg-
Landau) model equations with the zero mass term and coefficients that depend on algebraic
closure of an matrix anzatz for the gauge fields that fix the model. The stationary and directed
waves are thought as quasiperiodic solutions of the model equations that are expressed in terms
of elliptic functions. Its quantization is performed by means of quasiclassical Feynmann-Maslov
integral, which evaluation and quantum corrections to action is based on the mentioned technique
of the generalized zeta-function renormalization in terms of the nonlinear Drach equation. It
is derived for the Green function diagonal (within the the heat kernel formalism) and gives
polynomial solutions in elliptic variables.

An alternative approach based on Baker-Akhiezer functions for Kadomtsev-Petviashvili equa-
tion is formulated. The quantum corrections to action of the model are evaluated. The fields
from the class of elliptic functions are properly studied. Extra variables of arbitrary dimensions
are accounted for the model applications of the solutions in elementary particles physics. For
a model, which field is represented via elliptic (lemniscate) integral by construction, Yang-Mills
field mass is defined as the quantum correction, in the quasiclassical approximation it is evaluated
via hyperelliptic integral.
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Thermodynamics of macroscopic systems with inverse-cube forces

F. Leyvraza,b
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A system consisting of an arbitrary number of particles of equal masses interacting via an arbi-
trary potential of homogeneity degree −2 and confined by an isotropic harmonic potential has
the property of sustaining undamped isochronous compressional oscillations, as has been shown
earlier. In this paper, we review this finding. We also discuss the concept of thermodynamic
equilibrium for such systems. We require a generalization of the usual concept of equilibrium
ensemble, for which macroscopic compressional oscillations arise. It turns out that these oscilla-
tions are adiabatic, and that correspondingly, the temperature varies when the size of the system
does (in the specific case stated above, this dependence is one of inverse proportionality). It is
also shown that some of these results extend to the quantal case.

Third-order superintegrable systems with potentials satisfying nonlinear
equations

A. Marchesielloa, S. Post, and L. Šnobl

a. Department of Physics, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech

Republic.

The conditions for superintegrable systems in two-dimensional Euclidean space admitting sepa-
ration of variables in an orthogonal coordinate system and a functionally independent third-order
integral are studied.

As it is well known, there are 4 in-equivalent choices of orthogonal coordinates for which
the Helmholtz equation (i.e. the equation for eigenvectors of the Hamiltonian with vanishing
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potential) admits separation of variables. Namely, Cartesian, polar, parabolic and elliptic co-
ordinates. Any integrable system with second-order integrals is separable in (at least) one of
these coordinate systems. We consider systems that are superintegrable, i.e. allow an additional
independent integral, which is supposed to be of third order in momenta. The investigation of
third-order superintegrable systems that admit separation of variables in Cartesian [1] and polar
coordinates [4] lead to the discovery of new superintegrable “nonlinear” potentials, i.e. poten-
tials involving solutions of non-linear ODEs, including Painlevé transcendents. These further
discoveries, along with recalling that the defining equations for a superintegrable potential are
non-linear, might lead one to believe that such “nonlinear” potentials are ubiquitous. However,
our work [2] shows that only systems that separate in subgroup type coordinates, Cartesian or
polar, admit potentials that can be described in terms of nonlinear special functions. As in the
parabolic case [3], systems separating in elliptic coordinates are shown to have potentials with
only non-movable singularities.

References

[1] S. Gravel, Hamiltonians separable in Cartesian coordinates and third order integrals of
motion, J. Math. Phys., 45 (2004), pp. 1003–1019.
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Symmetry Properties of the discretization procedures of the Liouville
equation

D. Levia, L. Martinab, and P. Winternitzc
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The Liouville equation is well known to be linearizable by a point transformation. It has an infinite
dimensional Lie point symmetry algebra isomorphic to a direct sum of two Virasoro algebras.
We show that it is not possible to discretize the equation keeping the entire symmetry algebra
as point symmetries. We do however construct a difference system approximating the Liouville
equation that is invariant under the maximal finite subalgebra SLx(2,R) ⊗ SLy(2,R). The
invariant scheme is an explicit one and provides a much better approximation of exact solutions
than comparable standard (non invariant) schemes. Comparisons with the generalized symmetry
invariant scheme and integrable discrete scheme are discussed [1].



Abstracts of Contributions 43

References

[1] D. Levi et al. , Lie-point symmetries of the discrete Liouville equation, J. Phys A: Math.
Theor. 48, 2 (2015) 025204, 2 (2010), pp. 123–456.

Multiple rogue waves and extremal rogue waves in 1+1 and 2+1 integrable
systems related with AKNS and KP hierarchies

V.B. Matveeva

a. Institut de Mathématiques de Bourgogne, Université de Bourgogne, BP 47870, 21078, Dijon,

France.

Since the appearance of articles [1, 2] and the Ph.D thesis [3] in 2010-2011, the concept of
multi-rogue waves (MRW) solutions, first introduced in our works for the focusing NLS equation
and the KP-I equation, soon became a well accepted paradigm which was extended to many
other integrable models. The aforementioned works were further developed in [4].

In these works the parametrisation, allowing to consider the higher Peregrine breathers as
the simple reduction of the MRW solutions, was first found for the rank 2 solutions, and later
extended to arbitrary ranks. There is a deep difference between the genuine Peregrine breather
(P1-breather) , which is an isolated solution, and Pn breather which belongs to the 2n − 2
parametric family of solutions of the NLS equation. For sufficiently small values of parameters,
MRW solutions have a shape, very close to that of Pn-breather, (or rank n Peregrine breather),
as we called it in [4] . In 1 + 1 case for generic values of parameters the shape of magnitude
contains n(n + 1)/2 peaks [2, 3] with the heights close to that of P1-breather. When one
or many of the parameters are big enough, one can observe various approximately symmetric
configurations. For small values of parameters ,- the number of peaks and their heights of might
be different. For instance, for Pn breather, the extreme number of maxima n(n + 1) − 1 is
attended, and, there is one central maximum of the height 2n + 1, and n(n + 1) − 2 of much
smaller maxima in (x, t) plane [3, 4]. Surprisingly enough, the number of minima of the absolute
value of MRW solutions is n(n+ 1). It remains the same for all values of the parameters.

These properties of MRW solutions of the NLS equation are responsible for the behavior
of rogue waves solutions of the KP-I equation, induced by the NLS-KP correspondence. The
KP-I equation has, for any rank n, the solutions , containing n(n+1)/2 separated ”long living”
rogue waves. For large times, these waves have almost the same magnitude and are moving with
asymptotically constant velocities, progressively diverging when |t| → ∞ . For some finite interval
of time, they concentrate inside the small domain, in which their movement accelerates while
approaching to a minimal distances from each over, in general not entering in the full collision.
Under the special choice of initial data, the confluence (full collision) of these rogue waves takes
place at the single point of the space-time (x, y, t), leading to appearance of ”extremal” , very
short living, rogue wave, generated by the Pn breather solution of the NLS equation via NLS-KP
correspondence. This will be illustrated by the movies, describing the different scenario of the
rogue waves collisions, (see also [4]).

We also explain [5] how the same wronskian formulas for the MRW solutions of the NLS
equation under an appropriate re-parametrisation allow to describe the the MRW solutions for the
commuting flows of AKNS hierarchy which yields many equations relevant to nonlinear optics.
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Darboux transformations for Lax operators associated with Kac-Moody
algebras

A. V. Mikhailova, and V. V. Sokolovb
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b. L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russia.

We consider Lax operators for two–dimensional “periodic” Toda type systems corresponding to

classical series of Kac-Moody algebras and G
(1)
2 [1]. For these Lax operators we construct sys-

tematically elementary Darboux transformations and integrable differential-difference systems (
Bäcklund transformations). Bianchi permutability of Bäcklund transformations, or, more pre-
cisely, the commutativity conditions for the Darboux maps leads to to a system of integrable

partial difference equations. Thus, with every classical Kac-Moody Lie algebra and G
(1)
2 we

associate an integrable Toda type system, a pair of differential-difference systems and a partial
difference system. These differential-difference systems represents Bäcklund transformations for
the Toda type system and serves as non-local symmetries for the partial-difference system of
equations.
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Route to thermalization in the α-Fermi-Pasta-Ulam system

M. Onoratoa, D. Proment, L. Vozella, and Y. Lvov

a. Dipartimento di Fisica, Università di Torino, 1004 Torino.

