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Abstract
A new method for finding first integrals of discrete equations is presented. It
can be used for discrete equations which do not possess a variational
(Lagrangian or Hamiltonian) formulation. The method is based on a newly
established identity which links symmetries of the underlying discrete
equations, solutions of the discrete adjoint equations and first integrals. The
method is applied to an invariant mapping and to discretizations of second
order and third order ordinary differential equations. In examples the set of
independent first integrals makes it possible to find the general solution of the
discrete equations.

Keywords: Lie symmetry, first integral, discrete equations

1. Introduction

Considerable progress has been made over the last 25 years in the applications of Lie group
theory to difference equations (for reviews see [14, 32, 44] and for original papers [7, 8, 10–
13, 15, 17–22, 24, 30, 31, 33–35, 39, 42]). The overall aim of the program is to turn Lie group
theory into a tool for solving discrete equations that is as efficient as it is for differential ones.
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For ordinary differential equations (ODEs) one of the important applications of Lie group
theory is to reduce the order of the equation and ideally to solve it analytically and explicitly.
Essentially there are two ways of doing this, once a non-trivial Lie point symmetry group of
the equation is found. One is to perform a transformation of the independent and dependent
variables that takes the Lie algebra into a convenient form. This also transforms the equation
to a form in which the reduction of the order becomes obvious.

An alternative method is to use the Lie point symmetry group to construct first integrals
of the equation that are of lower order than the equation (or system of equations) itself. This
can be done if a Lagrangian exists and the symmetries are variational ones. If a sufficient
number of first integrals can be obtained using the Noether theorem, then the derivatives can
be eliminated from the set of first integrals. This provides a solution of the original equation
by purely algebraic operations, without any changes of variables or any integration.

If no invariant Lagrangian exists alternative methods of constructing lower order first
integrals have been proposed in [2, 3, 5, 6] and in [26–28]. They make use of the so-called
adjoint equations, solutions of which one uses to construct the required first integrals. We
shall call this the ‘adjoint equation method’. The same method for differential equations was
called the method of symmetry–adjoint-symmetry pairs [5]. We prefer to shorten the termi-
nology, especially for the case of difference equations. We mention that solutions of the
adjoint equations have been called adjoint symmetries in [5] and cosymmetries in [36].

The integration methods based on transformations of coordinates have not been adapted
to difference equations. The algebraic methods based on invariant Lagrangians and Hamil-
tonians have been adapted and successfully applied to solve three point difference schemes in
[13–15, 21, 22] and [18–20], respectively. A research note on adapting the ‘adjoint equation
method’ to difference equations has been published in [45].

The purpose of this paper is to present and justify the adjoint equation method for
difference systems with an arbitrary number of variables and also to document its usefulness
on examples. The paper is organized as follows. In section 2 we present a brief summary of
the adjoint equation method for an arbitrary system of partial or ordinary differential
equations (PDEs or ODEs). Section 3 specializes the theory sketched in section 2 to the case
of one scalar ODE. The adjoint equation method for discrete systems is presented in section 4.
This theory is specialized to the case of scalar discrete equations (mappings) and dis-
cretizations of scalar ODEs in sections 5 and 6, respectively. Finally, section 7 provides
concluding remarks.

2. Adjoint equation method for constructing conservation laws for differential
equations

Let us consider a system of nth order PDEs

β… = = …β ( )F rx u u u u, , , , , 0, 1, , , (2.1)
n1 2

where = …x xx ( , , )p1 , = …u uu ( , , )q1 ,
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Let αβL be a linear operator
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∂
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is the total derivative operator. The adjoint equations =αF 0* and the adjoint operators αβL *

are given by the variational derivatives (or Euler–Lagrange operators):

∑δ
δ

α= = = − … = = …α αβ
β

α
β

β
β

β
=

∞
α
…( )( )F L v

u
v F D D v F q( 1) 0, 1, , . (2.3)

k

k
i i u

* *

0

,k i ik1 1

We assume summation over repeated indices. Notice that the adjoint equations are always
linear equations for = …v vv ( , , )r1 with coefficients that in general depend upon u (a
solution of (2.1)).

Equation (2.3) is the classical adjoint equation in the case when the original
equation (2.1) is linear. When equation (2.1) is nonlinear the action of the operator αβL yields
a linearization of the original equation (the same result can be obtained by applying the
Frechet derivative to equation (2.1)). In that case the adjoint equation becomes a nonclassical
adjoint equation for the original nonlinear equation (for a discussion of this point see [1]).

The basic operator identity is the following

− =β
αβ

α α
αβ

βv L w w L v D C , (2.4)i
i*

where βv and αw are arbitrary functions of x, u and derivatives of u. Here

∑ δ
δ

= … α
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=
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( )( )C D D w
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v F , (2.5)i
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i i i0
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= − … ∂
∂α α
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… …u
D D

u
( 1) (2.6)

i i i s
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j j

i i ij j0k
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k s1
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1 1

are higher order variational operators (or higher order Euler–Lagrange operators). Since the
scalar ( = =q r 1) relation is probably due to Lagrange (see for example [9], equation (2.75)
on p 80), we refer to (2.4) as the Lagrange identity. Identity (2.4) for the case of systems of
ODEs (p = 1) already appeared in [3].

Remark 2.1. Applying higher order variational operators (2.6) as well as symmetry
operators given below, we assume that they are extended to all possible mixed derivatives.
Partial differentiation with respect to α

…ui ir1
stands for differentiation with resect to this special

mixed derivative with order of indexes …i i, , r1 .

We will be interested in Lie symmetries [25, 38, 41]
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where ξi and ηα are some functions of x, u and a finite number of derivatives of u and

ζ η ξ ξ= … − +α α α α
… …( )D D u u .i i i i

j
j

i
i i is s s1 1 1

Note that for point symmetries ξi and ηα depend only on x and u. To each symmetry (2.7)
there corresponds the evolutionary (or canonical) symmetry

∑η ζ= ∂
∂

+ ∂
∂

α
α

α
α

=

∞

…
…

X
u u

¯ ¯ ¯ , (2.8)
s

i i
i i1

s

s

1

1

where

η η ξ ζ η= − = …α α α α α
… ( )u D D¯ , ¯ ¯ .j

j i i i is s1 1

The identity (2.4) can be used to link symmetries of the differential equations (2.1),
solutions of the corresponding adjoint equations (2.3) and conservation laws.

Choosing η η ξ= = −α α α αw u¯ j
j , we obtain the identity

η= +β
β

α
αv XF F D C¯ ¯ (2.9)i

i*

for evolutionary operators (2.8). For the Lie symmetry operator (2.7) we obtain

ξ η ξ= + − +β
β

β
β

α α
α( )v XF v D F u F D C . (2.10)i

i
j

j i
i*

Here the quantities Ci are

∑ η ξ δ
δ

= … −α α
α

β
β

=

∞

…
( ) ( )C D D u

u
v F . (2.11)i

k

i i
j

j
i i i0

k

k

1

1

The following theorem is based on the Lagrange identity:

Theorem 2.2. The system of equations (2.1) and its adjoint system (2.3) possess the
following conservation law

=D C 0 (2.12)i
i

(2.1),(2.3)

for each Lie symmetry (2.7) of the differential equations (2.1) and for each solution of the
adjoint equations (2.3).

Proof. The result follows directly from equation (2.10). Indeed, =βXF 0 because it is a
symmetry criterion for equations (2.1), =βD F( ) 0i since it is a differential consequence of

equations (2.1), and =αF 0* on a solution of adjoint equations (2.3). □

Since we are interested in equations (2.1) we need conservation laws for these equations
alone, i.e., without using solutions of the adjoint equations (2.3).

One can get rid of the adjoint variables v figuring in the conservation law (2.12) and
subsequent formulas. The identity (2.9) and the idea of solving the adjoint equations in terms
of solutions of the original equations were explicitly presented in [2] (see also [6]). These
ideas were also suggested and further developed in [26–28], where numerous examples for
PDEs were worked out explicitly. The introduction of adjoint variables, of linear equations
adjoint to nonlinear ones and the extension variational principles for equations without
classical Lagrangians were also considered in [1, 29, 43] and others.
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Theorem 2.3. Let the adjoint equations (2.3) be satisfied for all solutions of the differential
equations (2.1) upon a substitution

φ φ= … ≡( )v x u u u 0, , , , , . (2.13)
1 2

Then, any Lie symmetry (2.7) of the equations (2.1) leads to the conservation law

=D C 0, (2.14)i
i

(2.1)

where v and its derivatives should be eliminated via equation (2.13) and its differential
consequences.

