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Abstract
The Korteweg–de Vries equation is one of the most important nonlinear
evolution equations in the mathematical sciences. In this article invariant
discretization schemes are constructed for this equation both in the Lagrangian
and in the Eulerian form. We also propose invariant schemes that preserve the
momentum. Numerical tests are carried out for all invariant discretization
schemes and related to standard numerical schemes. We find that the invariant
discretization schemes give generally the same level of accuracy as the stan-
dard schemes with the added benefit of preserving Galilean transformations
which is demonstrated numerically as well.

Keywords: invariant discretization, Korteweg–de Vries equation, moving
meshes

1. Introduction

This article is part of a general program the purpose of which is to study the possibility of
discretizing the equations of physics while preserving their Lie point symmetries [14–21, 34–
38, 49, 53, 54]. There are both conceptual and practical reasons for doing this. From the
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conceptual point of view symmetries under rotations, Galilei or Lorentz transformations,
conformal and other transformations are of primordial importance both in classical and
quantum physics. Indeed, in fields such as nuclear and particle physics where the dynamical
laws are not well established, symmetries provide crucial restrictions on the form of the
interaction. For instance, they determine the possible general form of the nucleon–nucleon
potential [41, 45]. It would be a pity to lose such symmetries and their implications in the
study of physics in a discrete world. From the practical point of view symmetries of differ-
ential equations determine many of the properties of solutions. Preserving symmetries in a
discretization should provide difference systems that share some exact solutions with the
original differential equations, or at least provide better approximations than non-invariant
systems. In turn, this should have implications for numerical solutions. Thus, symmetry
preserving discretizations should provide solutions that are in some sense ‘better’ than
‘standard’ discretizations.

The basic idea [15, 38, 53] of this approach is to approximate a differential equation by a
‘difference system’ consisting of several discrete equations. The solutions of this system
determine the lattice and approximate the solution of the differential equation. In the con-
tinuous limit the lattice equations reduce to identities (like =0 0) and the remaining equations
go to the appropriate differential equation. The difference scheme is constructed out of
invariants of the Lie point symmetry group G of the differential equation. The action of G on
the independent and dependent variables is the same as for the continuous case and this action
is assumed to be known. The action of G is not prolonged to derivatives, but to all points of
the lattice (the ‘discrete jet space’).

This invariant discretization approach has been extensively applied to ordinary differ-
ential equation (ODEs). It has been shown that for first order ODEs an invariant discretization
is exact [49]. The solution of an invariant difference scheme coincides point by point with the
appropriate solution of the ODE. Moreover it is sufficient if the difference system is invariant
under a one-dimensional subgroup of the symmetry group.

For second and third order ODEs it is often possible to integrate the invariant scheme
directly and thus see explicitly how solutions of the difference scheme converge to those of
the ODE [16–18, 54]. It has been shown on the example of numerous second and third order
nonlinear ODEs that the invariant discretizations provide more accurate numerical solutions
than standard methods [6, 7, 48]. This is specially so in the neighborhood of singularities
where invariant methods, as opposed to standard ones, make it possible to continue solutions
beyond the singularities.

For partial differential equations (PDEs) the first application of Lie group theory to
numerical methods is, to our knowledge, due to Shokin and Yanenko [51, 55]. Their approach
‘Differential approximation’ is quite different from ours (for a comparison see [36]).

Quite a few articles devoted to the symmetry adapted discretization of PDEs have
appeared over the last 20 years (see e.g. [2–5, 8–10, 19–21, 30, 31, 35, 43, 46, 47, 52]).
Invariant discretizations of the Korteweg–de Vries (KdV) equation were presented in
[14, 15, 52].

The purpose of this article is to study invariant discretizations of the KdV equations in
greater depth. Thus we will compare the known invariant discretizations amongst each other
and propose new ones. All of them will be tested as numerical schemes for known exact
solutions. Their accuracy and stability will be evaluated by comparing with known analytic
solutions.

The KdV equation is very suitable for such a study. On one hand, it is an integrable
equation so a very large body of analytical solutions is known (due to inverse scattering
techniques [1, 24]). On the other hand the KdV equation has an interesting Lie point
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symmetry group that includes Galilei invariance. It is a prototype of a Galilei invariant
evolution equation that can be invariantly discretized on a mesh with horizontal time lines,
but not on an orthogonal one (nor any other equally spaced one).

The original invariant discretizations [14, 19] essentially correspond to using the
Lagrange formulation of hydrodynamics in the continuous limit. We suggest an alternative
discretization that is natural in the Eulerian formalism, especially when combined with
adaptive computational schemes.

In section 2 we review some well known results on the symmetry group of the con-
tinuous KdV equation and on its known analytical solutions. We also present the Lagrangian
form of the KdV equation. The invariant discretizations are presented in section 3. All
numerical results are concentrated in section 4. The final section 5 is devoted to the
conclusions.

2. The continuous KdV equation

We shall write the KdV equation in the form

+ + =u uu u 0. (1)t x xxx

Its Lie point symmetry group is well-known (see e.g. [42]). A basis for its Lie algebra g is
given by the vector fields

= ∂ + ∂ − ∂ = ∂ + ∂ = ∂ = ∂   t x u t3 2 , , , , (2)t x u x u x t1 0

corresponding to dilations, Galilei boosts and space and time translations, respectively.
The symmetry algebra g has precisely five conjugacy classes of one-dimensional sub-

algebras. A representative list of these classes is given by the algebras

+     { } { } { }{ }, { }, , , . (3)0 0 1

Conjugacy is considered under the group of inner automorphisms of (1), extended by the
simultaneous reflections of x and t

= − = − =x x t t u uR , R , R . (4)

Thus, = ∌G GR 0, where =    G e e e ed v t x
0

0 0 0 1.
The group can be used to get new solutions from known ones. If u t x( , ) is a solution of

the KdV equation then so are − −u t x( , ) and

= − − − − + ∈− − −( )( ) ( )u t x u t t x x v t t v d v t x˜ ˜, ˜ e e ( ), e ( ) e , , , , , (5)d d d d2 3
0 0 0

2
0 0

where d, v, t0 and x0 are group parameters.

2.1. Lagrangian formulation of the KdV equation

The original form of the KdV equation (1) is written in Eulerian variables, i.e. the velocity u
is a function of time and space, =u u t x( , ). An alternative to the Eulerian form is the
Lagrangian form. In the Lagrangian description of fluid mechanics the velocity u is a function
of time and of the original position of the fluid particle ξ. Assuming that the fluid particles
maintain their identity (hence ξ is independent of time), one needs to express the KdV
equation as an equation for τ τ ξ=u u x( , ( , )), where τ = t . Using the chain rule, the Eulerian
form of the KdV equation (1) is transformed to
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+ − + =τ τ
ξ

ξ ξ ξ

ξ

ξ ξ ξ

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟u u x

u

x x x

u

x
( )

1 1
0. (6)

Up to now, no particular relation between the original physical coordinate x and the new
Lagrangian coordinate ξ has been imposed. In the classical Lagrangian framework, this
change of coordinates is specified by setting

τ ξ τ ξ=τx u x t( , ) ( ( , ), ). (7)

In other words, the change of variables from the Lagrangian coordinates to the Eulerian
coordinates is completed upon integrating the equation for the particle trajectories (7). The
KdV equation in Lagrangian coordinates then reduces to

+ =τ
ξ ξ

ξ

ξ ξ ξ

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟u

x x

u

x

1 1
0.

The change of coordinates from the Eulerian form (1) to the form (6) is more general than
the particular Lagrangian case given through (7). In the more general case, the variables τ ξ( , )
are referred to as the computational coordinates. From the numerical point of view, using the
KdV equation in computational coordinates (6) gives the perspective of defining the relation

τ ξ=x x ( , ) in such a manner that the evolution of the discretization grid is coupled to the
evolution of the KdV equation itself. This is the main idea of using adaptive numerical
schemes [27]. The importance of such schemes in the framework of invariant discretization
will be clarified in section 3.

We should like to stress here that even for the more general form (6) of the KdV equation
with yet unspecified relation τ ξ=x x ( , ) it makes sense to fix the transformation τ = t . This
guarantees that the resulting equation will be of evolutionary type (though it would be
sufficient to put τ τ= t( )).

2.2. Symmetry reduction and exact solutions

One of the reasons why exact analytical solutions of PDEs are useful is that they can be used
to check the accuracy of numerical algorithms, in particular the invariant discretizations to be
presented below. For integrable equations with nontrivial symmetry groups (like the KdV
equation) there exist two main sources of exact solutions. One is symmetry reduction, pro-
ducing solutions invariant under some subgroup of the symmetry group. The other is the
method of inverse scattering and its generalizations that lead to multisoliton and periodic and
quasiperiodic solutions.