We study the original α-Fermi-Pasta-Ulam (FPU) system with N = 16, 32 and 64 masses con-
nected by a nonlinear quadratic spring. Our approach is based on resonant wave-wave interaction
theory, i.e. we assume that, in the weakly nonlinear regime (the one in which Fermi was origi-
nally interested), the large time dynamics is ruled by exact resonances. After a detailed analysis
of the α-FPU equation of motion, we find that the first non trivial resonances correspond to
six-wave interactions. Those are precisely the interactions responsible for the thermalization of
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the energy in the spectrum. We predict that for small amplitude random waves the time scale of
such interactions is extremely large and it is of the order of 1/ǫ8, where ǫ is the small parameter
in the system. The wave-wave interaction theory is not based on any threshold: equipartition
is predicted for arbitrary small nonlinearity. Our results are supported by extensive numerical
simulations. A key role in our finding is played by the Umklapp (flip over) resonant interactions,
typical of discrete systems. The thermodynamic limit is also briefly discussed. Details can be
found in [1].
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Topological effects on momentum and vorticity evolution in stratified
fluids
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In this talk I will consider a two-fluid system in a channel. Both fluids are supposed to be
inviscid, incompressible, and homogeneous. I will show that the topological properties of the
fluids domains affect total horizontal momentum and vorticity evolution. In the first part I will
treat the 2-dimensional case and I will suppose that the density of the upper fluid limits to zero
[1]. In the second part I will deal with the total vorticity evolution in the 3-dimensional case.
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A classification of 4D consistent maps

M. Petreraa, and Yu. B. Suris

a. Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany.

It is nowadays a well-established fact that integrability of 2D discrete equations can be identified
with their 3D consistency [1]. Our aim is to turn our attention to integrability of 3D discrete
systems, now understood as 4D consistency. The most striking feature is that the number of
integrable systems drops dramatically with the growth of dimension: only half a dozen of discrete
3D systems with the property of 4D consistency are known. All of them are of a geometric origin.

Our investigation is devoted to 3D maps Φ : (x1, x2, x3) 7→ (x̃1, x̃2, x̃3), where each compo-
nent x̃k is defined as a formal series

x̃k = xk +
∞∑

i=2

A
(i)
k (x1, x2, x3), k = 1, 2, 3. (1)
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Here A
(i)
k is a homogeneous polynomial of (x1, x2, x3) of degree i. After setting (x1, x2, x3) =

(x23, x31, x12) we combinatorially assign the quantities xjk to the three faces of a 3D cube
parallel to the coordinate plane jk, and the quantities x̃jk = Tixjk to the three opposite faces
(Ti stands for the unit shift in the i-th coordinate direction). Thus, we consider a 3D system
with fields assigned to elementary squares, given by the formulas

(T3x12, T2x13, T1x23) = Φ (x12, x13, x23) . (2)

The 4D consistency of (2) can be formulated as follows. Consider the initial value problem with
the data xij = xji, i, j = 1, 2, 3, 4, prescribed at six squares adjacent to one common vertex of
a 4D cube. Then the application of (2) to the four 3D cubes adjacent to this vertex allows one
to determine all Tkxij . At the second stage, the map is applied to the other four 3-faces of the
4D cube, with the result being all Tm(Tkxij) computed in two different ways (since each of the
corresponding squares is shared by two 3-faces). Now, 4D consistency of the map means that
Tm(Tkxij) = Tk(Tmxij) for any permutation i, j, k,m of 1, 2, 3, 4 and for arbitrary initial data.

The only known 3D map of type (2) which is 4D consistent is the symmetric discrete Darboux
system

Tkxij =
xij + xikxkj

√
1− x2

ik

√
1− x2

kj

. (3)

After defining the group of admissible transformations for the classification we prove that (3)
is the unique 4D consistent map of type (2). In particular, in such a case, the formal series (1)
are convergent. For the map (3), whose 4D consistency can be explained by means of spherical
geometry [2], one can also prove its Arnold-Liouville integrability and its solvability.
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Cauchy–Jost function and hierarchies of integrable equations

M. Boiti, F. Pempinelli, and A.K. Pogrebkova,b,c
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The Cauchy–Jost function F (x, λ, µ), i.e., a primite of the product of the dual Jost solution and
Jost solution itself, with spectral parameters λ and µ correspondingly, is well know to appear
naturally under binary Darboux transformation, [1]. In [2] this function was called the Cauchy–
Baker–Akhiezer one and its properties where discussed. Here we study properties of this function
in detail. In particular, we show that under assumption of dependence on infinite number of times

x = (x1, x2, . . .), this function obeys equation
∑∞

k=0

∂xk

zk+1F (x, λ, µ) = −F (x, λ, z)F (x, z, µ) in
terms of asymptotic series with respect to complex λ, µ and , z. We prove that this equation, in
analogy to [3] generates the whole hierarchy of integrable equations. This property is illustrated
by examples of the KP and DSII hierarchies. We also prove that the Darboux transformed
Cauchy–Jost function obeys linear equation on the background of the original one.
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Dynamics of rolling and sliding axially symmetric rigid bodies: Jellett’s
egg (JE), Tippe top (TT), rolling and sliding disc (sRD). Asymptotic
solutions and numerical sampling.

S. Rauch-Wojciechowskia

a. Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden.

Equations of motion for purely rolling axially symmetric rigid bodies have 4 degrees of freedom
and are completely integrable (Routh, Chaplygin). When sliding is allowed there are 2 additional
degrees of freedom for motion of centre of mass, equations are dissipative and integrability is
lost. Analysis of this strongly nonlinear dynamical systems is difficult and progress is limited.
The main tools in study of global dynamics is the monotonously decreasing energy function,
theorems on stability of asymtotic solutions and the use of LaSalle type theorems. An additional
usefull property is that the underlying purely rolling problem is integrable and this can be used
for studying dynamics with sliding as in the case of the Tippe top where it helped to explained
oscillatory behaviour of inverting solutions of TT [1, 2].

Equations for the Jellett´s egg (an axially symmetric ellipsoid with halv axis a, b) are inter-
esting as the parameters a, b may be deformed to derive equations of other rigid bodies such as
the Tippe top and the sliding and rolling Disc (sRD). This is used for understanding the common
structure of all these equations and enables study of how features of dynamics change when the
parameters are deformed. The use of the JE equations makes possible a uniform analysis of
bifurcation diagrams of asymptotic solutions for JE, TT, sRD and are a basis for understanding
of what asymptotically happens to these rolling and sliding bodies. The asymptotic solutions
provide also a usefull framework for numerical sampling of solutions to get an idea of what
happens at different initial condition regimes.

The present understanding of inversion of the Tippe top is a result of several papers [3, 4, 5]
which studied stability of asymptotic solutions, as a function of physical parameters and of
the initial conditions. It is presently well understood that the sliding friction is responsible for
inversion and that the inversion can take place only for the values of parameters 1 − α < γ =
I1/I3 < 1 + α where 0 < α < 1 measures the eccentricity of the center of mass and I1, I3
are the main moments of inertia. But these results do not prove that the Tippe top has to
invert, do not specify the range of initial conditions when TT is inverting and do not explain
dynamical behaviour of inverting solutions. To address the last question we have introduced
[1, 2] a new method of studying dynamics that is based on deformation of integrals of motion
of an integrable sub-case when the TT is rolling without sliding. This approach leads to one
(nonintegrable) Main Equation for the Tippe Top that describes behavior of the inclination angle
θ(t) between the symmetry axis 3̂ and the vertical axis ẑ. This equation helps to prove that
during the inversion the symmetry axis nutates fast within a narrow band that is moving from
the nbhd of the north pole to the nbhd of the south pole of the unit sphere.
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Numerical analysis of solutions requires a clever way of testing initial conditions so that small
number of simulations provides understanding of what happens at different choices of initial
conditions and how resilient for perturbations is the inverting behaviour of the Tippe top. Our
study [6] shows that initiation of inversion requires reaching a treshold value of the angular
velocity ϕ̇ and synchronisation of other variables.

Equations for rolling and simultaniously sliding Disc (sRD) seem to be studied very little as
they are not integrable [7]. In this case it is the asymptotic solutions [9] that provide a framework
for understanding general solutions as they have constant energy and attract other solutions. I
will discuss also suitable way of sampling different regimes of initial conditions to obtain some
understanding of global features of dynamical behaviour.
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Stefan-Type Moving Boundary Problems for the Harry Dym Equation and
its Reciprocals

C. Rogersa
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Moving boundary problems of Stefan-type have their physical origin in the analysis of the melting
of solids and the freezing of liquids ([1, 2]). The classical Stefan problem involves a linear heat
conduction equation, but involves a nonlinear condition on the boundary separating the phases.
Nonlinear Burgers-Stefan problems have been investigated via an integral representation with
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origin in work of Calogero et al (see e.g. [3, 4] and literature cited therein). On the other hand,
reciprocal-type transformations may be used to obtain parametric solution of Stefan problems
involving the nonlinear melting processes in a range of simple metals [5].