Remark 2.4. For some symmetries and some solutions of the adjoint equations (2.3) the
conservation laws may be trivial. For example, the quantities Ci may simply be numbers. See
for instance example 3.1 below. Moreover the non-trivial first integrals are not necessarily
functionally independent (see the same example).

Remark 2.5. The same operator identities (2.9) and (2.10) form the basis of the Noether
theorem [37] for Lagrangian systems (see [25] for details). Indeed, consider the case r = 1, put
v = 1 and apply it to a Lagrangian = …F x u u u( , , , , ).

1 2
Then we get the following

identities

η δ
δ

= +α
α  ( )X

u
D N¯ ¯ ¯ ,i

i

∑ η δ
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=
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…
( )N D D

u
¯ ¯i

k

i i
i i i0
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k

1

1
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ξ η ξ δ
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+ = − +α α
α   ( ) ( )X D u

u
D N ,i

i j
j i

i

∑ξ η ξ δ
δ

= + … −α α
α

=

∞

…
( )N D D u

u
,i i

k

i i
j

j
i i i0

k

k

1

1

which yield a conservation law

= = D C C N¯ 0, ¯ ¯i
i i i

and

= = D C C N0, ,i
i i i

correspondingly, for the Euler–Lagrange equations

δ
δ

α= = …α

u

q0, 1, ,

provided that the Lagrangian is invariant, i.e. satisfies

ξ= + =  X X D¯ 0 and 0,i
i

respectively. Operators Ni and N̄ i are called Noether operators.
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3. The case of one ODE

In this section we restrict ourselves to scalar ODEs. It is a particular case of the general theory
sketched in the previous section. We restrict ourselves to Lie point symmetries because later
we will consider the discrete case, to which we wish to adapt the Lie point symmetry
approach.

Let us consider a scalar ODE of order n

… =( )F x u u u u, , ˙, ¨, , 0. (3.1)n( )

We will be interested in Lie point symmetries

ξ η ζ ζ ζ= ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …X x u
x

x u
u u u u

( , ) ( , )
˙ ¨

, (3.2)k k1 2 ( )

where

ζ η ξ ξ= − + +( )D u u˙k
k k( 1)

and

= ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

+ … + ∂
∂

+ ∂
∂

+ …+ +D
x

u
u

v
v

u
u

v
v

u
u

v
v

˙ ˙ ¨
˙

¨
˙

k
k

k
k

( 1)
( )

( 1)
( )

is the total differentiation operator.
To each Lie point symmetry (3.2) there corresponds the symmetry in evolutionary form

η ζ ζ ζ= ∂
∂

+ ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …X
u u u u

¯ ¯ ¯
˙

¯
¨

¯ , (3.3)k k1 2 ( )

where

η η ξ= −x u x u u¯ ( , ) ( , ) ˙,

ζ η ζ η= … = …D D¯ ( ¯), , ¯ ( ¯), .k
k

1

By means of the variational operator

δ
δ

= ∂
∂

− ∂
∂

+ ∂
∂

+ … + − ∂
∂

+ …
u u

D
u

D
u

D
u˙ ¨

( 1) (3.4)k k
k

2
( )

we introduce the adjoint equation

δ
δ

= =F
u

vF* ( ) 0. (3.5)

Thus (2.3) simplifies to

= ∂
∂

− ∂
∂

+ ∂
∂

+ … + − ∂
∂

=⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟F v

F

u
D v

F

u
D v

F

u
D v

F

u
*

˙ ¨
( 1) 0.n n

n
2

( )

Let us define higher order variational (or Euler–Lagrange) operators

δ
δ

= ∂
∂

− ∂
∂

+ ∂
∂

+ … + − ∂
∂

+ …
+ + +u u

D
u

D
u

D
u

( 1) . (3.6)
i i i i

k k
i k( ) ( ) ( 1)

2
( 2) ( )

Note that Euler–Lagrange operator (3.4) belongs to this set as

δ
δ

δ
δ

=
u u

.
(0)
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Lemma 3.1 (Main identity for scalar ODEs). The following identity holds:

ξ η ξ= + − +( )vXF v DF u F DI˙ * , (3.7)

where

∑ η ξ δ
δ

= −
=

−

+( )I D u
u

vF˙ ( ). (3.8)
i

n
i

i
0

1

( 1)

This is a special case of (2.10), (2.11).
We prefer identity (3.7) instead of the corresponding identity for the canonical operator

η= +vXF F DI¯ ¯ * . (3.9)

In the discrete case the framework of Lie point symmetries is better developed in terms of
standard vector fields (3.2) than evolutionary ones. The goal of this paper is to develop a
discrete analog of the identity (3.7).

Let us examine the identity (3.7) on solutions of the ODE (3.1). The left-hand side is zero
if operator X is a symmetry of the ODE. The first term on the right-hand side contains DF and
drops out as a differential consequence of the ODE. We are left with

η ξ− + =
=

=( )u F DI˙ * 0.
F

F
0

0

If we can find a substitution for the function v providing =F* 0, then we can get rid of the
adjoint equation. Thus, we obtain a first integral of the ODE. Let us formulate this as the
following theorem.

Theorem 3.2 (Main theorem for scalar ODEs). Let the adjoint equation (3.5) be satisfied
for all solutions of the original ODE (3.1) upon a substitution

φ φ= ≡v x u( , ), 0. (3.10)

Then, any Lie point symmetry (3.2) of the equation (3.1) leads to the first integral

∑ η ξ δ
δ

= −
φ=

−

+
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )I D u

u
vF˙ ( ) , (3.11)

i

n
i

i
v0

1

( 1)

where v and its derivatives should be eliminated via equation (3.10) and its differential
consequences.

Remark 3.3. Theorem 3.2 has the same content as theorem 3.8.1-1 of reference [5]. We
include it here to make this paper self-contained and to establish our notations and
terminology.

Remark 3.4. First integrals I, given by (3.11), can depend on u n( ) as well as higher
derivatives. We will call such expressions higher first integrals. It is reasonable to use the
ODE (3.1) and its differential consequences to express these first integrals as functions of the
minimal set of variables, i.e., in the form

… = … …− −
=

( ) ( )I x u u u I x u u u˜ , , ˙, , , , ˙, , , .n n

F

( 1) ( 1)

0

In the examples of this section we will bypass the higher first integrals I and provide only the
final results Ĩ .
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Remark 3.5. Theorem 3.2 can be extended from point-wise substitutions (3.10) to
differential substitutions

φ φ φ= … = … ≡−( )v x u u v x u u u u( , , ˙), , , , ˙, ¨, , , 0.n( 1)

Let us investigate the ODE

= ⃛ − − =⎜ ⎟⎛
⎝

⎞
⎠F

u
uu u f x

1

˙
˙

3

2
¨ ( ) 0. (3.12)

2
2

Its numerical solutions were considered in [7, 8] using a symmetry-preserving discretization.
The first term is the well-known Schwarzian derivative that has many important appli-

cations in mathematics, physics and even (originally) in cartography (for an interesting review
see [40]).

In the general case this ODE admits the symmetry group SL (2, ). Its Lie algebra is
realized as

= ∂
∂

= ∂
∂

= ∂
∂

X
u

X u
u

X u
u

, , , (3.13)1 2 3
2

for = =f M const there is an additional symmetry

= ∂
∂

X
x

, (3.14)4

and for = =f M 0 there are two further symmetries

= ∂
∂

= ∂
∂

X x
x

X x
x

, . (3.15)5 6
2

Example 3.1. The ODE that we shall consider is

= ⃛ − − = =⎜ ⎟⎛
⎝

⎞
⎠F

u
uu u M M

1

˙
˙

3

2
¨ 0, const. (3.16)

2
2

Let us solve ODE (3.16) using theorem 3.2. The idea is to find three independent first
integrals of (3.16) and then to eliminate the derivatives u̇ and ü from them (third order ODEs
can have at most three independent first integrals).