Let us start with the method of symmetry reduction. In order to reduce the KdV equation
to an ODE we impose that the solution u t x( , ) be invariant under a one-dimensional subgroup
ofG0 corresponding to a one-dimensional subalgebra of the symmetry algebra g. The clas-
sification of these subalgebras leads to the list (3). Invariance under a subgroup corresponding
to the algebra element τ ζ ϕ= ∂ + ∂ + ∂X t x u corresponds to imposing that u t x( , ) in addition
to (1) should satisfy the quasilinear first order PDE

τ ζ ϕ+ =u u . (8)t x

This equation is solved and the result is put into the KdV equation (1) which reduces to
an ODE.

Let us run through the individual subalgbreas listed in (3).
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(i) ∂= .x1 From (8) we obtain =u f t( ) and (1) implies that

=u t x A( , ) . (9)

Thus, the only solution of the KdV invariant under space translations is a constant.
(ii) ∂ ∂= + t .x u From (8) we get the reduction formula

= +u t x
x

t
f t( , ) ( ).

Substituting into (1) and solving the obtained ODE for f(t) we find =f t( ) A

t
. Applying

the group transformations (5) we obtain the Galilei (and dilation) invariant solution

=
−
−

u t x
x x

t t
( , ) . (10)0

0

(ii) ∂ ∂ ∂+ = + +  t .0 x u t The reduction formula following from (8) is

γ γ= + = −u t x t f x t( , ) ( ),
1

2
.2

The KdV equation reduces to ‴ + ′ + =f ff 1 0. Integrating once and putting

γ γ δ= − +⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥f P( ) 12

1

12
( )3 5

1 5

we find that P(z) satisfies the first Painlevé equation

″ = +P P z6 , (11)2

see [25, 28]. The corresponding solution of the KdV equation is

γ δ= − +⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥u x t t P( , ) 12

1

12
( ) ,3 5

I

1 5

where PI is the first Painlevé transcendent and δ is an arbitrary constant. No elementary
solutions of (11) are known.

(iv) ∂ ∂ ∂= + − t x u3 2 .t x u The reduction formula (8) in this case yields

γ γ= =− −u t F xt( ), ,2 3 1 3

where γF ( ) satisfies

γ‴ + ′ − ′ − =F FF F F
1

3

2

3
0. (12)

The Miura transformation [42] = ′ −F w w 62 and subsequent integration takes (12) into

γ= + +γγw w w k
1

18

1

3
. (13)3

Equation (13) can be reduced to the equation

α″ = + +P P zP2 , (14)3

where α is an arbitrary constant. This is the equation for the second Painlevé transcendent
PII. Finally, the dilationally invariant solution of the KdV equation is

γ γ γ= ″ − =α α α
− −( )u t x t P P xt( , ) 2(3) ( ) ( ) , , (15)1 3 2 3 2 1 3

where αP is a solution of (14) (we have denoted αP the PII transcendent viewed as a
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function of the parameter α). Contrary to PI, the PII equation allows two families of
elementary solutions for special values of the parameter α [25]. For integer values
α = ±n these are rational solutions. For half integer values α = ± +n(2 1) 2 the
solutions are expressed in terms of Airy functions. In both cases they satisfy = −α α−P P
and are listed in [25] for low values of n. For the combination = ″ −α α αW P P2 we observe
an additional relation, namely = −+ −W Wn n1 , so for convenience we restrict to
α = − − −0, 1, 2, 3. We thus obtain the following dilationally invariant solutions of
the KdV equation

= = − = −
−

+

= −
+ +

− −

− −

−

( )
( )

( )
( )

u u
x

u
x t x

t x

u
x x t t x

t x t x

0,
12

,
36 24

12
,

72 5400 43200

720 60
. (16)

0 1 2 2

3

3 2

3

9 3 2 2

2 3 6 2

The solution u0 is also invariant under space and time translations, −u 1 is also invariant
under time translations.

(v) ∂= .0 t Solutions invariant under time translations have the form =u f x( ). A Galilei
transformations boosts such a solution to a traveling wave λ λ= − +u f x t( ) .

Substituting into the KdV equation and integrating twice we get an ODE that can be
written as

′ = − − − − + + =f f a f b f c a b c( )
1

3
( )( )( ), 0. (17)2

The roots of the polynomial in (17) can all be real. Then we order them to have ⩾ ⩾a b c.
The other possibility is ∈a , = = +b c p iq¯ , with >q 0, ∈p q, .

We are interested in real solutions only. They may be finite or singular (for ∈x ),
periodic or localized. Let us run through the individual cases. Solutions are expressed in terms
of Jacobi elliptic functions [11] or degenerate cases thereof.

Cnoidal waves: < ⩽ ⩽c b f a, <b a. The solution in this case reads

ω

ω

= + − = −
+

= + + >

u t x b a b x k k
a b

a b

a b
a b

( , ) ( ) cn ( , ),
2

,

2

3
, 2 0. (18)

2

We can apply a Galilei boost with = −v b and obtain the more usual form

ω ω= + − = +
−

= −
u t x a v x vt k k

a v

a v

a v
( , ) ( ) cn ( ( ), ),

2
,

2

3
. (19)2

Soliton: = ⩽ ⩽c b f a, = −b a

2
, k = 1, ω = a1

2 2
. The associated solution of the KdV

equation is

= − + >u t x
a a

x
a( , )

2

3

2

1

cosh
, 0. (20)

a2 1
2 2
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After a boost with =a v2 we have the usual KdV soliton

=
−

u t x
v

v x vt
( , )

3

cosh ( )
. (21)

2 1
2

Singular snoidal solution: ⩽ < <f c b a. The solution of the KdV equation reads

ω
ω= − − = − = +

−
u t x a

a c

x k

a c
k

a c

a c
( , )

sn ( , )
,

1

2 3
,

2
. (22)

2

Singular soliton: ⩽ = <f c b a. The solution of the KdV equation in this case is

ω
ω= − + =

⎛
⎝⎜

⎞
⎠⎟u

a

x

a

2
1

3

sinh ( )
,

1

2 2
. (23)

2

Singular trigonometric solution: ⩽ < =f c b a. We obtain the solution

ω
ω= − =u a

a

x
a

3

sin ( )
,

1

2
. (24)

2

Singular algebraic soliton: = = =a b c 0. The solution of the KdV equation in this case
reduces to

= −u
x

12
, (25)

2

which coincides with the solution −u 1 listed in (16) which is thus invariant under dilations and
time translations. Galilei transformations take it into

= −
−

+u t x
x vt

v( , )
12

( )
. (26)

2

Real solutions corresponding to complex roots: ⩽ ∈f a , = − +b qia

2
, = − −c qia

2
,

>q 0. The corresponding solution of the KdV equation is

ω
ω

ω

= − +
−

= +

= =
+ +⎜ ⎟⎛

⎝
⎞
⎠

u t x a A
x k

x k
A

a
q

A
k

A
a

q

A

( , )
1 cn ( , )

1 cn ( , )
,

9

4
,

3
,

3

2

4
. (27)

2
2

2

2
2

2

An elementary special case is obtained for k = 1, i.e. = ±a 2

3
, = +A q1 2 , namely

ω= ± − + −
+

= +
ωu t x q
q q

( , )
2

3
1

1

sinh
,

1

3
. (28)x

2
2

2
2

2

Other exact solutions are obtained by the inverse scattering method [1, 24]. Amongst
them the most relevant for this article is the double soliton
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= ∂
∂

+ + +

= − − =
−
+

+

⎛
⎝⎜

⎞
⎠⎟

( )( )u t x
x

B B AB B

Q a x a t a x a t A
a a

a a

( , ) 12 ln 1 e e e ,

, , , (29)

Q Q Q Q
2

2 1
i

2
i

1 2
i

1 1 1
3

2 2
3 1 2

1 2

2

1 2 1 2

where a1, a2, B1 and B2 are arbitrary constants. Real solutions are obtained by putting
α=a i ,1 1 α=a i2 2 with α α ∈B B, , ,1 2 1 2 .

Many other solutions (n-soliton, multigap quasiperiodic solutions, etc) are available in
the literature [22, 23, 25, 32, 44].