However, whereas there has been and continues to be extensive research on Stefan problems
for linear and linked C-integrable equations, the literature on moving boundary problems for S-
integrable equations is sparse indeed. Nonetheless, one intriguing solitonic connection was made
in [6] where, in an investigation of the Saffman-Taylor problem with surface tension, a one-
parameter class of solutions was isolated in a description of the motion of an interface between
a viscous and non-viscous two-dimensional fluid: this class was shown to be linked to the well-
known Harry-Dym equation of soliton theory. Here, classes of novel moving boundary problems
are discussed both for the Harry Dym equation and the Korteweg-de Vries singularity manifold
equation to which it is linked via a reciprocal transformation. The boundary conditions adopted
involve prescribed density and flux on the moving surface, as in classical Stefan problems. A
symmetry reduction allows exact solution of privileged infinite sequences of such nonlinear moving
boundary problems in terms either of Yablonski-Vorob’ev polynomials or classical Airy function
solutions of Painlevé II. These solutions are generated by the iterated action of its Bäcklund
transformation. The latter procedure has previously been applied to isolate infinite sequences
exactly solvable steady state boundary value problems arising out of the Nernst-Planck system
descriptive of two-ion electro-diffusion [7]. The iterative action in that electolytic setting is
associated with quantized fluxes of the ionic species [8].
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In the first part, we study the existence and bifurcation results for quasi periodic traveling waves
of discrete nonlinear Schrödinger equations with nonlocal interactions and with polynomial type
potentials. We employ variational ana topological methods to prove the existence of traveling
waves in nonlocal DNLS lattice. Next, we examine the combined effects of cubic and quintic
terms of the long range type in the dynamics of a double well potential (nonlocal NLS). While in
the case of cubic and quintic interactions of the same kind (e.g. both attractive or both repulsive),
only a symmetry breaking bifurcation can be identified, a remarkable effect that emerges e.g.
in the setting of repulsive cubic but attractive quintic interactions is a “symmetry restoring”
bifurcation. Namely, in addition to the supercritical pitchfork that leads to a spontaneous
symmetry breaking of the anti-symmetric state, there is a subcritical pitchfork that eventually
reunites the asymmetric daughter branch with the anti-symmetric parent one. The relevant
bifurcations, the stability of the branches and their dynamical implications are examined both
in the reduced (ODE) and in the full (PDE) setting. The model is argued to be of physical
relevance, especially so in the context of optical thermal media.
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Automorphic Lie Algebras and Root System Cohomology
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The method of reduction groups [Mik81, LM05] leads to the following mathematical problem
setting, which we describe here without getting all the technicalities right: We start with a
finite group G acting on CP

1 (thereby restricting the group to Z/N,DN ,T,O,Y) and with
an irreducible representation space V . On V we assume the linear action of a Lie algebra g

(as in sl(V )). This induces an action of G on g by conjugation. We then have an action on
g ⊗ M(CP1) and call (g ⊗M(CP1))G an Automorphic Lie Algebra (ALiA), where M stands
for meromorphic.

The computation and classification of ALiAs can be done by hand calculation in the case
of DN [KLS14], and when the representation of CP1 and V = C

2 are the same [LS10], but in
general this seems unfeasible. We have developed a FORM program [KUVV13], calling on GAP
[GAP08] and Singular [GP08], to compute the invariant matrices in the case of g = sl, so, sp.
For g = sl we have computed the Chevalley normal form of the ALiAs based on all the irreducible
representations with poles at an exceptional group orbit.

The ALiAs are Lie algebras over the ring of polynomials in the modular invariant k[I], where
k is the splitting field of the group G. Not working over the field C complicates the analysis,
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specifically finding the Chevalley normal form, but when all is said and done, one is rewarded
with results that are as simple as possible and can be partially checked by predictions made on
the basis of the action of the generators of G on the irreducible representations [Kni14], more
specifically using the codimensions of their invariant subspaces.

This talk will give an explicit description of the results obtained so far. They indicate that if
two ALiAs can be isomorphic as Lie Algebras, based on the (co)dimension counts, they are.

It will then go on to sketch a cohomology theory for root systems that can be used in the
classification of Lie algebras depending polynomially on parameters. This gives us explicit criteria
to test whether a given Chevalley normal form does indeed define a Lie algebra and how to find
a model for this Lie algebra by integrating a differential two form.
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Integrable dispersionless PDEs in multidimensions: rigorous aspects of
the Cauchy problem, wave breaking and exact implicit solutions

P.M. Santinia

a. Department of Physics, University of Roma “La Sapienza”, 00185, Rome, Italy.

We first review the formal aspects of the theory of integrable dispersionless PDEs (including, as
distinguished examples, the dispersionless Kadomtsev - Petviashvili, the heavenly and the Boyer-
Finley equations) arising as commutation condition of multidimensional vector fields, obtained
in collaboration with S. V. Manakov: the IST formalism for solving the Cauchy problem, the
construction of the longtime behavior of solutions and of exact implicit solutions, and the ana-
lytical aspects of multidimensional wave breaking [1] - [5]. We also present some recent results
on the rigorous aspects of such a theory, obtained in collaboration with P. Grinevich and D. Wu
[6].
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Banach space geometry and construction of solutions by limiting pro-
cesses

C. Schiebolda

a. Department of Mathematics, Mid Sweden University, 85170 Sundsvall, Sweden.

In the 90ies the study of countable superpositions of solitons was initiated by Gesztesy and al.
Their approach was via a step by step analysis of the ISM. In our talk we will explain how the
original method can be replaced by Banach space geometry. We will start from operator formulas
for integrable systems and recall then the necessary background from functional analysis. In the
main part we will combine these ingredients in order to extend the initial results to superposition
of more complicated solutions (formations, weakly bound groups) and of matrix solutions.

R. Boll consistent around the cube systems and their linearizability

G. Gubbiotti, C. Scimiternaa, D. Levi, and M. Hay

a. Department of Mathematics and Physics, Università degli Studi Roma Tre, Rome, Italy.

Consistency around the cube has proved to be one of the most useful concept in studying discrete,
multilinear, integrable, nonlinear systems defined on a quad-graph, soon becoming a definition
itself of integrability. An algorithmic procedure in fact provides a (true) Lax pair and Bäcklund
transformations for any consistent system. A first classification of these equations was presented
in [1], later extended in [2]. A complete classification (under the additional hypothesis of the
tetrahedron property) has been finally obtained in [3]-[4].

When one assume the more general context of [3]-[4], where a priori different equations live
on the faces of the consistency cube, the strictly equivalence between existence of a (non trivial)
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Lax pair, Bäcklund transformations and consistency has been somehow criticized in [5]. The
notion of weak Lax pair was thus introduced.

In this seminar we show how this critics can be fully reabsorbed, once the consistent sys-
tems of Boll are properly extended on the lattice. After all the independent equations inside
an equivalence class have been identified, an algebraic entropy test reveals their linearizability
(C−integrability). We construct the Lax representation, whose weakness obviously reflects the
linearizability property. We also provide explicit examples of the linearization procedure.
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Exchange algebras, spontaneous symmetry breaking and Poisson struc-
tures for differential and difference operators

M.A. Semenov-Tian-Shanskya,b

a. Institut Mathématique de Bourgogne, Dijon, France.

b. St.Petersburg Department of Steklov Mathematical Institute, Russia.

We discuss Poisson structures in the space of solutions of linear difference and differential equa-
tions on the line. Natural covariance properties with respect to gauge transformations and the to
the action of the differential/difference Galois groups make these structures very rigid and allow
to fix it almost uniquely. This construction leads to a new class of classical r-matrices and to
a peculiar symmetry breaking which endows differential Galois groups with a Poisson structure.
The main results are exposed in paper [1].
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Free and Driven Solitonic Spin Wave “Bullet” Mode Excited by Pure Spin
Current

A.N. Slavina, and V. Tyberkevych

a. Department of Physics, Oakland University, Rochester, Michigan 48309, USA.

It is known that self-localized solitonic spin wave excitations - spin wave “bullets”- play an im-
portant role in the magnetization dynamics of magnetic nano-structures driven by spin-polarized
electric current [1, 2]. The equation of motion for the magnetization, where positive magnetic
damping caused by the spin-electron interaction and negative magnetic damping caused by spin-
transfer torque effect are taken into account, can be reduced to a Ginzburg-Landau equation
[1, 3] that has a stable solitonic solution in a two-dimensional case. This stable solution correctly
describes the self-localized spin wave “bullet” mode observed in experiment [2], and practically
coincides with the corresponding two-dimensional solution of the nonlinear Schrodinger equation
[1].