The adjoint equation (3.5) takes the form

= − + =( )F
u

D v MDv* 1

˙
2 0. (3.17)3

Let us look for solutions of the form =v v x( ), which is the simplest ansatz. We obtain three
independent solutions of the adjoint equation (3.17)

ω ω ω
ω ω ω

= = = =
> = = = =
< = = = = −

M v v x v x

M v v x v x M

M v v x v x M

0: 1, , ;

0: 1, cos(2 ), sin(2 ), 2 ;

0: 1, cosh(2 ), sinh(2 ), 2 . (3.18)

a b c

a b c

a b c

2

We will use these solutions of the adjoint equation to find first integrals of the ODE (3.16).
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Let us use symmetries (3.13)–(3.15) and solutions of the adjoint equation (3.17) to
construct first integrals. The notation αĨ j means that this integral corresponds to symmetry Xj

and solution αv of the adjoint equation.
For all values of the parameter M there is only one common solution of the adjoint

equation, namely

=v x( ) 1. (3.19)a

It provides us with the first integrals

= + = + −

= + − + ≡ −

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

I
u

u

M

u
I u

u

u

M

u

u

u

I u
u

u

M

u
u

u

u
u I M

˜ 1

2

¨

˙ ˙
, ˜ 1

2

¨

˙ ˙

¨

˙
,

˜ 1

2

¨

˙ ˙
2

¨

˙
2 ˙, ˜ 2 .

a a

a a

1

2

3 2

2

3

3
2

2

3 4

Two additional first integrals for M = 0 are trivial:

≡ ≡ −I I˜ 0, ˜ 2.a a5 6

The non-trivial first integrals obey the relation

− =I I I M˜ ˜ ˜ 2 .a a a1 3 2
2

Thus we have only two independent first integrals and it is not sufficient for the integration of
the third order ODE. To find a sufficient number of first integrals we will consider solutions of
the adjoint equation which are specific for particular cases of the parameter M. Let us go
through different cases of the parameter.

Case: M = 0
This case was considered in [45]. The solution consists of the generic three-parameter

solution

=
+

+u x
C x C

C( )
1

, (3.20)
1 2

3

where ≠C 01 , C2 and C3 are constants, and the degenerate two-parameter solution

= + ≠u x C x C C( ) , 0. (3.21)1 2 1

Case: >M 0
Special solutions of the adjoint equation are (3.19) and

ω ω ω= = =v x x v x x
M

( ) cos(2 ) and ( ) sin(2 ),
2

. (3.22)b c

For vb and symmetry X1 we compute the first integral

ω ω ω= − −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟I x

u

u

M

u
x

u

u
˜ cos(2 )

1

2

¨

˙ ˙
2 sin(2 )

¨

˙
.b1

2

3 2

We choose Ĩ a1 , Ĩ a2 and Ĩ b1 as three independent first integrals. The Jacobian is

=
∂

∂

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
J

I I I

u u u
det

˜ , ˜ , ˜

( , ˙, ¨)

a a b1 2 1
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ω ω ω ω ω ω ω= + + −( )u u

u
x u x uu x u

2

¨ 4 ˙

˙
sin(2 ) ¨ 4 cos(2 ) ˙ ¨ 4 sin(2 ) ˙ .

2 2 2

9
2 2 2

(1) For ≠J 0 we obtain the solutions

ω= + +( )u x C x C C( ) tan , (3.23)1 2 3

where ≠C 01 ,
π≠C n
2

2 , ∈n and C3 are constants.

(2) The equality =J 0 can happen in two cases:

(a) The first case is

ω+ = ≠u u u¨ 4 ˙ 0, ˙ 02 2 2

and it has no real solutions.
(b) The second case is

ω ω ω ω ω+ − = ≠x u x uu x u usin (2 ) ¨ 4 cos (2 ) ˙ ¨ 4 sin (2 ) ˙ 0, ˙ 0.2 2 2

It can be solved for ü:

ω ω ω ω= = − ≠u x u u x u u¨ 2 tan ( ) ˙ or ¨ 2 cot ( ) ˙, ˙ 0.

The general solutions of these equations are:

ω ω= + = +u x C x C u x C x C( ) tan ( ) or ( ) cot ( ) , (3.24)1 2 1 2

where ≠C 01 and C2 are integration constants.
Finally, we unite solutions (3.23) and (3.24) into the generic solution of the ODE

ω= + +( )u x C x C C( ) tan , (3.25)1 2 3

where ≠C 01 , C2 and C3 are integration constants.
Case: <M 0
This case was examined in [16], where we obtained the generic solutions

ω ω= + + = + +( ) ( )u x C x C C u x C x C C( ) tanh , ( ) coth (3.26)1 2 3 1 2 3

and the degenerate solutions

= +ω±u x C C( ) e , (3.27)x
1

2
2

where ≠C 01 , C2 and C3 are constants.

Example 3.2. The ODE

= ⃛ − − =⎜ ⎟⎛
⎝

⎞
⎠F

u
uu u

x

1

˙
˙

3

2
¨

1
0, (3.28)

2
2

2

admits symmetries

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

X
u

X u
u

X u
u

X x
x

X x x
x

X x x
x

, , ,

, sin (ln ) , cos (ln ) . (3.29)

1 2 3
2

4 5 6

To find the solution of this equation one can use the adjoint equation method as it was
illustrated in the previous example. The adjoint equation is
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= − − + =F
x D v xDv v

x u
* 2 2

˙
0. (3.30)

3 3

3

Three independent solutions of (3.30) are

= = =v x v x x v x x, sin (ln ) and cos (ln ). (3.31)a b c

One can use these solutions of the adjoint equation and the symmetries (3.29) to find first
integrals, which can be used to obtain the solution of the ODE.

Alternatively, we can exploit the change of the independent variable

→ = ( )x x x˜ tan ln , (3.32)

which transforms ODE (3.28) into the ODE (3.16) withM = 0. Thus, we can use the results of
the previous example, namely the solutions (3.20) and (3.21), to find the general solution of
ODE (3.28) as

= + +( )u x C x C C( ) tan ln , (3.33)1 2 3

where ≠C 01 , C2 and C3 are constants.⋄

The direct method versus the adjoint equation method.
Let us compare the direct method [3, 5] with the adjoint equation method. We consider a

scalar ODE (3.1) and assume that this ODE is solved with respect to the highest derivative
u n( ):

= − … =−( )F u f x u u u u, , ˙, ¨, , 0. (3.34)n n( ) ( 1)

We are interested in first integrals

= … −( )I I x u u u, , ˙, , (3.35)n( 1)

of this ODE such that

Λ=D I F( ) , (3.36)

holds identically in the whole space for some nonsingular function

Λ Λ= … −( )x u u u, , ˙, , , (3.37)n( 1)

called an integrating factor. Since the left-hand side of relation (3.36) is a total derivative it is
annihilated by the action of the variational operator. Therefore we obtain the equation

δ
δ

Λ =
u

F( ) 0. (3.38)

Let us mention that every first integral (3.35) corresponds to some non-zero integrating factor
(3.37), which is a solution of equation (3.38).

Let us compare with the adjoint equation

δ
δ

φ= = …
=

−( )
u

vF v x u u u( ) 0, , , ˙, , . (3.39)
F

n

0

( 1)

If we consider Λ and φ which depend on the same variables, we obtain the following result.

Proposition 3.6. An integrating factor is always a solution of the adjoint equation
independently of whether a symmetry of the underlying equation exists. The inverse statement
is not true.
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Even though an integration factor is always a solution of the adjoint equation we cannot
expect that the direct method and the adjoint equation method will always provide the same
first integral.

Using integrating factors, we have to solve the equation (3.36) in order to find a first
integral I. Explicit line integral formulas which provide first integrals were given in [5]. The
approach based on the solution of the adjoint equation yields the first integral by formula
(3.11), which does not require any integration.

It was observed on the examples of this section that the pair consisting of a symmetry X
and a solution of the adjoint equation v can generate a trivial first integral. To the contrary, an
integrating factor Λ provides a non-trivial first integral. On the other hand, it was observed in
[16] that the approach based on theorem 3.2 has the advantage that we can use a simpler
ansatz for φ then for Λ.

4. Adjoint equation method for mappings

In this section we will consider mappings (discrete equations) and develop a theory analogous
to the continuous case results reviewed in section 3. It should be noted that mappings may not
possess continuous limits. Such mappings have no relation to discretizations of ODEs.

Let us consider mappings with the dependent variable

= … ∈( )u u mu , , , .m m m
q1

Discrete systems of order n can be presented as equations involving +n 1 points

β… = = …β + + +F m ru u u u( , , , , , ) 0, 1, , . (4.1)m m m m n1 2

We will assume that these equations can be resolved for um and +um n. This assumption is
necessary to solve the Cauchy problem to the left and to the right from the lattice points
containing initial values.