3. Invariant discretization of the KdV equation

3.1. Invariant discretization on a ten point stencil

The KdV equation is a scalar (1+1)-dimensional evolution equation. In the finite difference
approximation on the t-x-plane, the continuous space of independent variables (t, x) is
sampled by a collection of finite points P{ }i

n only. Here and in the following, we use the
double index notation t x( , )i

n
i
n to denote a discrete point in this t-x-plane, where ∈i is the

spatial index and ∈n is the temporal index. Likewise, the dependent functions are defined
on the associated points P{ }i

n only, i.e. =u u t x( , )i
n

i
n

i
n .

A PDE Δ = x u: ( , ) 0q( ) , where u q( ) denotes all the derivatives of u with respect to t and
x up to order q, is discretized in a symmetry-preserving manner if it is expressed by a
consistent finite difference approximation that can be written as a function of the finite
difference invariants of the symmetry group of the equation itself. By consistent it is meant
that in the continuous limit (i.e. the distance between the points P{ }i

n goes to zero) the finite
difference approximation converges to the original differential equation .

In writing this discretization, it is not only necessary to define a finite difference
approximation of the differential equation  itself but also to specify the lattice of points P{ }i

n

in an invariant fashion. In other words, the equation  is replaced by a system of finite
difference equations of the form

Δ α= = ⩽ ⩽ ⩽ ⩽α ( )S E t x u N i i i n n: , , 0, 1 ,..., , , 0 ,i
n

i
n

i
n

min max max

where the number of equations N in the system ΔS is at least N = 3.
The general method for finding invariant numerical schemes using difference invariants

can be found e.g. in [15, 38]. Here we only present the respective computations for the KdV
equation. We should also like to mention here that there is another method for finding
invariant discretization schemes that rests on invariantization using equivariant moving
frames. For more information on this alternative method, see e.g. [3, 30, 43, 46].

Figure 1. Stencils for the discretization of the KdV equation: ten point stencil (solid
circles). Explicit six point stencil (squares). Implicit six point stencil (crosses).
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The minimum number of points in the stencil to discretize the derivatives in the KdV
equation is five as spatial derivatives up to order three and a first order time derivative have to
be approximated. In order to increase the accuracy of the finite difference approximation we
introduce an extended ten point stencil. Lower order approximations can be obtained by
restricting oneself to a subset of these 10 stencil points.

The stencils used are depicted in figure 1. It can be seen that a two-step time integration is
employed allowing for either forward Euler (six point stencil, squares), backward Euler (six
point stencil, crosses) or trapezoidal time integrators (ten point stencil, solid circles). Invariant
numerical schemes using higher order time-stepping are possible as well but will not be
presented here.

To simplify the notation, we also introduce the following abbreviations

Δτ = − = − =
−+

+
+t t h x x Du

u u

h
, , ,n n

i
n

i
n

i
n

i
n i

n
i
n

i
n

1
1

1

for the spacings and elementary first order discrete derivatives. Note that the spacing in time
does not carry an index as we use equally spaced, horizontal time layers only. It is readily
checked that variable time-stepping would leave the following numerical scheme invariant as
well, as long as the time-step control is invariant itself. See the similar discussion for the
spatial adaptation strategies presented in section 3.4.

The prolongation of vector fields of the maximal Lie invariance algebra g to the stencil
shown in figure 1 yields

∂ + ∂
∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂

∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂
+ ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂

∂ + ∂ + ∂ + ∂ + ∂

+ ∂ + ∂ + ∂ + ∂ + ∂

− ∂ + ∂ + ∂ + ∂ + ∂

+

+
+
+

+
+

−
+

−
+

+
+
+

+
+

−
+

−
+

+
+
+

+
+

−
+

−
+

+

+ + − −
+

+
+

+
+

−
+

−
+

+ + − −
+

+
+

+
+

−
+

−
+

+ + − −
+

+
+

+
+

−
+

−
+

+
+
+

+
+

−
+

−
+

+
+
+

+
+

−
+

−
+

+
+
+

+
+

−
+

−
+

( ) ( )

( )
( )

t t

x x x x x

t t t t t

u u u u u

,
,

,

3

2 . (30)

t t

x x x x x x x x x x

n
x x x x x

n
x x x x x

u u u u u u u u u u

i
n

x i
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A complete list of functionally independent finite difference invariants annihilated by the
prolonged infinitesimal generators on the ten point stencil (30) is exhausted by
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Building the numerical scheme for the KdV equation and the lattice using these invariants
guarantees that the resulting scheme is invariant under the same maximal Lie invariance
group G as is the KdV equation. We first start with the discretization of (6).

It turns out that the straightforward discretization of the KdV equation in terms of the
computational coordinates τ ξ( , ) given by (6) is already invariant under the maximal Lie
invariance group G. We demonstrate this first for the explicit six point stencil scheme here.
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Indeed, the invariant finite difference expression
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reads explicitly
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after some rearrangements, where

Δτ
=

−+
x

x x
˙ ,i

i
n

i
n1

denotes the grid velocity. Correspondingly, this discretization preserves the four-dimensional
maximal Lie invariance group of the KdV equation. In order to use the scheme (32) it is
necessary to specify an invariant equation for the grid velocity. This will be pursued in the
following subsections.

The continuous limit of scheme (32) is taken by parameterizing the spacings hni as a
function of computational coordinates ξ. This implies that

Δξ= ξh xi
n

and a Taylor series expansion of (32) gives that
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Thus, as expected, the scheme (32) is of first order in time and second order in space. From
the numerical point of view the scheme (32) is not advantageous as the forward in time
discretization is unconditionally unstable.

A more appropriate numerical scheme can be realized on the entire ten point lattice and is
given by
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which reads in expanded form as
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In the continuous limit, this scheme becomes
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which is still of first order in time due to the particular way the grid velocity has been
discretized. Due to the use of the trapezoidal rule, the resulting scheme is conditionally stable
now. The implicit six point stencil scheme is constructed in a similar fashion.

For the sake of reference we also present the standard forward in time, centered in space
scheme on an orthogonal and stationary six point lattice for the KdV equation expressed in
Eulerian form (1) here:

Δτ Δ

Δ

= = =
−

+
−

+
− + −

=
+

+ − + + − −

h h t

u u
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i
n1

1 1 2 1 1 2

3

It is readily checked that this discretization scheme breaks the Galilean invariance of the KdV
equation while preserving invariance under both shifts and dilations. The standard, non-
invariant implicit schemes on the six and ten point stencils are defined in a similar manner but
not given here.

3.2. Invariant Lagrangian discretization schemes

In order to complete the numerical scheme (32) and (33) it is necessary to formulate an
equation for the grid velocity. In the purely Lagrangian scheme one uses the discretization of
the relation (7), which is

Δτ
−

=
+x x

u . (34)i
n

i
n

i
n

1

That is, the grid velocity coincides with the physical velocity. It is well known that a purely
Lagrangian scheme can perform poorly as there is no built-in mechanism preventing the
clustering of grid points as the numerical integration proceeds [27]. In the higher-dimensional
case, usually mesh tangling occurs when using Lagrangian schemes.
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An alternative to using (34) to obtain the position of the grid points on the next time level
is to use adaptive moving mesh methods. These will be shortly introduced in section 3.4.

3.3. Invariant evolution–projection discretization

A possibility to make invariant Lagrangian schemes numerically competitive is to invoke
them in an evolution–projection strategy [40, 50]. The main idea is to use the invariant
Lagrangian scheme introduced in the previous subsection only for a single time step and then
project the solution defined on the new grid points +x{ }i

n 1 back to the original grid x{ }i
n . This

way, mesh movement can be effectively avoided. The projection step is in general accom-
plished through interpolation and the invariance of the whole solution procedure is guaranteed
if the interpolation method used is invariant under the same symmetry group that has been
used to construct the numerical scheme itself. This strategy has been successfully adapted for
the linear heat equation and the viscous Burgers equation [3, 4].

We show here that polynomial interpolation of any order is invariant under the maximal
Lie invariance group of the KdV equation and hence can be used in an invariant evolution–
projection scheme for this equation. In the numerical results below we then choose quadratic
interpolation as using it in conjunction with a second order invariant numerical scheme
guarantees that the whole evolution–projection procedure is second order accurate. However,
standard higher order interpolation could be used as well in invariant evolution–projection
schemes for the KdV equation.