Here we demonstrate that a similar self-localized spin wave “bullet” mode can be excited by
a pure spin current. This pure spin current is caused by the spin Hall effect in a layered structure
consisting of a thin layer of platinum (Pt) placed in contact with a layer of a ferromagnetic
metal (Permalloy (Py)). The spin current flowing into Py is perpendicular to the direction of
the charge current in Pt. It compensates the magnetic damping in Py and excites a localized
non-propagating spin wave “bullet” mode of a microwave frequency in a Py layer [4]. The
experiment was made by the group of Professor S. Demokritov at the Muenster University,
Germany, and the generation of single-mode coherent auto-oscillations was demonstrated in a
device that combines local injection of a pure spin current with enhanced spin-wave radiation
losses. Counter-intuitively, radiation losses lead to the suppression of the nonlinear processes that
prevent auto-oscillation by redistributing the energy of the spin current between the different spin
wave modes. Thus, the spatial localization of the spin current enables excitation of a particular
standing auto-oscillation mode - a solitonic spin wave “bullet”.

We also report a study of the effects of external driving microwave signals on an auto-
oscillator where the self-localized solitonic spin wave “bullet” mode is excited [5]. Our results
show that such a nonlinear auto-oscillator can be efficiently synchronized by the application of
a microwave signal at approximately twice the frequency of the auto-oscillation, which opens
additional possibilities for the development of novel spintronic devices. We find that the syn-
chronization exhibits a threshold determined by the magnetic fluctuations pumped above their
thermal level by the spin current, and is significantly influenced by the nonlinear self-localized
nature of the auto-oscillatory mode. These findings suggest a new route for the implementation
of nano-scale microwave sources in the next generation of integrated nano-electronics.
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Dispersionful Version of WDVV Associativity Equations

N.M. Stoilova, and M.V. Pavlov

a. Mathematics Institute, University of Göttingen, Göttingen 37073, Germany.

The Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations arise as the conditions of associa-
tivity of an algebra in an N dimensional space. These equations are fully integrable for any N .
Furthermore, the compatibility conditions for the WDVV equation can be written as a hydrody-
namic type system of PDEs, which possesses a bi-Hamiltonian structure. This structure allows
us to construct members of the positive and negative parts of the hierarchy. Exploiting a special
transformation, together with this hierarchy, we are able to construct dispersionfull version of
the above equations.

Young diagrams associated with the tropical periodic Toda lattice

T. Takagia

a. Department of Applied Physics, National Defense Academy, Kanagawa 239-8686, Japan.

The Toda lattice is one of the most famous integrable systems in classical mechanics. Recently,
one of its variations is attracting attentions in the interplay of integrable systems and tropical
geometry. We call this system the tropical periodic Toda lattice (trop p-Toda) [1, 2]. Its
evolution equation was known as the ultradiscretization/tropicalization of the discrete periodic
Toda lattice equation (in a non-standard notation which I used in [3])

ā2n−1 + ā2n = a2n + a2n+1, ā2nā2n+1 = a2n+1a2n+2, (1)

where an = atn, ān = at+1
n are dependent variables depending on discrete spatial n ∈ Z2N and

temporal t ∈ Z coordinates. In [4], Inoue and Takenawa studied trop p-Toda and clarified its
iso-level set structure under a condition (on its conserved quantities) called generic. However,
without this condition we have so far no suitable description of the connected components of
the iso-level set, which have different sizes according to their internal symmetries.

Recently, I studied trop p-Toda and proved that its associated ‘Young diagrams’ (YDs) given
by two different definitions are identical [3]. From one of the definitions one immediately sees
that the common YD is preserved under the time evolution. I believe that this identification
of the YDs is the first step in clarifying the iso-level set structure of this dynamical system in
general cases, i. e. not restricted to generic cases.

The two definitions of the YDs are as follows. The first is related to the Lax representation
of the discrete periodic Toda lattice. It leads to its k-th conserved quantity expressed as a sum
of products of k dependent variables

hk =
∑

1≤i1⊳ i2⊳···⊳ ik≤2N

(i1,ik) 6=(1,2N)

ai1ai2 . . . aik , (2)

where i ⊳ j ⇔ i + 1 < j, i. e. whose indices are in nearest neighbor exclusion condition. Then
the corresponding conserved quantity of trop p-Toda

Hk = min
1≤i1⊳ i2⊳···⊳ ik≤2N

(i1,ik) 6=(1,2N)

(Ai1 +Ai2 + · · ·+Aik) , (3)

is defined as its tropicalization. I show that the above condition on the indices leads to the
weak convexity condition Hk + Hk+2 ≥ 2Hk+1, that enables us to represent them as a YD
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with horizontal edges of lengths HN+1−i − HN−i (1 ≤ i ≤ N). The second is related to a
generalization of the Kerov-Kirillov-Reshetikhin bijection in combinatorics of Bethe ansats, more
precisely one of its variations in sl2 case. In fact, it is a real continuous analogue of the bijection
reflecting the real-valuedness of the above lengths.

As a special case the trop p-Toda reduces to an integrable (soliton) cellular automaton known
as the periodic box-ball system. In this case the YD represents the content of solitons in the
system, and the generic condition is requiring no two solitons have a common amplitude. I
note that in this case the iso-level set structure has been clarified without the generic condition
[5], where the Kerov-Kirillov-Reshetikhin bijection played an important role in describing the
action-angle variables of the system.
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Stability analysis of equilibria for certain generalized free rigid body dy-
namics

D. Taramaa2

a. Department of Mathematics, Kyoto University, Japan.

This talk is based on the collaborations [12, 13] with Tudor Ratiu.
The free rigid body dynamics is one of the solvable problems in theoretical mechanics. Its
complete integrability and the stability properties of the equilibria are well known. By the
influence of the rapid development of the studies on infinite dimensional integrable systems,
such as Korteweg-de Vries equation, the free rigid body dynamics has been generalized, first,
to higher dimensional rotation group SO(n) and, then, to arbitrary semi-simple Lie groups by
Mishchenko and Fomenko [9, 10].

The goal of these researches is to show the complete integrability of the generalized free rigid
body dynamics. However, it is very natural to investigate the stability of the equilibria from the
viewpoint of dynamical systems theory. For the original free rigid body dynamics, the rotations
around the long and the short axes of the inertia tensor are stable, while those around the middle
axis are unstable. For the above generalized free rigid body dynamics, it is rather recent that
the stability and analysis for the equilibria are performed. in the case of the SO(4) free rigid
body dynamics, the stability of a certain class of equilibria has been studied by Fehér-Marshall

2JSPS Research Fellow (PD). Partially supported by Grant-in-Aid for JSPS Fellows, JSPS KAKENHI Grant
Number 25·1543 and by Grant-in-Aid for Young Scientists (B), Grant Number 26870289.
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[7] and the complete stability analysis was carried out by Birtea-Caşu-Ratiu-Turhan [1]. For
general SO(n), the stability of a special family of equilibria was analysed by Spiegler [14] and,
more recently, by Izosimov [8], who gives the complete stability analysis for generic isolated
equilibria on the basis of the methods by Bolsinov-Oshemkov [6]. (See [5] for more sophisticated
treatment.)

An important feature of the above generalized free rigid body dynamics is their bi-Hamiltonian
structure [3, 4, 11]. Bolsinov and Oshemkov [6] developed a systematic method of dealing with
the complete integrability and the non-degeneracy of the equilibria for Hamiltonian systems which
admit bi-Hamiltonian structures. Once the equilibria are non-degenerate, we can show that the
Birkhoff normal form of the Hamiltonian is obtained through convergent canonical transforma-
tion. From this fact, we can deduce the nonlinear (Lyapunov) stability of non-degenerate linear
stable equilibria.

In this talk, analysed are the stability of the isolated equilibria for the Mishchenko-Fomenko
generalized free rigid body on the real Lie groups whose Lie algebras are normal or compact real
forms of some complex semi-simple Lie algebras. As the main results, it is shown that all the
equilibria of the Mishchenko-Fomenko free rigid body dynamics on normal real form of complex
semi-simple Lie algebras are hyperbolic and that all those on compact real form of complex
semi-simple Lie algebras are elliptic. These are sharp contrasts compared to the ordinary free
rigid body dynamics on SO(3).