We consider Lie point symmetries

η= ∂
∂

α
αX

u
u( ) . (4.2)

As in the previous sections we will assume summation over repeated indices. For application
to functions on lattice points we consider symmetry operators which are extended to all points
involved in equations (4.1)

η η η η η= ∂
∂

+ ∂
∂

+ … + ∂
∂

=α
α

α
α

α
α

α α
+

+
+

+
X

u u u
u, ( ). (4.3)m

m
m

m
m n

m n
l l1

1

It is helpful to introduce forward and backward shift operators +S and −S :

= + =+ + +S m m S u u1, ,m m 1

= − =− − −S m m S u u1, .m m 1

Discrete variational operators are defined by the relation

∑

∑ ∑

δ

δ

…

= ∂
∂

…α
α

+ +

=

∞

−
+

+ +





m

u S
u

m

u u u

u u u

( , , , , )

( , , , , ).

m

m m m n

m
m

k

k

m k
m m m n

1

0

1
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We suppose → 0 sufficiently fast when → ±∞m so that the discrete functional is well
defined. The relation provides us with discrete variational operators

∑δ
δ

= ∂
∂

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …α α α α α
=

∞

−
+

−
+

−
+u

S
u u

S
u

S
u

. (4.4)
m k

k

m k m m

k

m k0 1

Note that these operators are defined for the system (4.1) of arbitrary order n.
We will make use of adjoint variables = …v vv ( , , )m m m

r1 and adjoint equations

δ
δ

α= = = …α α
β

β( )F
u

v F q0, 1, , , (4.5)
m

m
*

which are always linear for the adjoint variables vm. These equations can be presented as

=
∂
∂

+
∂

∂
+ …

+
∂

∂
+ … +

∂
∂

=

α
β β

α
β β

α

β β
α

β β
α

− −
+

− −
+

− −
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

F v
F

u
v S

F

u

v S
F

u
v S

F

u
0.

m
m

m
m

m k
k

m k
m n

n

m n

*
1

1

Now we will obtain the main identity which will be used to find first integrals.
Let us fix the value of index m, which corresponds to the left point in the equations (4.1),

and define higher order discrete Euler–Lagrange operators

∑δ
δ

= ∂
∂

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …α α α α α
=

∞

−
+ + +

−
+ +

−
+ +u

S
u u

S
u

S
u

. (4.6)
m j k

k

m j k m j m j

k

m j k( ) 0 1

We note that variational operators (4.4) belong to this family:

δ
δ

δ
δ

=α αu u
.

m m (0)

Lemma 4.1 (Main identity for mappings). The following identity holds:

η= + −β
β

α
α −( )v XF F S J1 , (4.7)m m
*

where

∑η δ
δ

= α
α

β
β

=
+ ( )J

u
v F . (4.8)

j

n

m j
m j

m
1 ( )

Proof. The identity can be obtained by a direct calculation. □

An alternative derivation of the main identity (4.7) can be based on the following
operator identity.

Lemma 4.2. The following operator identity (no summation over α) holds:

∑ ∑ ∑η η η δ
δ

∂
∂

= ∂
∂

+ −α
α

α
α

α
α

=

∞

+
+ =

∞

−
+

−
=

∞

+( )
u

S
u

S
u

1 . (4.9)
k

m k
m k

m
k

k

m k j
m j

m j0 0 1 ( )
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If we take summation of the identities (4.9) for all α = … q1, , and apply the resulting
operator identity to the quantity β

βv Fm , we get the identity (4.7).
Let us adapt the results of the continuous case, given in section 3, to the discrete case.

Theorem 4.3 (Main theorem for mappings). Let the adjoint equations (4.5) be satisfied for
all solutions of the original equations (4.1) upon a substitution

φ φ= ≡mv u( , ), 0. (4.10)m m

Then, any Lie point symmetry (4.2) of the equations (4.1) leads to the first integral

∑η δ
δ

=
φ

α
α

β
β

=
+

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )J

u
v F , (4.11)

j

n

m j
m j

m

v1 ( )
m

where values vm, …, −vm n should be eliminated by means of the equations (4.10) and their
shifts to the left.

Proof. The result follows from the identity (4.7) just as theorem 3.2 follows form the
identity (3.7). □

Theorem 4.3 is the discrete analog of theorem 3.2 and the operator − −S1 is the discrete
analog of the total derivative D, i.e., discrete first integrals satisfy the equation

− =−( )S J1 0

on the solutions of the discrete equations.

Remark 4.4. Generally first integrals J, given by (4.11), can depend on more than n points.
We will call such expressions higher first integrals. Using equations (4.1), we can always
reduce this number of points to minimal set, for example, to points

+ … + −m m m n, 1, , 1, i.e.,

…
= … …

β

+ + + −

+ + + − = = …β

J m

J m

u u u u

u u u u

˜( , , , , , )

( , , , , , , ) .

m m m m n

m m m m n F r

1 2 1

1 2 1 0, 1, ,

Remark 4.5. Instead of point substitutions (4.10) we can use generalized substitutions which
involve neighbouring points. For systems (4.1) we can consider substitutions like

φ φ= … = …+ + + −m mv u u v u u u( , , ), , ( , , , , ).m m m m m m m n1 1 1

Remark 4.6. The requirement that the substitution (4.10) annihilates the adjoint
equation (4.5) on the solutions of the original equations, used in theorem 4.3, can be
replaced by a weaker condition

η =α
αF 0.m
*

This should hold for a given symmetry X of the system (4.1) on the solutions of this system.
This is a weaker condition than the requirement of the theorem that all equations =αF 0* hold
individually.
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In the following sections we will consider applications of these results.

5. Case of mapping involving a single dependent variable

In this section we will consider scalar mappings of order n

… =+ + +F m u u u u( , , , , , ) 0 (5.1)m m m m n1 2

admitting symmetries of the form

η= ∂
∂

X u
u

( ) . (5.2)

Such symmetries are expanded as

η η η η η= ∂
∂

+ ∂
∂

+ … + ∂
∂

=+
+

+
+

X
u u u

u, ( ) (5.3)m
m

m
m

m n
m n

l l1
1

to all points involved in the equation (5.1).
The corresponding adjoint equation (4.5) has the form

δ
δ

= =( )F
u

v F* 0, (5.4)
m

m

where

∑δ
δ

= ∂
∂

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …
=

∞

−
+

−
+

−
+u

S
u u

S
u

S
u

(5.5)
m k

k

m k m m

k

m k0 1

is the discrete variational operator. Explicitly we have

= ∂
∂

+ ∂
∂

+ …

+ ∂
∂

+ … + ∂
∂

=

− −
+

− −
+

− −
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

F v
F

u
v S

F

u

v S
F

u
v S

F

u

*

0.

m
m

m
m

m k
k

m k
m n

n

m n

1
1

Theorem 4.3 restricted to the case of this section states the following.

Theorem 5.1 (Main theorem for scalar mappings). Let the adjoint equation (5.4) be
satisfied for all solutions of the original equation (5.1) upon a substitution

φ φ= ≡v m u( , ), 0. (5.6)m m

Then, any Lie point symmetry (5.2) of the equation (5.1) leads to a first integral

∑η δ
δ

=
φ=

+

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )J

u
v F , (5.7)

j

n

m j
m j

m

v1 ( )
m

where

∑δ
δ

= ∂
∂

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …
=

∞

−
+ + +

−
+ +

−
+ +u

S
u u

S
u

S
um j k

k

m j k m j m j

k

m j k( ) 0 1

and values vm, …, −vm n should be eliminated by means of the equation (5.6) and its shifts to
the left.
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Example 5.1. Let us consider the four-point mapping

=
− −
− −

− = ≠+ + +

+ + +
F

u u u u

u u u u
K K

( )( )

( )( )
0, 0. (5.8)m m m m

m m m m

3 1 2

3 2 1

This equation was considered in [7, 8] as a part of the system (6.29), which will be examined
below. We exclude the case K = 0 because for K = 0 this equation is equivalent to the system

− =

− ≠

+

+

u u

u u

0,

0,

m m

m m

2

1

which can be easily solved as

= − + ≠u A B A( 1) , 0.m
m

The equation (5.8) admits symmetries

= ∂
∂

= ∂
∂

= ∂
∂

X
u

X u
u

X u
u

, , . (5.9)1 2 3
2

The adjoint equation (5.4) (after use of the original equation F = 0) is

=
−

− −
+ − + − − =+ +

+ +
− − −( )F

K u u

u u u u
v K v K v v*

( )