As our goal is to interpolate the solution +ui
n 1 defined at time +t n 1 back to the grid as

given on time level tn the appropriate form of the mth order polynomial interpolation formula
is

∑=+

=

+u x L x u( ) ( ) , (35)n

i
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i i
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1
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j
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1 1

are the Lagrange polynomials and ∈ + +x x x[ , ]n
m
n

0
1 1 is the point where the solution +u x( )n 1

should be interpolated. It is readily seen that the interpolation formula (35) is invariant under
space and time translations as well as under the scale symmetry of the KdV equation. Galilean
invariance ε ε= + +͠  t x u t x t u( , , ) ( , , )n

i
n

i
n n

i
n n

i
n is respected by (35) too, as
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thus leading back to (35). Note that we have used here the property of the Lagrange
polynomials that

∑ =
=

L x( ) 1.
i

m

i

0

Specifying the general polynomial interpolation (35) to quadratic interpolation for the
KdV equation on the ten point stencil can be done e.g. by setting

=+ +
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+
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In practice, the projection step is completed by choosing the interpolating point ∈x x{ }i
n ,

i.e. by evaluating the solution +u x( )n 1 at the location of the old grid points.

3.4. Invariant adaptive discretization schemes

Before we give the form of an invariant adaptive scheme for the KdV equation we introduce
some basic background material related to adaptive numerical schemes in general. More
information can be found, e.g. in the textbook [27].

3.4.1. Adaptive discretization schemes. The main idea behind moving mesh methods is to
link the evolution of a mesh to the numerical solution of the discretized PDE itself. In the case
of a Lagrangian scheme the new location of the grid points is determined by the solution u
itself only. A better criterion is usually to link the evolution of the grid points to the
derivatives of u. This can be accomplished through the computation of equidistributing
meshes.

Definition 1. Let ρ x( ) be a strictly positive continuous function on the interval a b[ , ]. Let
= < < ⋯ < < =−a x x x x bN N1 2 1 be a partition (i.e. a mesh) of this interval. The mesh is

said to be equidistributing for ρ on a b[ , ] if

∫ ∫ ∫ρ ρ ρ= = ⋯ =
−

x x x x x x( )d ( )d ( )d (36)
x

x

x

x

x

x

N

N

1

2

2

3

1

holds.

The function ρ is called mesh density function or monitor function. For the practical
implementation it is advantageous to convert the relation (36) into a differential equation.
This is done by first using the equivalent expression

∫ ∫ ∫ρ ρ ξ ρ= −
−

=x x
j

N
x x x x( )d

( 1)
1

( )d ( )d ,
a

x

a

b

j
a

bj

where ξ j, =j N1 ,..., , is the discrete computational coordinate. By definition, ξ ∈ [0, 1]j .
Regarding x as a function of the computational coordinate, i.e. ξ=x x ( )j j , in the

continuous limit the above integral equation becomes

∫ ∫ρ ξ ρ=
ξ

x x x x( )d ( )d ,
a

x

a

b( )

which holds for all ξ ∈ [0, 1]. Differentiating this equation twice with respect to ξ leads to

ρ =ξ ξ( )x x( ) 0, (37)

which is the differential form of the equidistribution principle when subjected to the boundary
conditions =x a(0) and =x b(1) .

So as to complete the description of a numerical scheme upon using the equidistribution
principle in its differential form (37) one needs to specify the mesh density function ρ. A
classical choice is the arc-length type function

ρ α= + u1 ,x
2

where α ∈ is a constant parameter governing the strength of the adaptation. Other monitor
functions, such as built around the curvature of u are used as well.
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3.4.2. Invariant adaptive scheme for the KdV equation. In order to complete the invariant
numerical scheme for the KdV equation one has to discretize the differential form of the
equidistribution principle (37) in an invariant way. As the missing ingredient in the grid
velocity ẋi is

+xi
n 1, we discretize (37) on the time layer +t n 1. This is done upon composing a

discretization of (37) out of the difference invariants for the KdV equation (31). A possible
discretization using the arc-length type mesh density function is:

ρ ρ ρ ρ+
−

+
=+ −I

I

I2 2
0,i

n
i
n

i
n

i
n

1
11

1 13

1

where

ρ α ρ α ρ α= + = + = ++ −I I I1 , 1 , 1 ,i i i1 11
2

12
2

1 13
2

or, explicitly

ρ ρ ρ ρ+
− −

+
− =+

+
+ + − +

−
+( ) ( )x x x x

2 2
0, (38)i

n
i
n

i
n

i
n i

n
i
n

i
n

i
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1
1 1 1 1

1
1

where

ρ α Δτ= +
−
−

+

+

⎛
⎝⎜

⎞
⎠⎟

u u

x x
1 . (39)i

n i
n

i
n

i
n

i
n

1

1

2

3.5. Momentum preserving invariant discretization

It is well-known that the KdV equation admits infinitely many conservation laws, see e.g. [42]
for a discussion. Numerically preserving conservation laws of PDEs is generally a nontrivial
problem that belongs to the realm of geometric numerical integration. More information on
this field can be found in the books [26, 33]. The problem of finding finite difference
discretizations for the KdV equation that preserve sub-sets of the infinite span of conservation
laws is a complicated problem that will not be investigated here. We are only concerned with
finding invariant discretization schemes that also preserve linear momentum

∫= u xd .

This conservation law is associated with expressing the KdV equation itself in conserved
form

+ + =⎜ ⎟⎛
⎝

⎞
⎠u u uD D

1

2
0.t x xx

2

It is possible to preserve the above conserved form also on a moving mesh, which as we have
seen above is a basic requirement for preserving Galilean invariance. In particular, the
following discretization is invariant under the maximal Lie invariance group of the KdV
equation and momentum-preserving:
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The associated continuous expression to this discretization is
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which is of conserved form in the computational coordinates. It thus discretely conserves
momentum .

Let us now show that (40) also preserves all the Lie symmetries as admitted by the KdV
equation. One way of showing this would be to express (40) in terms of the difference
invariants (31). However, due to the particular form of (40) a direct expression in terms of
difference invariants would be cumbersome. It is much easier to verify invariance directly by
transforming the scheme (40) under the action of the symmetry group of the KdV equation.

It is obvious that the discretization (40) is invariant under shifts in space and time as well
as under scale transformations. It thus only remains to show invariance under Galilean
transformations ε ε↦ + +t x u t x t u( , , ) ( , , )n
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Substituting into the transformed form of equation (40) proves Galilean invariance.
As it stands, the momentum preserving invariant scheme (40) still needs to be completed

by adapting an appropriate strategy to obtain the new mesh +x{ }i
n 1 . Here, the same strategies

as proposed above for the case of the non-conservative invariant scheme (33) can be applied.
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These strategies lead to invariant momentum-preserving Lagrangian, evolution–projection
and adaptive schemes, respectively.

3.6. Exact discretization

An interesting question on the behavior of numerical schemes is whether they are able to
reproduce exact solutions of the original differential equation exact, i.e. without numerical
error.

Among all the exact solutions given in section 2.2, the only solutions that are exact for all
schemes reported in section 3 is the constant solution (9). In addition, the Galilean invariant
solution (10) is an exact solution for the invariant Lagrangian schemes (32) and (33) using
(34) which is readily verified directly. Below we verify numerically that this solution is also
exact for the invariant evolution–projection scheme and the invariant momentum preserving
scheme.

4. Numerical results

In this section we collect the numerical results obtained using the various schemes proposed
in the previous section. Our purpose is not to do a technical optimization of every scheme but
to rather demonstrate the feasibility of implementing invariant discretization schemes as well
as the resulting physical implications.

For the invariant adaptive scheme, we use the discretization (38) of the equidistribution
principle with the invariant mesh density function (39). To compare the invariant adaptive
scheme against a non-invariant adaptive one we also use the mesh density function
ρ α= + u1 xx

2 , discretized by

ρ α Δτ= +
−
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in conjunction with (38). Similar mesh density functions are also used in adaptive numerical
schemes, see e.g. [27]. In the present case, using (41) breaks the scale invariance in the
discretization of the KdV equation. The resulting scheme therefore serves as reference for a
non-invariant adaptive scheme.

Note that for the sake of brevity we abbreviate the standard notation a · 10n in the tables
and figure legends below by aen.

4.1. Decaying cosine evolution

Before we use the exact solutions computed in section 2.2 as benchmark tests, we reproduce
the classical results obtained by Zabusky and Kruskal in 1965 [56] of a wave decaying into
solitons. For this experiment, Zabusky and Kruskal used the following form of the KdV
equation

δ+ + =u uu u 0,t x xxx
2

where δ = 0.022. The initial condition used was π=u xcos ( ) on a periodic domain of length
L = 2. Zabusky and Kruskal observed the formation of eight solitons at time π=t 3.6 .