As applications, the stability of the isolated equilibria are analysed for a natural generalization
of the free rigid body dynamics on the unitary group U(n) and also for the Bloch-Iserles systems
defined on the space of the symmetric matrices [2]. For the former systems, all the generic
isolated equilibria are elliptic, whereas, for the latter systems, all the generic isolated equilibria
are hyperbolic.
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Haantjes manifolds and integrable systems

P. Tempestaa, and G. Tondob

a. Departamento de F́ısica Teórica II, Facultad de F́ısicas, Universidad Complutense, 28040 – Madrid,

Spain.

b. Department of Mathematics and Earth Sciences, University of Trieste, Italy.

A general theory of finite-dimensional integrable systems is proposed, based on the geometry of
Haantjes tensors [1]. Inspired by the very recent definition of Haantjes manifolds [2], we introduce
the class of symplectic-Haantjes manifolds (or ωH manifold) and the notion of Lenard-Haantjes
chains, as a generalization of the famous Lenard-Magri chains. Then, we prove that, under
mild assumptions, the existence of a Haantjes structure is equivalent to the Liouville-Arnold
integrability of each Hamiltonian system belonging to a Lenard-Haantjes chain. Furthermore, we
propose an approach to the separation of variables, related to the geometry of Haantjes manifolds.
A special class of coordinates, called Darboux-Haantjes coordinates [3], will be constructed
from the Haantjes structure associated with an integrable systems. They enable the additive
separation of variables of the Hamilton-Jacobi equation. Finally, we present some applications
of our approach to the study of some relevant systems introduced by F. Calogero.
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Closed form solution of the Heisenberg equation

F. Demontis, S. Lombardo, M. Sommacal, C. van der Mee, F. Vargiua

a. Department of Mathematics and Computer Science, University of Cagliari, Italy.

Let us consider the Heisenberg ferromagnet equation (HF)

~mt = −~m ∧ ~mxx, (1)

where ~m(z, t) ∈ R3 is a vector function satisfying ~m(z, t) → ~e3 as z → ±∞ and ‖~m(z, t)‖ =
‖~e3‖.

A formula for soliton solutions of the HF equation is obtained via the IST. In the reflectionless
case the kernel F (x + y; t) of the relevant Marchenko integral equation can be written in a
factorized form by using a “suitable” triplet of constant matrices (A,B,C) and the matrix
exponential. Since the kernel is separable in x and y, the corresponding Marchenko integral
equation is explicitly solved using linear algebra, which yields exact solutions to the HF equation.
The concise solution formula presented yields exact soliton solutions for special choices of the
matrix triplet (A,B,C).

It is also well known (see [1, 2]) that the HF equation can be written as

Mt =
1

2i
[M,Mxx] (2)

where ~s = (σ1, σ2, σ3) (σi denotes the Pauli matrices) and M = ~m · ~s. Furthermore, we have
M = M †, M2 = I2 and Tr(M) = 0.

It is possible to prove the existence of a one-to-one correspondence between hermitian solu-
tions M(x, t) of (2) satisfying

M(x, t)2 = I2

and the functions V (x, t) with values in SU(2) such that

M(x, t) = V (x, t)−1σ3V (x, t). (3)

Here V (x, t) is the Jost solution obtained developing the IST for the nonlinear Schrödinger
equation.

We use (3) to get explicit solutions of (2). The solutions found in this way are not, in general,
soliton solutions. Some interesting example will be discussed.
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Quantum Calogero-Moser systems: a view from infinity

A.P. Veselova

a. Department of Mathematical Sciences, Loughborough University, Loughborough, UK.
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The classical Calogero-Moser problems are known to have several quantum integrable versions,
which are non-symmetric (so-called deformed quantum Calogero-Moser systems). The impor-
tance of the deformed Calogero-Moser systems became clear after the discovery of their deep
relations with the theory of generalised discriminants, with the theory of simple Lie superalge-
bras as well as of an intriguing link with the theory of logarithmic Frobenius structures. Their
integrability is not obvious at all and initially was proved by lengthy calculations.

I will explain how the integrability of the deformed Calogero-Moser systems can be easily
”seen from infinity” by developing the corresponding Dunkl operator technique for the infinite
number of particles. As a corollary a quantum Lax matrix and a simple construction of the
integrals for the deformed Calogero-Moser systems will be presented.

The talk is based on the recent paper with A.N. Sergeev [1].
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The inverse scattering transform for the focusing nonlinear Schrödinger
equation with a one-sided non-zero boundary condition

B. Prinari, and F. Vitalea

a. Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce, Italy.

We present the inverse scattering transform as a tool to solve the initial-value problem for
the focusing nonlinear Schrödinger equation with one-sided non-zero boundary value qr(t) ≡

Are
−2iA2

r
t+iθr , Ar ≥ 0, 0 ≤ θr < 2π, as x → +∞. The direct problem is shown to be well-

defined for solutions q(x, t) to the focusing nonlinear Schrödinger equation such that [q(x, t) −
qr(t)ϑ(x)] ∈ L1,1(R) [ϑ(x) denotes the Heaviside function] with respect to x ∈ R for all
t ≥ 0, for which analyticity properties of eigenfunctions and scattering data are established. The
inverse scattering problem is formulated both via (left and right) Marchenko integral equations
and as a Riemann-Hilbert problem on a single sheet of the scattering variables λr =

√
k2 +A2

r,
where k is the usual complex scattering parameter in the inverse scattering transform. Unlike
the case of fully asymmetric boundary conditions [2] and similarly to the same-amplitude case
dealt with in [1], the direct and inverse problems are also formulated in terms of a suitable
uniformization variable that maps the two-sheeted Riemann surface for k into a single copy of
the complex plane. The time evolution of the scattering coefficients is then derived, showing
that, unlike the case of solutions with the same amplitude as x → ±∞, here both reflection and
transmission coefficients have a nontrivial (although explicit) time dependence. These results will
be instrumental for the investigation of the long-time asymptotic behavior of physically relevant
solutions to the focusing nonlinear Schrödinger equation with nontrivial boundary conditions,
either via the nonlinear steepest descent method on the Riemann-Hilbert problem, or via matched
asymptotic expansions on the Marchenko integral equations.
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General Nth order integrals of the motion in classical and quantum me-
chanics

P. Winternitza

a. Centre de recherches mathematiques, Université de Montreal, C.P. 6128 succursale Centre-ville,

Montreal (Quebec) H3C 3J7, Canada.

The general form of an integral of motion that is a polynomial of order N in the momenta
is presented for a Hamiltonian system in two-dimensional Euclidean space. The classical and
the quantum cases are treated separately, emphasizing both the similarities and the differences
between the two. The main application will be to study N th order superintegrable systems that
allow separation of variables in the Hamilton-Jacobi and Schrodinger equations, respectively. So
far the study of superintegrable systems with third and fourth order integrals has lead to quantum
superintegrable systems with “exotic” potentials expressed in terms of Painlevé transcendents
or solutions of 4th order ODEs with the Painlevé property. Higher values of N should lead to
families of higher order ODEs and the corresponding higher Painlevé functions. This is joint
work with Sarah Post.

The Inverse Spectral Transform for the Dunajski hierarchy and some of
its reductions, I: Cauchy problem and longtime behavior of solutions

G. Yia, and P.M. Santini

a. School of Mathematical Sciences, Huaqiao University, Quanzhou, China.

In this research we apply the formal Inverse Spectral Transform for integrable dispersionless
PDEs arising from the commutation condition of pairs of one-parameter families of vector fields,
recently developed by S. V. Manakov and one of the authors, to one distinguished class of
equations, the so-called Dunajski hierarchy. We concentrate, for concreteness, i) on the system
of PDEs characterizing a general anti-self-dual conformal structure in neutral signature, ii) on
its first commuting flow, and iii) on some of their basic and novel reductions. We formally solve
their Cauchy problem and we use it to construct the longtime behavior of solutions, showing,
in particular, that unlike the case of soliton PDEs, different dispersionless PDEs belonging to
the same hierarchy of commuting flows evolve in time in very different ways, exhibiting either a
smooth dynamics or a gradient catastrophe at finite time.
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Non-periodic one-gap potential in quantum mechanics

V. Zakharova, and D. Zakharovb

a. University of Arizona, Tucson, USA.

b. Courant Institute, New York, USA.

The spectral theory of the Schrodinger operator on the whole line is not developed properly so
far. The existing theory is constituted completely for two classes of potentials: for periodic one
and for the fast decaying in two directions. Little is known besides these two limiting cases.
There are also known some classes of random potentials with pure discrete spectrum (Anderson
localization). The other known non-periodic bounded potentials are n-zone potentials expressed
in terms of θ-functions on Jacobians of hyperelliptic algebraic curves. They are quasiperiodic
and have pure continuous spectrum.