( )( )
(1 ) ( 1) 0. (5.10)m m

m m m m
m m m m

2 1

2 1
1 2 3

This simplifies to a linear mapping

+ − + − − =− − −v K v K v v(1 ) ( 1) 0.m m m m1 2 3

It is easy to find solutions =v v m( )m m . We obtain three independent solutions of the adjoint
equation

ϕ ϕ
μ μ

= = = =
< < = = =
< > = = =

K v v m v m

K v v m v m

K K v v v

4: 1, , ;

0 4: 1, cos (2 ), sin (2 );

0 or 4: 1, , ; (5.11)

m
a

m
b

m
c

m
a

m
b

m
c

m
a

m
b m

m
c m

2

1 2

where

ϕ μ= = − ± −⎛
⎝⎜

⎞
⎠⎟

K K K K
arccos

2
and

( 2) 4

2
.1,2

2

First of all we consider the solution of the adjoint equation =v 1m
a , which is common for

all values ≠K 0. Applying theorem 5.1 with this solution and symmetries X1, X2 and X3 and
simplifying the obtained first integrals as described in remark 4.4, we get the first integrals

=
−

−
−

−
−

=
+

−
−

−
−

−

=
−

−
−

−
−

+ + + +

+

+

+

+ +

+

+

+

+

+

+ +

+

+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

J
K

u u u u u u

J
K u u

u u

u

u u

u

u u

J
Ku u

u u

u

u u

u

u u

˜ 2
1 1

,

˜ ( ) 2 2
,

˜ 2 ,

a
m m m m m m

a
m m

m m

m

m m

m

m m

a
m m

m m

m

m m

m

m m

1
2 2 1 1

2
2

2

1

2 1

1

1

3
2

2

1
2

2 1

1
2

1
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respectively. These three first integrals, which hold for all ≠K 0, are not independent. They
satisfy the relation

− = −( )J J J K K˜ ˜ ˜ 4 .a a a1 3 2
2 2

To integrate the mapping (5.8) we need one more independent first integral (it should be a first
integral which involves m). As in the continuous case we need to consider different cases of
the parameter K separately.

Case: K = 4
This case was treated in [45], where we found the generic solution

=
+

+ ≠u
C m C

C C
1

, 0 (5.12)m
1 2

3 1

and the degenerate solution

= + ≠u C m C C, 0. (5.13)m 1 2 1

Case: < <K0 4
In this case we obtain two specific solutions of the adjoint equation (5.10)

ϕ ϕ ϕ= = =
⎛
⎝⎜

⎞
⎠⎟v m v m

K
cos (2 ) and sin (2 ), arccos

2
.m

b
m
c

Application of theorem 5.1 with symmetry X1 and solution vm
b gives us the first integral

ϕ ϕ

ϕ

=
−

−
−

+ −

×
−

+
−

−
−

−
−

− −
−

+
−

+ +

+ + + + +

+ + +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

J m
K

u u

K

u u
m

K
u u u u u u u u

m
u u u u

˜ cos (2 ) cos (2 ( 1))

1 1 1 1

cos (2 ( 2))
1 1

.

b
m m m m

m m m m m m m m

m m m m

1
2 1

2 1 2 1 1

2 1 1

We can chose first integrals J̃ a1 , J̃ a2 and J̃ b1 as three independent first integrals. The
Jacobian is

ϕ ϕ

=
∂

∂

=
− + + − −
− − − + −

+ +

+ + +

+ + + +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

J
J J J

u u u

K u u u K u u

u u u u u u

KR R

m m

det
˜ , ˜ , ˜

( , , )

2 (4 )( )

( ) ( ) ( ) cos (2 ( 1)) cos (2 )
,

a a b

m m m

m m m m m

m m m m m m

1 2 1

1 2

2 1
2

2
2

1
3

2
3

2 1
3

1 2

where

α β
α ϕ ϕ ϕ β ϕ ϕ ϕ

= − + + −
= + = − −

+ + +( )R u u u u u

m m

2 ( ),

sin 2 (sin (2 ) sin ), (1 cos 2 )(cos (2 ) cos )
m m m m m1 2 1 2

and

γ δ
γ ϕ ϕ ϕ δ ϕ ϕ ϕ

= − + + −
= − = − +

+ + +( )R u u u u u

m m

2 ( ),

sin 2 (sin (2 ) sin ), (1 cos 2 )(cos (2 ) cos ).
m m m m m2 2 1 2
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(1) In the case ≠J 0 we set these first integrals equal to constants and obtain the generic
solution

ϕ= + +( )u C m C Ctan , (5.14)m 1 2 3

where ≠C 01 , ϕ π≠ − +C k
3

2 2
2 , ∈k and C3 are constants.

(2) Analysis of the case J = 0 splits into three subcases.
(a) The case

− + + − − =

≠ ≠

+ + +

+ +

( )K u u u K u u

u u u u

2 (4 )( ) 0,

,

m m m m m

m m m m

2 1
2

2
2

1 2

has no real solutions.
(b) The case

=

≠ ≠+ +

R

u u u u

0,

,m m m m

1

1 2

has solutions

ϕ ϕ π= + + ≠ = − +( )u C m C C C C ktan , 0,
3

2
. (5.15)m 1 2 3 1 2

Verification shows that these functions are solutions of the equation (5.8).
(c) The case

=

≠ ≠+ +

R

u u u u

0,

,m m m m

2

1 2

has solutions

ϕ ϕ π π= + + ≠ = − + +( )u C m C C C C ktan , 0,
3

2 2
,(5.16)m 1 2 3 1 2

which are solutions of the equation.

Finally, we unite the obtained solutions into the generic solution of the form

ϕ= + +( )u C m C Ctan , (5.17)m 1 2 3

where ≠C 01 , C2 and C3 are constants.
Case: <K 0 or >K 4
This case was given in [16]. The solution consists of

μ μ μ μ μ μ

μ μ μ μ μ μ
=

− − − − + −

− − − + −
+

( ) ( )

( ) ( )
u C

K C
K

C

K C
K

C

C

(4 )( ) 1 1

( ) 1 1
, (5.18)m

m m

m m
1

2 1 2 1
2

2
2

2
2

1

2 1 2 1
2

2
2

2
2

1

3

where ≠C 01 , ≠C 02 and C3 are constants, and

μ μ= + = + ≠u C C u C C Cand , 0. (5.19)m
m

m
m

1 1 2 1 2 2 1

The generic solution (5.18) can be conveniently rewritten as follows:
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• >K 4:

ψ= + +( )u C m C Ctanh (5.20)m 1 2 3

or

ψ= + +( )u C m C Ccoth (5.21)m 1 2 3

• <K 0:

ψ

ψ
=

+ +

+ +

⎧
⎨⎪
⎩⎪

( )

( )
u

C m C C m

C m C C m

tanh if is even,

coth if is odd,
(5.22)m

1 2 3

1 2 3

or

ψ

ψ
=

+ +

+ +

⎧
⎨⎪
⎩⎪

( )

( )
u

C m C C m

C m C C m

coth if is even,

tanh if is odd.
(5.23)m

1 2 3

1 2 3

Here

ψ μ= = − + −K K K1

2
ln

1

2
ln

2 4

21

2

and ≠C 01 , C2 and C3 are constants.
In addition to the generic solutions we have the degenerate solutions (5.19), which can be

rewritten as

= +ψ±u C K C(sgn ) e . (5.24)m
m m

1
2

2

6. Discretizations of a scalar ODE

In this section we are interested in discretizations of a scalar ODE. For the discretization of an
ODE of order n we need a difference stencil with at least +n 1 points. We will use precisely

+n 1 points, namely, points xm, …, +xm n. These points are not specified in advance and will
be defined by an additional mesh equation [14].