A main problem reproducing this result with the invariant Lagrangian schemes (32) and
(33) using (34) is that mesh tangling occurs before the final integration time π=t 3.6 . In
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turn, using the invariant Lagrangian scheme only in the framework of the invariant evolution–
projection method allows us to arrive at a solution at the final integration time.

All the other schemes presented above are able to compute this test problem. The results
of these integrations are shown in figure 2. From this figure it can be seen that all schemes are
capable of capturing the decay into solitons as originally presented in [56]. It can also be seen
that the two evolution–projection schemes show a slight lag for the first four solitons when
compared to the high resolution solution. The other schemes lie visually very close to this
high resolution solution.

To quantify these findings, in table 1 we present the root mean square error (RMSE) for
the various schemes tested, using the high resolution finite difference solution as reference.
The RMSE is defined by

∑=
−

=

u u

N
RMSE

( )
,

i

N

1

num exact
2

i i

where in place of the exact solution, uexact, the high resolution numerical solution is used.
It can be seen from this table that the evolution–projection schemes have indeed errors

larger by a factor of ten than the other schemes tested, which all give quite comparable errors.
A possible explanation for this increase of error is that the interpolation used does not

Figure 2. Numerical solution of the Zabusky–Kruskal decaying into soliton problem.
The following schemes were tested on the ten point stencil, using N = 512 mesh points
except for the high resolution reference run (solid line) for which N = 2048 points were
used: non-invariant standard finite differences (crosses), non-invariant momentum
conservative (dots), invariant evolution–projection (open circles), invariant evolution–
projection momentum conservative (stars), invariant adaptive with monitor function

ρ = + u1 10 x
4 2 (upward pointing triangles), invariant adaptive momentum-preser-

ving with monitor function ρ = + u1 10 x
4 2 (downward pointing triangles), non-

invariant adaptive with monitor function ρ = + u1 10 xx
2 2 (rightward pointing

triangles), non-invariant adaptive momentum-preserving with monitor function

ρ = + u1 10 xx
2 2 (leftward pointing triangles). See table 1 for a quantification of

these numerical experiments that are visually practically indistinguishable.
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accurately take into account the rapid change in the first derivatives of the numerical solution.
Using higher order interpolation incorporating derivative information, such as Hermite
interpolation, could help reduce this phase error in the evolution–projection scheme, see
also [40, 50].

4.2. Exact algebraic solution

As was discussed in section 3.6, the invariant Lagrangian schemes (32) and (33) using (34)
are exact for the Galilean invariant solution (10). We verify this by numerically computing
this solution and calculating the ∞l -norm and the RMSE. The ∞l -norm is the maximum
absolute difference between the numerical solution unum and the exact analytical solution
uexact calculated at the discrete mesh points.

The results as seen in table 2 show that we achieve machine precision (i.e. the errors
come only from rounding) with the different invariant schemes introduced in section 3 but do
not get comparable accuracy with the standard schemes. Table 2 also highlights that the
evolution–projection method (both invariant and invariant momentum conserving) reproduces
the exact solution up to machine precision as well.

This solution, being monotonously increasing, is one of the few where the Lagrangian
moving mesh points cause no instability over a longer period of time. No interpolation or
adaptation is therefore needed to get an exact solution at any time. We should also stress that
for this simple solution the adaptive schemes would coincide with the standard scheme as

Table 1. Numerical errors for the Zabusky–Kruskal problem. The RMSE is based on a
high resolution integration using N = 2048 mesh points and a time step
Δ = −t 3.125 · 10 7 in the non-invariant standard numerical scheme for the KdV
equation. All other schemes use N = 512 mesh points with time step Δ = −t 5 · 10 6.

Scheme RMSE

Non-invariant standard 0.0138
Non-invariant standard -cons 0.0139
Invariant evolution–projection 0.189
Invariant evolution–projection -cons 0.202
Invariant adaptive (ρ α u( , )x with α = e1 4) 0.0142

Invariant adaptive -cons (ρ α u( , )x with α = e1 4) 0.0139

Non-invariant adaptive (ρ α u( , )xx with α = e1 2) 0.0144

Non-invariant adaptive -cons (ρ α u( , )xx with α = e1 2) 0.0138

Table 2. Comparison of errors for the various ten point schemes to reproduce the exact
solution (10) evaluated at t = 2. All schemes use N = 35 mesh points on the domain
[0, 20] and time steps of Δτ = 0.001. The starting time of the integrations is =t 10 .

Scheme ∞l -norm RMSE

Non-invariant standard 6.76e-6 2.39e-6
Non-invariant standard -cons 7.77e-6 3.30e-6
Invariant Lagrangian 4.73e-13 2.02e-13
Invariant evolution–projection 2.13e-14 7.93e-15
Invariant Lagrangian -cons 9.73e-13 4.02e-14
Invariant evolution–projection -cons 5.15e-14 1.31e-14
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=u t1x and =u 0xx thus reducing the discretized equidistribution principle (38) for both the
invariant and non-invariant mesh density functions (39) and (41) to

− = −+
+ + +

−
+x x x xi

n
i
n

i
n

i
n

1
1 1 1

1
1.

While integrating such a simple function is trivial, this example shows the compatibility
of preserving symmetries and obtaining exact discrete solutions.

4.3. Cnoidal wave and soliton solution

For any numerical scheme, one important test is to verify consistency and the order of
convergence. To verify the order of the numerical schemes proposed in this paper, we take
cnoidal wave periodical solution of the form

ω= − +u a b cn x bt k( ) ( ( ), ) (42)2

where a = 3.332, = −b 0.784, = −c 2.548, = =−
−

k 0.7a b

a c
and ω = =− 0.7a c

12
We then vary the total number of mesh points ∈n {16, 24, 32, 38} and measure for

each associated numerical experiment the error characterized by the ∞l -norm of the difference
between the numerical and the discrete analytical solutions. A linear regression of log (n)
versus log (error) gives a slope corresponding to the order of convergence in  n( )p . All our
ten point schemes should theoretically converge as − n( )2 and we notice in table 3 that this is
numerically effectively the case.

To assess not only the order of the numerical schemes but also the absolute approx-
imation errors in table 4 we present the RMSE comparing the numerical solution against the
exact cnoidal wave solution as given in (42). As a second example, we also compare against
the soliton solution

ν
ν ν

=
−( )

u
x t

3

cosh ( )
(43)

2 1
2

with ν = 7. In addition to the approximation error we also monitor the change in momentum
Δ over the integration period.

By computing the RMSE of the different invariant and non-invariant schemes, in table 4
we are able to affirm that invariant and non-invariant schemes give roughly the same

Table 3. Convergence tests are done for the cnoidal solution over one spatial period at
time t = 0.2 with time step Δ = −t 10 4. All schemes use the ten point lattice. The
integrations are done using =N {16, 24, 32, 48} points. We confirm that all schemes
converge as − N( )2 in the ∞l -norm and are therefore consistent.

Scheme p Nin ( )p

Non-invariant standard −2.00
Non-invariant standard -cons −2.05
Invariant Lagrangian −2.13
Invariant Lagrangian -cons −2.11
Invariant evolution–projection −1.91
Invariant evolution–projection -cons −2.04
Invariant adaptive (ρ α u( , )x with α = e5 6) −2.05

Invariant adaptive -cons (ρ α u( , )x with α = e5 6) −2.05

Non-invariant adaptive (ρ α u( , )xx with α = e1 6) −2.00

Non-invariant adaptive -cons (ρ α u( , )xx with α = e1 6) −2.02

J. Phys. A: Math. Theor. 48 (2015) 055201 A Bihlo et al

19



approximation errors. The invariant adaptive and non-invariant adaptive scheme give com-
parable accuracy while the standard scheme is slightly better than the Lagrangian scheme. We
confirm that the invariant ten point scheme gives better accuracy than the invariant explicit
scheme on the five point lattice as expected. The basic projection method using parabolic
interpolation helps to reduce the error and allows using longer integration times. Optimizing
the adaptation parameter α is possible as well (see [27]) and could lead to error improvements.
This will however not be pursued here.