We address the following question. Can one construct non-periodic (and non-quasiperiodic)
bounded potentials such that the Schrodinger operator has pure continuous N -gap spectrum
similar to the spectrum of periodic potentials? Answer is positive. We have constructed a broad
class of such non-periodic potentials.

In this talk we discuss one-gap reflectionless potentials. The spectrum consists of one con-
ductivity zone in the negative energy half-line and on the whole positive half-line. The potential
is characterized by two positive Holder - α continuous functions (dressing functions) defined
onside the conductivity zone. All these potentials are limits of N -solitonic solutions at N → ∞.
The spectrum in the general case is double-generated. Corresponding wave functions have sim-
ple analytic structure (two symmetric cuts) on the k-plane. Wave functions on these cuts obey
some Riemann-Hilbert problem which is equivalent to a system of singular integral equations.
These equations are uniquely resolved and can be efficiently solved numerically. The procedure
of ”dressing” is abundant: different dressings can generate the same potentials. The class of
dressing functions leading to construction of periodic potentials is described explicitly.

The results of this work are supported by massive numerical calculations.

New mechanism for mass generation: Coupled linear wave equation and
Sine-Gordon equation in (1+2) and (1+3) dimensions

Y. Zarmia

a. Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet

Ben-Gurion, 8499000, Israel.

Coupling of the linear wave equation and the Sine-Gordon equation in (1+2) and (1+3) dimen-
sions (SGE) offers a new mechanism for mass generation.

The SGE has single- and multi-front solutions, which are obtained through a Hirota algorithm
(the extension of kink solutions in (1+1) dimensions). The multi-front solutions are divided into
two unconnected subsets. One subset contains solutions, in which at least some clusters of
fronts propagate at velocities that are equal to, or exceed the speed of light (c = 1). Some of
the solutions may propagate rigidly at velocities that are equal to or exceed c. The solutions
in this cluster may have a two-dimensional structure, or a three-dimensional structure (branes).
The other subset contains solutions, which propagate rigidly at velocities that are lower than c.
These latter solutions have a two-dimensional structure.

A functional of the solution of SGE, which naturally arises from the equation, vanishes iden-
tically when computed for any single-front solution. When applied to a slower-than-light multi-
front solution, it generates positive definite structures that are localized around front junctions.
These structures propagate together with the solution at its velocity (lower than c) and emulate
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spatially extended, free, massive relativistic particles. The profile of these structures (their ”mass
density”, if interpreted as emulating particles) obeys the linear wave equation, to which a driving
term generated from a slower-than-light, multi-front solution of the SGE is added. In itself,
the wave equation generates solutions that represent massless particles. The SGE driving term
enables the wave equation to admit a solution that is just the spatially localized structure. This
result can be also formulated through the expansion in powers of a small coupling coefficient of
the Euler-Lagrange equations of a Lagrangian system.

Two important characteristics of the multi-front solutions of the SGE play a crucial role
in obtaining these results: First, that the parameters in the Hirota algorithm are viewed as
tachyonic momentum vectors in Minkowski space, and second, that the solutions are invariant
under Lorentz transformations.
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2 Mini-workshops

2.1 MW1: From linear to nonlinear ODEs: Darboux transformations
and exceptional orthogonal polynomials

Coordinator: David Gomez-Ullate Oteiza (Universidad Complutense de Madrid, Spain)

Review Lecture

An overview of exceptional orthogonal polynomials

David Gomez-Ullatea

a. ICMAT & Universidad Complutense, 28040 Madrid SPAIN.

Exceptional orthogonal polynomials are dense families of orthogonal polynomials that satisfy a
Sturm-Liouville problem. They differ from classical polynomials in that their degree sequence
contains a finite number of gaps. Darboux transformations are intimately connected with the
derivation of such families, and so is the notion of bispectrality and other tools that appear in
the theory of integrable systems. In mathematical physics, these functions allow to write exact
solutions to rational extensions of classical quantum potentials, which have trivial monodromy.
From the point of view of special functions and orthogonal polynomials, they are polynomial
systems formed by solutions to Fuchsian equations that belong to the Heine-Stieltjes class.

In this introductory talk, we will review their construction and main mathematical properties.
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Rational extensions of the trigonometric Darboux-Pöschl-Teller potential
based on para-Jacobi polynomials

Y. Grandatia

a. Institut de Chimie, Physique et des Matériaux (ICPM), Université de Metz, 57070 Metz, France.

The possibility for the Jacobi equation to admit in some cases general solutions that are polynomi-
als has been recently highlighted by Calogero and Yi, who termed them para-Jacobi polynomials.
Such polynomials are used here to build seed functions of a Darboux-Bäcklund transformation
for the trigonometric Darboux-Pöschl-Teller potential. As a result, one-step regular rational
extensions of the latter depending both on an integer index n and on a continuously varying
parameter λ are constructed. For each value of n, the eigenstates of these extended potentials
are associated with a novel family of λ-dependent polynomials, which are orthogonal on (−1, 1).
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Zeros of exceptional Hermite polynomials

A. Kuijlaarsa

a. Department of Mathematics , KU Leuven, B-3001 Leuven (Heverlee), Belgium.

Exceptional orthogonal polynomials were introduced by Gomez-Ullate, Kamran and Milson as
polynomial eigenfunctions of second order differential equations with the remarkable property
that some degrees are missing, i.e., there is not a polynomial for every degree. However, they
do constitute a complete orthogonal system with respect to a weight function that is typically
a rational modification of a classical (Hermite, Laguerre, Jacobi) weight function. For the case

of exceptional Hermite polynomials these weights take the form W (x)−2e−x2

where W (x) is a
Wronskian determinant constructed out of a finite number of Hermite polynomials. The cases
of interest are when W has no zeros on the real line. It is known that in those cases most of the
zeros of the exceptional Hermite polynomials are real. Our new result is that they asymptotically
distribute themselves in the same way as the zeros of usual Hermite polynomials, and in addition,
that the non-real zeros tend to the zeros of W as the degree tends to infinity.

This is joint work with Robert Milson (Dalhousie University).
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[math-CA].

On the hypergeometric expressions of the exceptional Jacobi polynomials

S. Tsujimotoa

a. Department of Applied Mathematics and Physics, Kyoto University, Kyoto, 606-8501, Japan.

First we briefly review how to construct the exceptional orthogonal polynomials from the classical
orthogonal polynomials. Then we discuss the hypergeometric expressions of the type 1 and type
2 exceptional Jacobi polynomials from the point view of the Darboux transformation. The
q-analogue cases are also explored in detail.
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Exceptional Orthogonal Polynomials and the Darboux transformation

R. Milsona

a. Department of Mathematics and Statistics, Dalhsouise University, Halifax, NS, B3H 3J5, Canada.

Exceptional orthogonal polynomials, so named because they span a non-standard polynomial
flag, are defined as polynomial eigenfunctions of Sturm-Liouville problems. By allowing for
the possibility that the resulting sequence of polynomial degrees admits a number of gaps, we
extend the classical families of Hermite, Laguerre and Jacobi. A recent conjecture posits that
every family of exceptional orthogonal polynomials is a multi-step Darboux transformation of a
classical family. We will discuss the state of the conjecture and related questions.
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2.2 MW2: Representation theory, special functions and Painlevé equa-
tions

Coordinators: Nalini Joshi (University of Sydney, Australia) and Marta Mazzocco (Loughbor-
ough University, UK)

Review Lecture

Complex Painlevé Dynamics

N. Joshia

a. School of Mathematics and Statistics F07, The University of Sydney, NSW 2006, Australia.

I will outline the study of complex dynamics of solutions of the continuous and discrete Painlevé
equations in their space of initial values [4] in an asymptotic limit. This talk focusses on a
geometric approach to describing their asymptotic properties. I will review results obtained so
far for the Painlevé equations [1, 2, 3], before explaining extensions of this approach to discrete
Painlevé equations. In particular, I will focus on finding properties of transcendental solutions
that cannot be expressed in terms of earlier known functions.
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Cluster algebras and Stokes Phenomena

L. Chechov, M. Mazzoccoa, and V. Rubtsov

a. Department of Mathematical Sciences, University of Loughborough, Leicestershire LE11 3TU,

UK.

It is well known that the Painelvé differential equations describe monodromy preserving defor-
mations of an auxiliary linear systems of first order ODEs. In the case of the sixth Painlevé
equation, such auxiliary linear system is a Fuchsian system with four simple poles, and the mon-
odromy data associated to it belong to a two dimensional manifold that can be identified with
the character variety of a Riemann sphere with 4 holes.