As a discretization we will consider a discrete equation on +n 1 points

… =+ + + +F x u x u x u( , , , , , , ) 0, (6.1)m m m m m n m n1 1

on a mesh

Ω … =+ + + +x u x u x u( , , , , , , ) 0. (6.2)m m m m m n m n1 1

These two equations form the difference system to be used. In the continuous limit the first
equation goes into the original ODE and the second equation turns into an identity (for
example, =0 0).
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The Lie point symmetry

ξ η= ∂
∂

+ ∂
∂

X x u
x

x u
u

( , ) ( , ) (6.3)

gets expanded to the points of the difference stencil as

ξ η ξ η= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ ∂
∂+

+
+

+
X

x u x u
, (6.4)m

m
m

m
m n

m n
m n

m n

ξ ξ η η= =x u x u( , ), ( , ).l l l l l l

The discrete variational operators (4.4) take the form

∑δ
δ

= ∂
∂

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …
=

∞

−
+

−
+

−
+u

S
u u

S
u

S
u

, (6.5)
m k

k

m k m m

k

m k0 1

∑δ
δ

= ∂
∂

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …
=

∞

−
+

−
+

−
+x

S
x x

S
x

S
x

. (6.6)
m k

k

m k m m

k

m k0 1

The adjoint equations corresponding to the system of difference equations (6.1) and (6.2) are

δ
δ

Ω= + =( )F
u

v F w* 0 (6.7)
m

m m

and

Ω δ
δ

Ω= + =( )
x

v F w* 0, (6.8)
m

m m

where vm and wm are adjoint variables. In detail they are

Ω Ω Ω

Ω

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ … + ∂
∂

+ ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …

+ ∂
∂

=

− −
+

− −
+

− −
+

− −
+

− −
+

− −
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

F v
F

u
v S

F

u
v S

F

u
v S

F

u

w
u

w S
u

w S
u

w S
u

*

0

m
m

m
m

m k
k

m k
m n

n

m n

m
m

m
m

m k
k

m k

m n
n

m n

1
1

1
1

and

Ω

Ω Ω Ω

Ω

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ … + ∂
∂

+ ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …

+ ∂
∂

=

− −
+

− −
+

− −
+

− −
+

− −
+

− −
+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

v
F

x
v S

F

x
v S

F

x
v S

F

x

w
x

w S
x

w S
x

w S
x

*

0.

m
m

m
m

m k
k

m k
m n

n

m n

m
m

m
m

m k
k

m k

m n
n

m n

1
1

1
1

In this setting theorem 4.3 takes the following form.

Theorem 6.1 (Main theorem for discretized ODE). Let the adjoint equations (6.7) and (6.8)
be satisfied for all solutions of the original equations (6.1) and (6.2) upon a substitution
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φ

φ
φ φ

=

=
≡ ≡

v m x u

w m x u

( , , ),

( , , ),
0 or 0. (6.9)

m m m

m m m

1

2
1 2

Then, any Lie point symmetry (6.3) of the equations (6.1) and (6.2) leads to the first integral

∑ ξ δ
δ

η δ
δ

Ω= + +
φ φ=

+ +

= =

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( )J

x u
v F w , (6.10)

j

n

m j
m j

m j
m j

m m

v w1 ( ) ( )
,m m1 2

where

∑δ
δ

= ∂
∂

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …
=

∞

−
+ + +

−
+ +

−
+ +u

S
u u

S
u

S
u

(6.11)
m j k

k

m j k m j m j

k

m j k( ) 0 1

and

∑δ
δ

= ∂
∂

= ∂
∂

+ ∂
∂

+ … + ∂
∂

+ …
=

∞

−
+ + +

−
+ +

−
+ +x

S
x x

S
x

S
x

(6.12)
m j k

k

m j k m j m j

k

m j k( ) 0 1

are higher order discrete Euler–Lagrange operators and vm, wm, …, −vm n, −wm n should be
eliminated by means of equations (6.9) and their shifts to the left.

As in the general case of theorem 4.3 the first integral J satisfies the equation

− =−( )S J1 0

on the solutions of the difference scheme.

Remark 6.2. As in the general case the condition that the adjoint equations are satisfied, i.e.,
Ω= =F* * 0, can be substituted by a weaker condition

ξ Ω η+ =F* * 0,m m

which should hold for a given symmetry X of the system (6.1), (6.2) on the solutions of this
system.

Example 6.1. Let us consider the one-dimensional harmonic oscillator

+ =u u¨ 0. (6.13)

As a discretization we choose the scheme

−
−
−

−
−
−

+
+ +

=
+

+ +

+ +

+

+

+ +⎛
⎝⎜

⎞
⎠⎟x x

u u

x x

u u

x x

u u u2 2

4
0 (6.14)

m m

m m

m m

m m

m m

m m m

2

2 1

2 1

1

1

2 1

on the uniform mesh

− = −+ + +x x x x . (6.15)m m m m2 1 1

This discretization of the harmonic oscillator was considered in [20].
Let us rewrite the scheme in an equivalent form

Ω

=
−
−

−
−
−

+
− + +

=

= − − − =

+ +

+ +

+

+

+ + +

+ + +

F
u u

x x

u u

x x

x x u u u

x x x x

2

2

4
0,

( ) ( ) 0. (6.16)

m m

m m

m m

m m

m m m m m

m m m m

2 1

2 1

1

1

2 2 1

2 1 1
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It is not difficult to verify that the difference system (6.16) admits the symmetries generated
by the operators

ω ω= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

X
x

X x
u

X x
u

X u
u

, sin ( ) , cos ( ) , , (6.17)1 2 3 4

where

ω = = − = −+ + +
h

h
h x x x x

arctan ( 2)

2
, .m m m m2 1 1

The adjoint equations are

=
−

+
−

+ −
−

−
−

+
−

+
−

+
−

=

+

+

−
+ −

+ −

−
−

−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

F v
x x

x x

v
x x x x

x x

v
x x

x x

* 1

8

1 1

4

1

8
0 (6.18)

m
m m

m m

m
m m m m

m m

m
m m

m m

1

2

1
1 1

1 1

2
1

2

and

Ω = −
−
−

−
+ +

+
−
−

+
−
−

+ −
−
−

+
+ +

+ − + =

+

+

+ +

−
+

+

−

−

−
−

−

− −

− −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

v
u u

x x

u u u

v
u u

x x

u u

x x

v
u u

x x

u u u

w w w

*
( )

2

8

( ) ( )

( )

2

8

2 0, (6.19)

m
m m

m m

m m m

m
m m

m m

m m

m m

m
m m

m m

m m m

m m m

1

1
2

2 1

1
1

1
2

1

1
2

2
1

1
2

1 2

1 2

considered on the solutions of the equations (6.16).
On the solutions of the equations (6.16) the adjoint equations (6.18) and (6.19) have the

particular solution

= =v w x0, . (6.20)m
a

m
a

m

For symmetries (6.3) with ξ = 0 we can consider the equation (6.18) instead of the
system (6.18), (6.19) (see remark 6.2). In this case we find the special solution

= =v u w, 0. (6.21)m
b

m m
b

Let us use these solutions to find first integrals with the help of theorem 6.1 and
symmetries (6.17). We will bypass the higher first integrals and provide only the final results
for both pairs (6.20) and (6.21).

• =v 0m
a , =w x .m

a
m

Application of the theorem with symmetry X1 gives the first integral

= − = −+J x x h˜ . (6.22)
a

m m1 1

The other symmetries provide trivial first integrals.
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• =v um
b

m, =w 0.m
b

For symmetries X2, X3 and X4 we obtain the first integrals

ω ω= + − ++ + +⎜ ⎟⎛
⎝

⎞
⎠( )J

h

h
u x u x˜ 1

4
sin ( ) sin ( ) , (6.23)

b
m m m m2 1 1 2

ω ω= + − ++ + +⎜ ⎟⎛
⎝

⎞
⎠( )J

h

h
u x u x˜ 1

4
cos ( ) cos ( ) , (6.24)

b
m m m m3 1 1 2

= −
−

+
++ +⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥J h

u u

h

u u˜
2

, (6.25)
b m m m m
4

1
2

1
2

where we used = −+h x xm m1 and = ++ +x x hm m2 1 .

Using values of the first integrals J̃
a

1 J̃
b
2 and J̃

b
3 , we can express the solution of the

difference system in the form

ω ω= +u A x B xcos ( ) sin ( ). (6.26)m m m

The mesh for this solution

= + = ± ± …x x mh m, 0, 1, 2, (6.27)m 0

can be obtained by integration of the linear equation (6.22). Here A, B, >h 0 and x0 are
constants. Note that x0 appears from the integration of the linear equation (6.22).

Example 6.2. Let us return to the ODE

= ⃛ − − =⎜ ⎟⎛
⎝

⎞
⎠F

u
uu u M

1

˙
˙

3

2
¨ 0, (6.28)

2
2

which we examined in the example 3.1. We recall that in the general case it admits
symmetries (3.13) and (3.14). For =M 0 there are additional symmetries (3.15). We will
consider these two cases separately.