4.4. Double soliton solution and Galilean invariance

The above numerical experiments show that in terms of accuracy the invariant and the non-
invariant schemes are mostly comparable (except for the exact solution (10)). Still, from the
physical point of view, the additional advantage of the invariant schemes over the standard
ones is the preservation of Galilean invariance. In particular, Galilean invariance in a
numerical scheme implies that applying a boost to any solution does not change the discrete
numerical solution. Hence, the numerical solutions can be obtained in any constantly moving

Table 4. Errors of different schemes for the cnoidal wave and soliton solutions. All
schemes use the ten point lattice unless otherwise stated. Time steps are always
Δ = −t 10 4. The cnoidal wave is integrated over one period up to t = 0.2 while the
soliton is computed up to t = 0.05 on the domain −[ 4, 4]. The short integration time is
to allow using the purely Lagrangian method. For both integration N = 48 total mesh
points are used. The projection method is parabolic interpolation. The suitable adap-
tation parameter depends on both the form of the monitor function and the initial
conditions.

Cnoidal wave Soliton

Scheme RMSE Δ RMSE Δ
Non-inv standard 3.98e-3 1.96e-14 9.56e-2 3.20e-14
Non-inv standard -cons 1.52e-3 2.66e-14 3.38e-2 7.11e-14
Inv 5 point explicit Lagrangian 4.59e-2 8.07e-3 0.439 0.367
Inv Lagrangian 7.69e-3 1.26e-3 0.346 0.166
Inv Lagrangian -cons 9.91e-3 2.31e-14 0.436 3.91e-14
Inv evolution–projection 4.93e-3 8.19e-4 0.288 7.78e-2
Inv evolution–projection -cons 5.58e-3 7.59e-4 0.327 4.08e-2
Non-inv adaptive (ρ α u( , )xx , α = e1 6) 3.92e-3 2.71e-6 — —

Non-inv adaptive -cons (ρ α u( , )xx ,

α = e1 6)

1.57e-3 2.31e-14 — —

Inv adaptive (ρ α u( , )x , α = e5 6) 3.99e-3 1.54e-5 — —

Inv adaptive -cons (ρ α u( , )x ,

α = e5 6)
1.48e-3 3.38e-14 — —

Non-inv adaptive (ρ α u( , )xx , α = e1 4) — — 9.49e-2 9.12e-4

Non-inv adaptive -cons (ρ α u( , )xx ,

α = e1 4)
— — 2.94e-2 4.97e-14

Inv adaptive (ρ α u( , )x , α = e1 4) — — 9.28e-2 5.74e-4

Inv adaptive -cons (ρ α u( , )x ,

α = e1 4)
— — 0.682 3.55e-14
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reference frame. This can be an important property in practical applications, see e.g. [4] and
references therein for applications of this property to hydrodynamics.

To numerically verify Galilean invariance in the proposed invariant schemes, we inte-
grate the double soliton solution over a short period of time and apply a boost to the invariant
and the non-invariant schemes. The following form of the double soliton solution is used:

= ∂
∂

+ + + +

= − − =
−
+

+

⎛
⎝⎜

⎞
⎠⎟

( )( ) ( )u t x
x

B B AB B c

Q a x a t a x a t A
a a

a a

˜ , ˜ 12 ln 1 e e e ,

˜ , ˜ , ,

Q Q Q Q
2

2 1
i

2
i

1 2
i

1 1 1
3

2 2
3 1 2

1 2

2

1 2 1 2

where = −a i21 , = −a i2 , =B 10 0001 , =B 12 , { = −u x x ct˜, ˜ } belong to the moving
reference frame and c is the speed of the moving reference frame.

Two sets of numerical experiments are carried out for each scheme. One in a resting
reference frame, i.e. c = 0 and one in a constantly moving reference frame, ≠c 0. After the
end of each integration both solutions are compared to each other. Galilean invariance implies
that both solutions must coincide up to machine precision.

By increasing the strength of the boost and by computing the RMSE, we observe an
increase in the error for the non-invariant momentum-conserving scheme while the invariant
adaptive and momentum-conserving scheme is largely unaffected, see table 5 for quantifi-
cation. The Galilean boosted solution for the invariant scheme in figure 3 is identical to its
equivalent in the resting reference frame and visually confirms the Galilean invariance of this
scheme, a major physical property lost when using standard non-invariant schemes. For the
other invariant and non-invariant schemes the results are essentially the same and are hence
not presented here.

Table 5. RMSE comparing the resting reference solution ( =c 0) to a constantly
moving solution ( ≠c 0) for the non-invariant momentum-preserving scheme (left) and
the invariant adaptive momentum-preserving scheme (right). Integrations were done up
to =t 1 using the time step Δ = −t 10 3 and =N 128 points. It can be seen that varying
the speed c of the reference frame leads to significantly different solutions for the
standard scheme as measured through the RMSE while for the invariant scheme the
RMSE stays approximately constant and is due to rounding only.

RMSE compared to c = 0 solution

Δc x Non-inv standard -cons Inv adaptive -cons (ρ α u( , )x , α = e1 4)

−10 2.14e-1 1.82e-12
−1 2.29e-2 1.07e-12
0 0 0
1 2.19e-2 8.76e-13
5 0.103 3.15e-12
10 0.202 1.86e-12
30 0.564 1.03e-12
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5. Conclusions

In this paper we have constructed invariant numerical schemes for the KdV equation. While
some invariant numerical schemes have already been constructed for this equation in the past
[14, 19], to the best of our knowledge this is the first time that actual numerical experiments
have been carried out for the KdV equation using such schemes. We found that these existing
schemes, all Lagrangian in nature, can develop tangling meshes and hence may not allow
integration beyond some fixed time limit. A remedy for these schemes is provided through
invoking them in an evolution–projection framework. As shown for several test cases, these
evolution–projection schemes can produce numerical solutions for the KdV equation without
being restricted by the development of mesh problems.

In addition, we have proposed several Eulerian numerical schemes most notably by using
ideas of adaptive moving mesh methods. These schemes are attractive in that they link the
required moving meshes (to preserve Galilean invariance) to the development of pronounced
features of the numerical solution. Hence, such schemes are capable of tracking developing
shots, blow-ups etc. Furthermore, we have shown that it is possible to develop invariant
numerical schemes that also preserve momentum.

The results of the present article can be viewed from two points of view, physics and
numerical analysis.

From the point of view of a physicist it is obvious that symmetries of a physical system
and of the equations describing it are important. We have confirmed that for the KdV equation
it is possible to write a discrete system that in addition to translations and dilations preserves
Galilei invariance. The method provides a good numerical description of the exact solutions
considered. Moreover, as analyzed in section 4.4, a solution calculated in the rest frame and

Figure 3. Double soliton solution at time t = 0.1 computed using the non-invariant and
invariant adaptive momentum-conservative schemes. Time step used is Δ = −t 10 4 with
N = 128 grid points. The non-invariant solutions are shifted with respect to the invariant
solutions for the sake of comparison. While the non-invariant scheme in a resting
reference frame (open squares) approximates closely the exact solution (dashed line),
using this scheme in a constantly moving reference frame (triangles) leads to large
deviations from the true solution. For the invariant scheme, both the solution in the
resting reference frame (open circles) and in a constantly moving reference frame
(crosses) are in good accordance with the exact solution (solid line).
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then boosted to a moving frame will be numerically the same as one calculated in the moving
frame. In a non-invariant scheme the two solutions will be different and that is not acceptable
physically.

From the point of view of numerical analysis this article fits into the field of Geometric
Integration [26, 29, 39] the aim of which is to incorporate qualitative features of a specific
equation into its discretization and numerical solution. We concentrate on the preservation of
point symmetries. For the KdV equation we have found that in terms of accuracy the invariant
and non-invariant schemes give comparable results.This is in striking contrast to symmetry-
preserving integrators for ODES, where invariant schemes can perform significantly better
than their non-invariant counterparts, especially for solutions with singularities [6, 7, 48]. For
the KdV equation, one possible explanation for this discrepancy is that the maximal Lie
invariance group is of rather simple structure, with three of the four admitted one-parameter
symmetry transformations (shifts in space and time as well as dilations) already preserved by
standard numerical schemes for this equation. Hence, the only difference between the non-
invariant and invariant schemes for the KdV equation is whether Galilean invariance is
admitted or not. Another point is that probably the most important feature of the KdV
equation is its integrability [1] which is not conserved in our discretization.

For other equations point symmetries can be much richer. For example the Liouville
equation has an infinite dimensional Lie point symmetry group. In a recent study [34] it was
shown that a discretization preserving invariance under the maximal finite dimensional
subgroup of the symmetry group gives much better numerical results than other
discretizations.

We hope to carry out a more numerically focused study of invariant numerical schemes
in the near future and to tackle more challenging problems such as the use of non-smooth data
as suggested by Chen and Olver in connection with nonlinear dispersive quantiza-
tion [12, 13].