In the case of the other Painlevé equations the auxiliary linear system has non-simple poles and
exhibits Stokes phenomenon. In this talk we answer the open problem of associating a generalised
character variety to such systems. We will show that the Stokes phenomenon corresponds to
the fact that some infinite directions need to be attached to the holes in the Riemann surface.
We call this class of Riemann surfaces ”Riemann surfaces with cusped boundaries”. We show
that these Riemann surfaces admit a complete lamination made of arcs which start and finish
at cusps. We fully characterise the Poisson algebra satisfied by these arcs and show it to be the
cluster algebra Poisson algebra.
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Quantum character varieties, classical Painlevé equations and Liouville
theory

O. Lisovyya

a. Laboratory of Mathematics and Theoretical Physics, University of Tours, Parc de Grandmont,

37200 Tours, France.

The Riemann-Hilbert correspondence is a map between the moduli space of flat logarithmic
connections on punctured Riemann surfaces and the moduli space of representations of the cor-
responding fundamental groups. The simplest nontrivial example involves SL(2, C)-connections
on the 4-punctured Riemann sphere. Monodromy preserving deformation of such connections is
described by the Painlevé VI equation, and the appropriate space of monodromy data (classical
character variety) consists of conjugacy classes of triples of SL(2, C)-matrices. Solving Painlevé
VI amounts to constructing an explicit inverse of the Riemann-Hilbert map. I will explain how
this problem can be solved using theoretical physics tools, namely conformal blocks of the Li-
ouville theory and combinatorial formulas for instanton partition functions of supersymmetric
gauge theories.

Liouville conformal blocks are matrix elements of products of chiral vertex operators inter-
twining irreducible representations of the Virasoro algebra. Conformal blocks containing level
2 degenerate insertions solve a quantum version of the isomonodromic Riemann-Hilbert prob-
lem: the relevant 2× 2 monodromy matrices are operator-valued and involve translations of the
intermediate momenta. When the Virasoro central charge is equal to 1, quantum monodromy
contains a commutative subalgebra. Its action on spaces of degenerate conformal blocks may
be diagonalized by Fourier transform which produces an ordinary SL(2, C)-valued monodromy.
We thereby obtain an explicit solution of the classical Riemann-Hilbert problem on the sphere
with an arbitrary number of punctures and the associated tau function (general solution of the
Garnier system) as Fourier transforms of c = 1 Liouville conformal blocks.

References

[1] N. Iorgov, O. Lisovyy, J. Teschner, Isomonodromic tau-functions from Liouville conformal
blocks, Comm. Math. Phys., (2014); arXiv: 1401.6104 [hep-th].

Geometric introduction to discrete Painlevé equations

Y. Yamadaa

a. Department of Mathematics, Kobe University, Rokko, Kobe, 657-8501, Japan.

The theory of discrete Painlevé equations has made great progress in the last two decades. In
this talk I will try to give a pedagogical introduction on this fascinating subject focusing on its
geometric aspects [1, 2]. We will also touch upon some recent developments in Lax formulations,
special solutions, quantization etc.
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2.3 MW3: Inverse scattering transform and Riemann-Hilbert problems

Coordinator: Gino Biondini (State University of New York at Buffalo, USA)

Review Lecture

Inverse scattering transform and Riemann-Hilbert problems: perspectives
and open problems

Gino Biondinia

a. Department of Mathematics, State University of New York at Buffalo, USA.

The inverse scattering transform (IST), introduced in 1967 by Gardner, Green, Kruskal and
Miura to solve the initial-value problem for the Korteweg-deVries equation, continues to be a
subject of intense study. Current areas of research include (but are not limited to) problems with
non-trivial boundary conditions, boundary-value problems, asymptotics and semiclassical limits,
multi-component systems and multi-dimensional problems. Considerable effort is also devoted
to the study of Riemann-Hilbert problems, which in addition to being a key tool in the IST, have
found applications to areas such as orthogonal polynomials and random matrix theory.

After a general introduction to the IST, I will give an overview of some current research
directions and open problems. The last part of the talk will focus on a specific application of
the IST: the study of the nonlinear stage of modulational instability (MI). I will first show how
MI manifests itself within the context of the IST for the focusing nonlinear Schrodinger (NLS)
equation. Then I will show how the nonlinear stage of MI can be characterized by computing the
long-time asymptotics of solutions of NLS with initial conditions that are a small perturbation
of a constant background.

Singular Limits for Integrable Equations

P.D. Millera

a. Department of Mathematics, University of Michigan, East Hall, 530 Church St., Ann Arbor, MI,

USA.

Various singular limits (long-time behavior, small-dispersion or semiclassical limits) for linear
constant-coefficient equations can be analyzed with great precision through the combination
of Fourier or Green’s function integral representations of solutions with classical methods of
asymptotic expansions for integrals. For nonlinear integrable equations, the role of an explicit
integral representation of solutions is instead played by a Riemann-Hilbert problem of analytic
function theory. There is an analogue of the steepest descent method for the asymptotic ex-
pansion of integrals that applies to Riemann-Hilbert problems, originally invented by Percy Deift
and Xin Zhou. The Deift-Zhou method allows nonlinear integrable problems to be analyzed in
similar limits as classical methods allow for linear problems, with similar precision. Naturally new
phenomena appear in the nonlinear setting.

This talk will review some of these ideas and then present some details in the context of
recent work joint with R. Buckingham on critical phenomena that appear in solutions of the
sine-Gordon equation in the semiclassical limit.
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Large-Time Asymptotics for Completely Integrable PDE’s in Two Space
Dimensions

P.A. Perrya

a. Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506–0027, USA.

This talk focusses on long-time asymptotics for the Davey-Stewartson II (DS II) equation, a
completely integrable PDE in two space dimensions which describes the amplitude envelope of
weakly nonlinear surface waves. In the defocussing case, we can use inverse scattering methods
to compute the leading asymptotic behavior in terms of an associated linear problem. In the
focussing case we can show spectral instability of soliton solutions, extending results of Gady’lshin
and Kiselev.

Our results draw on the ∂-method developed by Ablowitz-Fokas and Beals-Coifrman in the
1980’s. As we will discuss, the ∂-method is a two-dimensional counterpart of the Riemann-Hilbert
method which has been applied with great success to the study of large-parameter asymptotics
in one dimension. The long-term goal of the research to be discussed is to develop analogues
techniques for the ∂-problem in two dimensions.

In both the Riemann-Hilbert problem and ∂-problems for completely integrable systems,
space and time enter as parameters in an oscillatory phase. Computing large-time asymptotics of
solutions requires a nonlinear analogue of the method of stationary phase. The Davey-Stewartson
II equation provides the simplest example in two-dimensions of what such a method might look
like. We will discuss prospects for attacking other two-dimensional dispersive equations, such as
the KP II equation, by an extension of the methods used here.

Explicit Solutions to Integrable Evolution Equations

T. Aktosuna

a. Department of Mathematics, University of Texas at Arlington, USA.

A review is presented for constructing certain explicit solutions to integrable evolution equations.
The solutions are expressed as formulas in a compact form in terms of a constant matrix triplet.
The construction is based on solving the associated Marchenko integral equations explicitly by
representing their kernels in terms of the constant matrix triplet, using matrix exponentials, and
exploiting the separability of those kernels. The method is illustrated with some examples. The
review is based on joint work with F. Demontis and C. van der Mee from University of Cagliari.
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2.4 MW4: Rogue waves in integrable and non-integrable models

Coordinators: Miguel Onorato (Università di Torino, Italy) and Sara Lombardo (Northumbria
University, UK)

Review Lecture

Rogue waves and soliton theory

Antonio Degasperisa

a. Department of Physics, University of Rome “Sapienza”, Italy.

Rogue waves appear in different physical contexts such as fluid dynamics and optics. In addition
integrable wave equations seem to reasonably model rogue waves by predicting their properties
and behaviors. We give an introduction to the constructive methods of integrability as applied
to models of interest, In particular we discuss the coupled nonlinear Schrödinger equations, the
equations describing the resonant interaction of 3 waves and the two coupled equations which
model the grating effect in optical Kerr media.

Hydrodynamics of Exact Nonlinear Schrödinger Equation Solutions - The-
ory and Experiments

A. Chabchouba

a. Centre for Ocean Engineering Science and Technology, Swinburne University of Technology,

Hawthorn, Victoria 3122, Australia.