Case: =M 0
As a discretization we consider the invariant scheme

Ω

=
−
−

−
−

−
−
−

−
−

=

=
− −
− −

− = ≠

+ +

+ +

+

+

+ +

+ +

+

+

+ + +

+ + +

F
u u

x x

u u

x x

u u

x x

u u

x x

x x x x

x x x x
K K

0,

( )( )

( )( )
0, 0, (6.29)

m m

m m

m m

m m

m m

m m

m m

m m

m m m m

m m m m

3 1

3 1

2

2

3 2

3 2

1

1

3 1 2

3 2 1

which was introduced in [7, 8]. It admits all six symmetries (3.13), (3.14) and (3.15).
The adjoint system for the presented scheme is

α
=

−
− −

+ − + − − =+ +

+ +
− − −( )F

u u

u u u u
v K v K v v*

( )

( )( )
(1 ) ( 1) 0m m

m m m m
m m m m

2 1

2 1
1 2 3
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and

Ω
α

= −
−

− −
+ − + − −

+
−

− −
+ − + − − =

+ +

+ +
− − −

+ +

+ +
− − −

( )

( )

x x

x x x x
v K v K v v

K x x

x x x x
w K w K w w

*
( )

( )( )
(1 ) ( 1)

( )

( )( )
(1 ) ( 1) 0,

m m

m m m m
m m m m

m m

m m m m
m m m m

2 1

2 1
1 2 3

2 1

2 1
1 2 3

where

α =
−
−

−
−

=
−
−

−
−

+ +

+ +

+

+

+ +

+ +

+

+

u u

x x

u u

x x

u u

x x

u u

x x
.m m

m m

m m

m m

m m

m m

m m

m m

3 1

3 1

2

2

3 2

3 2

1

1

Variables +um 3 and +xm 3 in the coefficient α should be expressed in terms of the other
variables involved in the scheme.

The adjoint equations lead to the system of linear mappings

+ − + − − =− − −v K v K v v(1 ) ( 1) 0,m m m m1 2 3

+ − + − − =− − −w K w K w w(1 ) ( 1) 0.m m m m1 2 3

One can use pairs v w( , )m m which solve this system to find first integrals and employ these first
integrals to find the solution of the scheme.

However, it is more convenient to rewrite the scheme (6.29) in the equivalent form

Ω

=
− −
− −

− =

=
− −
− −

− =

+ + +

+ + +

+ + +

+ + +

F
u u u u

u u u u
K

x x x x

x x x x
K

˜ ( )( )

( )( )
0,

( )( )

( )( )
0. (6.30)

m m m m

m m m m

m m m m

m m m m

3 1 2

3 2 1

3 1 2

3 2 1

Note that the system is symmetric under the interchange of u and x. We can use the results
obtained for mapping (5.8) to integrate this scheme. We need to consider different subcases
for different values of K.

(1) K = 4. We obtain the solution

=
+

+ = +u
C m C

C u C m C
1

or (6.31)m m
1 2

3 1 2

on the mesh

=
+

+ = +x
C m C

C x C m C
1

or , (6.32)m m
4 5

6 4 5

where ≠C 01 , C2, C3, ≠C 04 , C5 and C6 are constants.
(2) < <K0 4. We obtain the solution

ϕ= + +( )u C m C Ctan (6.33)m 1 2 3

on the mesh

ϕ= + +( )x C m C Ctan , (6.34)m 4 5 6

where ≠C 01 , C2, C3, ≠C 04 , C5 and C6 are constants. Here

ϕ =
⎛
⎝⎜

⎞
⎠⎟

K
arccos

2
. (6.35)
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(3) >K 4. We obtain the solution

ψ= + +( )u C m C Ctanh (6.36)m 1 2 3

or

ψ= + +( )u C m C Ccoth (6.37)m 1 2 3

or

μ= + = +ψ±u C C C Ce (6.38)m
m m

1 1,2 2 1
2

2

on the mesh

ψ= + +( )x C m C Ctanh (6.39)m 4 5 6

or

ψ= + +( )x C m C Ccoth (6.40)m 4 5 6

or

μ= + = +ψ±x C C C Ce , (6.41)m
m m

4 1,2 5 4
2

5

where ≠C 01 , C2, C3, ≠C 04 , C5 and C6 are constants. Here

μ = − ± −K K K2 4

2
(6.42)1,2

2

and

ψ μ= = − + −K K K1

2
ln

1

2
ln

2 4

2
. (6.43)1

2

(4) <K 0. We obtain the solution

ψ

ψ
=

+ +

+ +

⎧
⎨⎪
⎩⎪

( )

( )
u

C m C C m

C m C C m

tanh if is even,

coth if is odd,
(6.44)m

1 2 3

1 2 3

or

ψ

ψ
=

+ +

+ +

⎧
⎨⎪
⎩⎪

( )

( )
u

C m C C m

C m C C m

coth if is even,

tanh if is odd,
(6.45)m

1 2 3

1 2 3

or

μ= + = − +ψ±u C C C C( 1) e (6.46)m
m m m

1 1,2 2 1
2

2

on the mesh

ψ

ψ
=

+ +

+ +

⎧
⎨⎪
⎩⎪

( )

( )
x

C m C C m

C m C C m

tanh if is even,

coth if is odd,
(6.47)m

4 5 6

4 5 6

or
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ψ

ψ
=

+ +

+ +

⎧
⎨⎪
⎩⎪

( )

( )
x

C m C C m

C m C C m

coth if is even,

tanh if is odd,
(6.48)m

1 2 3

1 2 3

or

μ= + = − +ψ±x C C C C( 1) e , (6.49)m
m m m

4 1,2 5 4
2

5

where ≠C 01 , C2, C3, ≠C 04 , C5 and C6 are constants. Here μ1,2 and ψ are given by
(6.42) and (6.43), respectively.

Remark 6.3. Let us note that all these solutions for any ≠K 0 can be presented in the
unified form

α β
γ α β=

+
+ = +u

x
u x

1
or , (6.50)m

m
m m

where α ≠ 0, β and γ are constants. They should be considered on the corresponding meshes,
which are different for different values of the parameter K. Thus, the discretization (6.29)
provides the exact solution of the ODE (6.28) for M = 0. For the case K = 4 this was observed
in [7, 8], where the result was essentially guessed, then verified. Here we obtained it
systematically, using the adjoint equation method.

Remark 6.4. It should be noted that for some cases we do not get monotonicity for mesh
points xm. A monotone sequence of mesh points satisfies the natural requirement

−
−

>+ +

+

x x

x x
0. (6.51)m m

m m

2 1

1

We omit the detailed examination of the monotonicity of the mesh points because we would
have to consider many different cases. Let us stress that in all cases we obtain the exact
solution of the ODE in the mesh points.

Remark 6.5. The problem of non-monotone meshes also occurs when using adaptive
meshes [23] and there exist various ways of dealing with it in numerical analysis. One of them
is to restrict the analysis to parts of the mesh where (6.51) holds. For other possibilities see [4]
and references therein.

Case: ≠M 0
As a discretization we consider the invariant scheme

Ω

=
− −
− −

−
− −
− −

× − − − =

− − − =

+ + +

+ + +

+ + +

+ + +

+ + +

+ + + + +

⎜ ⎟⎛
⎝

⎞
⎠

F
u u u u

u u u u

x x x x

x x x x

M
x x x x

x x x x x x

( )( )

( )( )

( )( )

( )( )

1
6

( )( ) 0,

( , , ) 0. (6.52)

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m m m

3 1 2

3 2 1

3 1 2

3 2 1

3 2 1

3 2 2 1 1

It admits the four symmetries (3.13) and (3.14). To find solutions we specify the mesh as a
regular one

Ω = − − =+x x h 0, (6.53)m m1
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where >h 0 is a constant. The first equation will take the form

=
− −
− −

− =+ + +

+ + +
F

u u u u

u u u u
K

( )( )

( )( )
¯ 0, (6.54)m m m m

m m m m

3 1 2

3 2 1

where

= −⎜ ⎟⎛
⎝

⎞
⎠K

M
h¯ 4 1

2
. (6.55)2

For the equation (6.54) we can use results obtained for the mapping (5.8) in example 5.1.
Since ≠h 0 we have ≠K̄ 4. For non-trivial cases ≠K̄ 0 there can be three possibilities.