Acknowledgments

This research was supported by the Austrian Science Fund (FWF), project J3182–N13 (AB).
AB is a recipient of an APART Fellowship of the Austrian Academy of Sciences. The
research of PW was partially supported by NSERC of Canada. He thanks the European Union
Research Executive Agency for the award of a Marie Curie International Incoming Research
Fellowship making his stay at Università Roma Tre possible. He thanks the Department of
Mathematics and Physics of the Università Roma Tre for hospitality.

References

[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse
Scattering vol 149 (Cambridge: Cambridge University Press)

[2] Bakirova M I, Dorodnitsyn V A and Kozlov R V 1997 Symmetry-preserving discrete schemes for
some heat transfer equations J. Phys. A: Math. Gen. 30 8139–55

[3] Bihlo A and Nave J C 2013 Invariant discretization schemes using evolution-projection techniques
SIGMA 9 23

[4] Bihlo A and Nave J C 2014 Convecting reference frames and invariant numerical models
J. Comput. Phys. 272 656–63

[5] Bihlo A and Popovych R O 2012 Invariant discretization schemes for the shallow-water equations
SIAM J. Sci. Comput. 34 810–39

[6] Bourlioux A, Cyr-Gagnon C and Winternitz P 2006 Difference schemes with point symmetries
and their numerical tests J. Phys. A: Math. Gen. 39 6877–96

J. Phys. A: Math. Theor. 48 (2015) 055201 A Bihlo et al

23

http://dx.doi.org/10.1088/0305-4470/30/23/014
http://dx.doi.org/10.1088/0305-4470/30/23/014
http://dx.doi.org/10.1088/0305-4470/30/23/014
http://dx.doi.org/10.3842/sigma.2013.052 
http://dx.doi.org/10.1016/j.jcp.2014.04.042
http://dx.doi.org/10.1016/j.jcp.2014.04.042
http://dx.doi.org/10.1016/j.jcp.2014.04.042
http://dx.doi.org/10.1137/120861187
http://dx.doi.org/10.1137/120861187
http://dx.doi.org/10.1137/120861187
http://dx.doi.org/10.1088/0305-4470/39/22/006
http://dx.doi.org/10.1088/0305-4470/39/22/006
http://dx.doi.org/10.1088/0305-4470/39/22/006


[7] Bourlioux A, Rebelo R and Winternitz P 2008 Symmetry preserving discretization of SL (2, R)
invariant equations J. Nonlinear Math. Phys. 15 362–72

[8] Budd C and Dorodnitsyn V A 2001 Symmetry-adapted moving mesh schemes for the nonlinear
Schrödinger equation J. Phys. A: Math. Gen. 34 10387–400

[9] Budd C J and Collins G J 1998 Symmetry based numerical methods for partial differential
equations Numerical Analysis 1997 (Dundee) (Pitman Research Notes in Mathematics Series
vol 380) (Harlow: Longman) pp 16–36

[10] Budd C J and Iserles A 1999 Geometric integration: numerical solution of differential equations on
manifolds Phil. Trans. R. Soc. A 357 945–56

[11] Byrd P F and Friedman M D 1971 Handbook of Elliptic Integrals for Engineers and Scientists
(Berlin: Springer)

[12] Chen G and Olver P J 2013 Dispersion of discontinuous periodic waves Proc. R. Soc. A 469
20120407

[13] Chen G and Olver P J 2013 Numerical simulation of nonlinear dispersive quantization Discrete
Cont. Dyn. Syst. A 34 991–1008

[14] Dorodnitsyn V 1994 Invariant discrete model for the Korteweg–de Vries equation Technical
Report CRM-2187, Centre de recherches mathématiques, Université de Montréal

[15] Dorodnitsyn V 2011 Applications of Lie groups to difference equations Differential and Integral
equations and their Applications vol 8 (Boca Raton, FL: Chapman and Hall/CRC)

[16] Dorodnitsyn V, Kaptsov E, Kozlov R and Winternitz P 2015 The adjoint equation method for
constructing first integrals of difference equations J. Phys. A: Math. Theor. at press

[17] Dorodnitsyn V, Kozlov R and Winternitz P 2000 Lie group classification of second-order ordinary
difference equations J. Math. Phys. 41 480–504

[18] Dorodnitsyn V, Kozlov R and Winternitz P 2004 Continuous symmetries of Lagrangians and
exact solutions of discrete equations, J. Math. Phys. 45 336–59

[19] Dorodnitsyn V A 1991 Transformation groups in mesh spaces J. Sov. Math. 55 1490–517
[20] Dorodnitsyn V A and Kozlov R 2003 A heat transfer with a source: the complete set of invariant

difference schemes J. Nonlinear Math. Phys. 10 16–50
[21] Dorodnitsyn V A and Winternitz P 2000 Lie point symmetry preserving discretizations for

variable coefficient Korteweg–de Vries equations Nonlinear Dyn. 22 49–59
[22] Dubrovin B A, Matveev V B and Novikov S P 1976 Nonlinear equations of Korteweg–de Vries

type, finite-zone linear operators, and Abelian varieties Russ. Math. Surv. 31 59
[23] Dubrovin B A and Novikov S P 1975 Periodic and conditionally periodic analogs of the many-

soliton solutions of the Korteweg–de Vries equation Sov. Phys.—JETP 40 1058–63
[24] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Method for solving the Korteweg–

de Vries equation Phys. Rev. Lett. 19 1095–7
[25] Gromak V I, Laine I and Shimomura S 2002 Painlevé Differential Equations in the Complex

Plane (de Gruyter Studies in Mathematics vol 28) (Berlin: Walter de Gruyter)
[26] Hairer E, Lubich C and Wanner G 2006 Geometric Numerical Integration: Structure-preserving

algorithms for Ordinary Differential Equations (Berlin: Springer)
[27] Huang W and Russell R D 2010 Adaptive Moving Mesh Methods (New York: Springer)
[28] Ince E L Ordinary Differential Equations (Mineola, NY: Dover)
[29] Iserles A 2009 A First Course in the Numerical Analysis of Differential Equations vol 44

(Cambridge: Cambridge University Press)
[30] Kim P 2008 Invariantization of the Crank–Nicolson method for Burgers’ equation Physica D 237

243–54
[31] Kim P and Olver P J 2004 Geometric integration via multi-space Regul. Chaotic Dyn. 9 213–26
[32] Krichever I M and Novikov S P 1980 Holomorphic bundles over algebraic curves and nonlinear

equations Russ. Math. Surv. 35 53–79
[33] Leimkuhler B and Reich S 2004 Simulating Hamiltonian Dynamics (Cambridge: Cambridge

University Press)
[34] Levi D, Winternitz P and Yamilov R I 2010 Lie-point symmetries of the differential–difference

equations J. Phys. A: Math. Theor. 43 292002
[35] Levi D, Tremblay S and Winternitz P 2001 Lie symmetries of multidimensional difference

equations J. Phys. A: Math. Gen. 34 9507–24
[36] Levi D and Winternitz P Lie groups and numerical solutions of differential equations: invariant