The dynamics of water waves in finite as well as in infinite water depth conditions can be
approximated by the nonlinear Schrödinger equation (NLSE) [1, 2]. The particularity of the NLSE
is it integrability [3]. In fact, it admits a family of stationary and pulsating solutions, also referred
to as breathers solutions [4, 5, 6]. The latter describe different stages of the modulation instability
process, therefore, the dynamics of extreme waves [7, 8]. The observation of breather solutions
in different nonlinear dispersive media attracted the scientific interest recently [9, 10, 11]. Here,
laboratory experiments, conducted in different wave facilities, on stationary and pulsating NLSE
solutions are presented [12, 13]. Observed characteristic properties, related to NLSE localizations
are highlighted. Furthermore, a range of applications [14] as well as model limitations [15] are
emphasized and discussed in detail.
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A mechanism for rogue wave formation in deep water

T.P. Horikisa

a. Department of Mathematics, University of Ioannina, Ioannina, 45110, Greece.

It is common for mid-ocean storm waves to reach seven meters in height, and in extreme
conditions such waves can reach heights of fifteen meters. However, for centuries maritime
folklore told of the existence of vastly more massive waves that could appear without warning
in mid-ocean, against the prevailing current and wave direction, and often in perfectly clear
weather. These waves are called rogue waves. A rogue wave is a highly localized phenomenon
both in space and duration,most frequently occurring far out at sea. Historically oceanographers
have discounted these reports as tall tales, i.e. the embellished stories of mariners with too
much time at sea. But in the last years scientists have discovered strong evidence indicating
that such massive rogue waves do exist and while the phenomenon has become the subject of
recent scientific study, their origin still remains a mystery of the deep.

In this talk, a rogue wave formation mechanism is proposed within the framework of a coupled
nonlinear Schrödinger (CNLS) system corresponding to the interaction of two waves propagating
in oblique directions in deep water. A rogue condition is introduced that links the angle of
interaction with the group velocities of these waves: different angles of interaction can result in
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a major enhancement of rogue events in both numbers and amplitude. For a range of interacting
directions it is found that the CNLS system exhibits significantly more extreme wave amplitude
events than its scalar counterpart. Furthermore, the rogue events of the coupled system are
found to be well approximated by hyperbolic secant functions; they are vectorial soliton-type
solutions of the CNLS system, typically not considered to be integrable. Overall, our results
indicate that crossing states provide an important mechanism for the generation of rogue water
wave events.

Baseband Modulation Instability as the Origin of Rogue Waves

F. Baronioa, S. Wabnitzb, and M. Confortic

a. Dipartimento di Ingegneria dell’Informazione, Università di Brescia, 25123 Brescia, Italy.

b. PhLAM/IRCICA, CNRS-Université Lille 1, F-59655 Villeneuve d’Ascq, France.

Extreme wave events, also referred to as rogue waves, are mostly known as oceanic phenomena
responsible for a large number of maritime disasters [1, 2]. These waves have height and steepness
much greater than expected from the sea average state [3]: not only appear in oceans, but also
in the atmosphere, in optics, in plasmas, in superfluids, in Bose-Einstein condensates and as
capillary waves. The common features and differences among freak wave manifestations in their
different contexts is a subject of intense discussion [4].

A formal mathematical description of a rogue wave is provided by the so-called Peregrine
soliton [5]. This solitary wave is a solution of the scalar Nonlinear Schrödinger Equation (NLSE)
with the property of being localized in both coordinates. For several systems the standard
focusing NLSE turns out to be an oversimplified description: this fact pushes the research to
move beyond this model. Rogue-wave families have been recently found as solutions of the
vector NLSE (VNLSE) [6], the three-wave resonant interaction equations [7], the coupled Hirota
equations, and the long-wave-short-wave resonance [8].

As far as rogue waves excitation is concerned, it is generally recognized that modulation
instability (MI) is among the several mechanisms which may lead to rogue wave excitation.
Nevertheless, the conditions under which MI may produce an extreme wave event are not fully
understood. A rogue wave may be the result of MI, but conversely not every kind of MI necessarily
leads to rogue-wave generation [6].

Here we will show that the condition for the existence of rogue wave solutions in different
nonlinear wave models, which are commonly used both in optics and hydrodynamics, coincides
with the condition of baseband MI. Namely, rogue waves exist if and only if the MI spectrum
contains the zero-frequency perturbation as a limiting case. We shall consider here a generalized
NLSE equation (the Fokas-Lenells equation), the defocusing VNLSE and the long-wave-short-
wave resonance. As we shall see, in the baseband-MI regime multiple rogue waves can be excited.
Conversely, in the pass-band regime, MI only leads to the birth of nonlinear oscillations.

References

[1] M. Hopkin, Sea snapshots will map frequency of freak waves, Nature, 430 (2004), pp.
492–492.

[2] S. Perkins, Dashing Rogues: freak ocean waves pose threat to ships, deep-sea oil platforms,
Science News, 170 (2006), pp. 328–329.

[3] K. Dysthe, H. E. Krogstad, and P. Muller, Oceanic Rogue Waves, Annu. Rev. Fluid Mech.,
287 (2008), pp. 287–310.



74 NEEDS 2015

[4] J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, Instabilities, breathers and rogue waves
in optics, Nat. Photon., 8 (2014), pp. 755–764.

[5] D. H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, J. Aus-
tralian Math. Soc. Ser. B, 25 (1983), pp. 16–43.

[6] F. Baronio, M. Conforti, A. Degasperis, S. Lombardo, M. Onorato, and S. Wabnitz, Vector
rogue waves and baseband modulation instability in the defocusing regime, Phys. Rev. Lett.,
113 (2014), pp. 034101.

[7] F. Baronio, M. Conforti, A. Degasperis, and S. Lombardo, Rogue waves emerging from the
resonant interaction of three waves, Phys. Rev. Lett., 111 (2013), pp. 114101.

[8] S. Chen, Ph. Grelu, and J. M. Soto-Crespo, Dark- and bright-rogue-wave solutions for media
with long-wave short-wave resonance, Phys. Rev. E, 89 (2014), pp. 011201(R).

Nonlinear interaction between Rogue waves
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In the experiments on multi-filamentation two basic trends are observed. The first one is con-
nected with reduction of the number of filaments as a function of the distance [1]. The second
trend is observed recently in [2, 3] as mergers between tree or four filaments in one (Rogue)
wave. We propose a nonlinear vector model, where the role of cross-phase modulation (CPM)
and degenerate four-photon parametric mixing (FPPM) to these processes is investigated. The
system non-paraxial equations of the amplitudes of two-component electrical field at one carrying
frequency has the form
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where {i, j} = {x, y}, i 6= j, ñ2 = 3
8n2 is the nonlinear refractive index, vgr and vph are the

group and phase velocities correspondingly, β = k0v
2
grk

′′ and k′′ is the group velocity dispersion.

Each of the pulses admits ~x and ~y components: ~Ak = Ak,x~x + Ak,y~y, k = 1, 2. The collinear
interaction between the optical pulses is investigated numerically in the following two cases: I)
Fig. 1a) - the initial phase difference between the pulses is not equal to zero (∆ϕ = π/4). In
this case, by FPPM, an intensive exchange of energy is observed. Thus, the reduction of the
filaments is a result of the parametric processes; II) Fig. 1.b) - the initial phase difference between
the pulses is equal to zero (∆ϕ = 0). An attraction and merging due to CPM mechanism are
clearly seen. We perform additional numerical analysis with three, four and five pulses. These
investigations give us confidence to claim, that the observed in [1-3] processes are results of
nonlinear interactions due to FPPM and CPM mechanisms.
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Figure 2: a) Energy exchange between two collinear filaments ~A1 and ~A2 with initial phase difference ϕ = π/4

governed by the system of equations (1). Due to degenerated FPPM process one of the filaments is amplified

while the other filament enters in linear mode and vanishes. b) Attraction between two collinear filaments when

the initial phase difference is ϕ = 0. We observe a merging between the pulses due to CPM.
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fdemontis@unica.it

Boris Dubrovin SISSA - ISAS, Italy
dubrovin@sissa.it

Anton Dzhamay University of Northern Colorado, USA
Anton.Dzhamay@unco.edu

Gregorio Falqui Università di Milano Bicocca, Italy
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Michel.Semenov@u-bourgogne.fr

Andrei N. Slavin Oakland University, USA

slavin@oakalnd.edu

Matteo Sommacal University of Northumbria at Newcastle, UK
matteo.sommacal@northumbria.ac.uk

Nikola Stoilov University of Göttingen, Germany
nstoilo@uni-math.gwdg.de

Taichiro Takagi National Defense Academy, Japan

takagi@nda.ac.jp

Daisuke Tarama Kyoto University, Japan
tarama@math.kyoto-u.ac.jp

Giorgio Tondo Università di Trieste, Italy
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