(1) < <K0 ¯ 4 ( >M 0, < <h M0 2 ). We obtain the solution

ϕ= + +( )u C m C Ctan ¯ , (6.56)m 1 2 3

where ≠C 01 , C2 and C3 are constants, on the mesh

= +x x hm. (6.57)m 0

Here

ϕ =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟K¯ arccos

¯

2
. (6.58)

(2) >K̄ 4 ( <M 0). We obtain the solution

ψ= + +( )u C m C Ctanh ¯ (6.59)m 1 2 3

or

ψ= + +( )u C m C Ccoth ¯ (6.60)m 1 2 3

or

μ= + = +ψ±u C C C C¯ e , (6.61)m
m m

1 1,2 2 1
2 ¯

2

where ≠C 01 , C2 and C3 are constants, on the regular mesh (6.57). Here

μ = − ± −K K K
¯

¯ 2 ¯ 4 ¯

2
(6.62)1,2

2

and

ψ μ= = − + −K K K
¯

1

2
ln ¯

1

2
ln

¯ 2 ¯ 4 ¯

2
. (6.63)1

2

(3) <K̄ 0 ( >M 0, >h M2 ). We obtain the solution

ψ

ψ
=

+ +

+ +

⎧
⎨⎪
⎩⎪

( )

( )
u

C m C C m

C m C C m

tanh ¯ if is even,

coth ¯ if is odd,
(6.64)m

1 2 3

1 2 3

or
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ψ

ψ
=

+ +

+ +

⎧
⎨⎪
⎩⎪

( )

( )
u

C m C C m

C m C C m

coth ¯ if is even,

tanh ¯ if is odd,
(6.65)m

1 2 3

1 2 3

or

μ= + = − +ψ±u C C C C¯ ( 1) e , (6.66)m
m m m

1 1,2 2 1
2 ¯

2

where ≠C 01 , C2 and C3 are constants, on the regular mesh (6.57). Here μ̄1,2 and ψ̄ are

given by (6.62) and (6.63). Note that because of the steplength restriction >h M2 we do
not obtain a consistent discretization of the ODE in this case (the mesh cannot be refined).

It should be noted that for sufficiently small steplengths ≪h 1 we will always have
>K̄ 0 (see (6.55)) and thus avoid ‘jumping solutions’ of the last case. As in the continuous

case the solution has several branches which correspond to different initial conditions.

Remark 6.6. We recall that in the case M = 0 the scheme (6.29) provided us with the exact
solution of the ODE (6.28). In the present case ≠M 0 the scheme (6.52) with regular mesh
specification (6.53) provides the exact solutions of the ODE (6.28) if we apply the scheme to
the modified equation

= ⃛ − − =⎜ ⎟⎛
⎝

⎞
⎠F

u
uu u M

1

˙
˙

3

2
¨ 0. (6.67)mod 2

2
mod

The original equation parameter >M 0 should be changed to the modified value

= < <
⎛
⎝⎜

⎞
⎠⎟M

h

M
h h M

2
sin

2
, 0 2mod 2

2

and the parameter <M 0 should be changed to the modified value

= − −
⎛
⎝⎜

⎞
⎠⎟M

h

M
h

2
sinh

2
.mod 2

2

Application of the scheme (6.52) to the modified equation (6.67) with the modified constant
Mmod gives exact solution of the ODE (6.28) with constant M. Note that in both cases

→M Mmod as →h 0.
We note that modification of the constant M can be interpreted as scaling of the

independent variable x.⋄

Example 6.3. Now we turn to the ODE (3.28) admitting symmetries (3.29). For the
discretization we take the invariant scheme

=
− −

−
− −

=

+ +

+

+

+

+

+ +

+

+

+

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

F
u u

x

x

u u

x

x

u u

x

x

u u

x

x

sin ln sin ln

sin ln sin ln

0,

(6.68)

m m

m

m

m m

m
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m
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m

m

3 1
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Ω = − = ≠
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m
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3
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2

1

which admits the same six symmetries as the underlying ODE. One can approach this system
by finding the adjoint equations, using their solutions and symmetries of the scheme to obtain
first integrals and exploiting these first integrals to obtain the solution of the scheme. This
method is lengthy and requires complicated computations.

Noting that this scheme is transformed into scheme (6.29) by the change of variable
(3.32), we can use the results of the previous example to write down the solution. We get the
solution

= + +( )u C x C Ctan ln , (6.69)m m1 2 3

where ≠C 01 , C2 and C3 are constants, on the mesh which depends on the value of K as
follows:

(1) K = 4

= ± + +⎜ ⎟⎛
⎝

⎞
⎠x e (6.70)m C m C

C2 arctan 1
4 5

6

or

= ± +x e (6.71)( )
m

C m C2 arctan 4 5

(2) < <K0 4

= ± ϕ + +( )( )x e , (6.72)m
C m C C2 arctan tan4 5 6

where ϕ is given by (6.35).
(3) >K 4

= ± ψ + +( )( )x e (6.73)m
C m C C2 arctan tanh4 5 6

or

= ± ψ + +( )( )x e (6.74)m
C m C C2 arctan coth4 5 6

or

= ± = ±μ + +ψ±( ) ( )x e e , (6.75)m
C C C C2 arctan 2 arctan em m

4 1,2 5 4
2

5

where μ1,2 and ψ are given by (6.42) and (6.43), respectively.
(4) <K 0

= ±

±

ψ

ψ

+ +

+ +

⎪

⎪

⎧
⎨
⎩

( )
( )

( )

( )
x

m

m

e if is even,

e if is odd,
(6.76)m

C m C C

C m C C

2 arctan tanh

2 arctan coth

4 5 6

4 5 6

or
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= ±

±

ψ

ψ

+ +

+ +

⎪

⎪

⎧
⎨
⎩

( )
( )

( )

( )
x

m

m

e if is even,

e if is odd,
(6.77)m

C m C C

C m C C

2 arctan coth

2 arctan tanh

1 2 3

1 2 3

or

= ± = ±μ + +ψ− ±( ) ( )x e e , (6.78)m
C C C C2 arctan 2 arctan em m m

4 1,2 5 4
( 1) 2

5

where μ1,2 and ψ are given by (6.42) and (6.43). ⋄

In all cases ≠C 04 , C5 and C6 are constants. Note that the scheme gives the exact
solution of the ODE (3.28). Let us note that for some cases we do not get monotonicity of the
mesh points xm (see remark 6.4).

7. Conclusion

This paper consists of two parts. The first is a brief review the ‘adjoint equation method’
(sections 2 and 3). It is particularly useful either when no Lagrangian exists, or when the
symmetries of the equation are not Lagrangian ones and the Noether theorem cannot be
applied. The method is valid both for ODEs and PDEs. We apply the method to obtain first
integrals and general solutions of third order nonlinear ODEs (the Schwarzian
equations (3.16) and (3.28)).

The second part is an adaptation of the adjoint equation method first to mappings, then to
discretizations of ODEs. The mappings are equations involving several discrete points. The
discretizations are difference equations on lattices that arise e.g. when differential equations
are solved numerically. In both cases (see sections 5 and 6, respectively) we apply the
discretized adjoint equation method to a specific four-point equation, respectively four-point
difference systems. These systems have the Schwarzian ODEs (3.16) and (3.28) as con-
tinuous limits and and share their Lie point symmetry groups. We have also treated a simpler
example, namely a discrete linear harmonic oscillator. The results for the examples can be
summed up as follows:

(1) The adjoint equation method makes it possible to obtain complete sets of functionally
independent first integrals of the differential equations and difference systems. These in
turn provide the general solutions of these equations. If the number of integrals is not
sufficient to provide the solutions, the integrals can be used to lower the order of the
difference system, i.e., decrease the number of points involved.

(2) The invariant discretizations of ODE (3.16) with =M 0 and ODE (3.28) considered here
are exact. The solutions of the difference system coincide with the solutions of the
original ODEs. The invariant discretizations of the other continuous ODEs considered
here, namely of the harmonic oscillator and ODE (3.16) with ≠M 0, can be made exact
if we allow a parameter modification.

(3) The adjoint equation method is entirely constructive. To use it we need to know the
symmetry algebra of the discrete equations that we are studying and some particular
solutions of the adjoint equations. Nowhere did we use the knowledge of solutions of the
original differential equations.

(4) For the ODE (3.28) we for brevity used the transformation (3.32) that transforms
equation (3.28) into (3.16) with M = 0. It also transforms the invariant scheme (6.68) into
(6.29). This equivalence of two schemes is not crucial. The invariant scheme (6.68) could
have been obtained and solved directly though with considerably more calculational
effort.
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In the paper we restricted ourselves to ordinary difference equations. However, the
presented approach can be extended to differential–difference equations as well as to partial
difference equations.
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