discretization versus differential approximation Acta Polytech. 53 438–43

J. Phys. A: Math. Theor. 48 (2015) 055201 A Bihlo et al

24

http://dx.doi.org/10.2991/jnmp.2008.15.s3.35
http://dx.doi.org/10.2991/jnmp.2008.15.s3.35
http://dx.doi.org/10.2991/jnmp.2008.15.s3.35
http://dx.doi.org/10.1088/0305-4470/34/48/305
http://dx.doi.org/10.1088/0305-4470/34/48/305
http://dx.doi.org/10.1088/0305-4470/34/48/305
http://dx.doi.org/10.1098/rsta.1999.0360
http://dx.doi.org/10.1098/rsta.1999.0360
http://dx.doi.org/10.1098/rsta.1999.0360
http://dx.doi.org/10.1098/rspa.2012.0407 
http://dx.doi.org/10.1098/rspa.2012.0407 
http://dx.doi.org/10.3934/dcds.2014.34.991
http://dx.doi.org/10.3934/dcds.2014.34.991
http://dx.doi.org/10.3934/dcds.2014.34.991
http://dx.doi.org/10.1063/1.533142
http://dx.doi.org/10.1063/1.533142
http://dx.doi.org/10.1063/1.533142
http://dx.doi.org/10.1063/1.1625418
http://dx.doi.org/10.1063/1.1625418
http://dx.doi.org/10.1063/1.1625418
http://dx.doi.org/10.1007/BF01097535
http://dx.doi.org/10.1007/BF01097535
http://dx.doi.org/10.1007/BF01097535
http://dx.doi.org/10.2991/jnmp.2003.10.1.3
http://dx.doi.org/10.2991/jnmp.2003.10.1.3
http://dx.doi.org/10.2991/jnmp.2003.10.1.3
http://dx.doi.org/10.1023/A:1008365224018
http://dx.doi.org/10.1023/A:1008365224018
http://dx.doi.org/10.1023/A:1008365224018
http://dx.doi.org/10.1070/RM1976v031n01ABEH001446
http://dx.doi.org/10.1063/1.525380 
http://dx.doi.org/10.1063/1.525380 
http://dx.doi.org/10.1063/1.525380 
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1016/j.physd.2007.09.001
http://dx.doi.org/10.1016/j.physd.2007.09.001
http://dx.doi.org/10.1016/j.physd.2007.09.001
http://dx.doi.org/10.1016/j.physd.2007.09.001
http://dx.doi.org/10.1070/RD2004v009n03ABEH000277
http://dx.doi.org/10.1070/RD2004v009n03ABEH000277
http://dx.doi.org/10.1070/RD2004v009n03ABEH000277
http://dx.doi.org/10.1070/RM1980v035n06ABEH001974
http://dx.doi.org/10.1070/RM1980v035n06ABEH001974
http://dx.doi.org/10.1070/RM1980v035n06ABEH001974
http://dx.doi.org/10.1088/1751-8113/43/29/292002
http://dx.doi.org/10.1088/0305-4470/34/44/311
http://dx.doi.org/10.1088/0305-4470/34/44/311
http://dx.doi.org/10.1088/0305-4470/34/44/311
http://dx.doi.org/10.14311/AP.2013.53.0438
http://dx.doi.org/10.14311/AP.2013.53.0438
http://dx.doi.org/10.14311/AP.2013.53.0438


[37] Levi D and Winternitz P 1991 Continuous symmetries of discrete equations Phys. Lett. A 152
335–8

[38] Levi D and Winternitz P 2006 Continuous symmetries of difference equations J. Phys. A: Math.
Gen. 39 R1–63

[39] Marsden J E and West M 2001 Discrete mechanics and variational integrators Acta Numer. 10
357–514

[40] Nave J C, Rosales R R and Seibold B 2010 A gradient-augmented level set method with an
optimally local, coherent advection scheme J. Comput. Phys. 229 3802–27

[41] Okubo S and Marshak R E 1958 Velocity dependence of the two-nucleon interaction Ann. Phys.,
NY 4 166–79

[42] Olver P J 2000 Application of Lie groups to Differential Equations (New York: Springer)
[43] Olver P J 2001 Geometric foundations of numerical algorithms and symmetry Appl. Algebra Eng.

Commun. Comput. 11 417–36
[44] Polyanin A D and Zaitsev V F 2004 Handbook of Nonlinear Partial Differential Equations (New

York: Chapman and Hall/CRC)
[45] Puzikov L, Ryndin R and Smorodinsky J 1957 Construction of the scattering matrix of a two-

nucleon system Nucl. Phys. 3 436–45
[46] Rebelo R and Valiquette F 2013 Symmetry preserving numerical schemes for partial differential

equations and their numerical tests J. Difference Equ. Appl. 19 738–57
[47] Rebelo R and Valiquette F 2014 Invariant discretization of partial differential equations admitting

infinite-dimensional symmetry groups arXiv:1401.4380
[48] Rebelo R and Winternitz P 2009 Invariant difference schemes and their application to invariant

ordinary differential equations J. Phys. A: Math. Theor. 42 454016
[49] Rodriguez M A and Winternitz P 2004 Lie symmetries and exact solutions of first-order difference

schemes J. Phys. A: Math. Gen. 37 6129
[50] Seibold B, Rosales R R and Nave J C 2012 Jet schemes for advection problems Discrete Contin.

Dyn. Syst. Ser. B 17 1229–59
[51] Shokin Y 1983 The Method of Differential Approximation (Berlin: Springer)
[52] Valiquette F and Winternitz P 2005 Discretization of partial differential equations preserving their

physical symmetries J. Phys. A: Math. Gen. 38 9765–83
[53] Winternitz P 2004 Symmetries of discrete systems Discrete Integrable Systems (Lecture Notes in

Physics vol 644) ed B Grammaticos, T Tamizhmani and Y Kosmann-Schwarzbach (Berlin:
Springer) pp 185–243

[54] Winternitz P, Dorodnitsyn V, Kaptsov E and Kozlov R 2014 First integrals of ordinary difference
equations which do not possess a variational formulation Dokl. Math. 89 106–9

[55] Yanenko N N and Shokin Y I 1968 Correctness of first differential approximations of difference
schemes Dokl. Akad. Nauk SSSR 182 776

[56] Zabusky N J and Kruskal M D 1965 Interaction of solitons in a collisionless plasma and the
recurrence of initial states Phys. Rev. Lett. 15 240–3

J. Phys. A: Math. Theor. 48 (2015) 055201 A Bihlo et al

25

http://dx.doi.org/10.1016/0375-9601(91)90733-O
http://dx.doi.org/10.1016/0375-9601(91)90733-O
http://dx.doi.org/10.1016/0375-9601(91)90733-O
http://dx.doi.org/10.1016/0375-9601(91)90733-O
http://dx.doi.org/10.1088/0305-4470/39/2/R01
http://dx.doi.org/10.1088/0305-4470/39/2/R01
http://dx.doi.org/10.1088/0305-4470/39/2/R01
http://dx.doi.org/10.1017/S096249290100006X
http://dx.doi.org/10.1017/S096249290100006X
http://dx.doi.org/10.1017/S096249290100006X
http://dx.doi.org/10.1017/S096249290100006X
http://dx.doi.org/10.1016/j.jcp.2010.01.029
http://dx.doi.org/10.1016/j.jcp.2010.01.029
http://dx.doi.org/10.1016/j.jcp.2010.01.029
http://dx.doi.org/10.1016/0003-4916(58)90031-9
http://dx.doi.org/10.1016/0003-4916(58)90031-9
http://dx.doi.org/10.1016/0003-4916(58)90031-9
http://dx.doi.org/10.1007/s002000000053
http://dx.doi.org/10.1007/s002000000053
http://dx.doi.org/10.1007/s002000000053
http://dx.doi.org/10.1016/0029-5582(57)90038-X
http://dx.doi.org/10.1016/0029-5582(57)90038-X
http://dx.doi.org/10.1016/0029-5582(57)90038-X
http://dx.doi.org/10.1080/10236198.2012.685470
http://dx.doi.org/10.1080/10236198.2012.685470
http://dx.doi.org/10.1080/10236198.2012.685470
http://arXiv.org/abs/1401.4380
http://dx.doi.org/10.1088/1751-8113/42/45/454016
http://dx.doi.org/10.1088/0305-4470/37/23/011
http://dx.doi.org/10.3934/dcdsb.2012.17.1229
http://dx.doi.org/10.3934/dcdsb.2012.17.1229
http://dx.doi.org/10.3934/dcdsb.2012.17.1229
http://dx.doi.org/10.1088/0305-4470/38/45/004
http://dx.doi.org/10.1088/0305-4470/38/45/004
http://dx.doi.org/10.1088/0305-4470/38/45/004
http://dx.doi.org/10.1134/S1064562414010360
http://dx.doi.org/10.1134/S1064562414010360
http://dx.doi.org/10.1134/S1064562414010360
http://dx.doi.org/10.1007/bf01111310 
http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1103/PhysRevLett.15.240
http://dx.doi.org/10.1103/PhysRevLett.15.240

	1. Introduction
	2. The continuous KdV equation
	2.1. Lagrangian formulation of the KdV equation
	2.2. Symmetry reduction and exact solutions
	Singular snoidal solution:
	Singular soliton:
	Singular trigonometric solution:
	Singular algebraic soliton:
	Real solutions corresponding to complex roots:


	3. Invariant discretization of the KdV equation
	3.1. Invariant discretization on a ten point stencil
	3.2. Invariant Lagrangian discretization schemes
	3.3. Invariant evolution-projection discretization
	3.4. Invariant adaptive discretization schemes
	3.4.1. Adaptive discretization schemes
	3.4.2. Invariant adaptive scheme for the KdV equation

	3.5. Momentum preserving invariant discretization
	3.6. Exact discretization

	4. Numerical results
	4.1. Decaying cosine evolution
	4.2. Exact algebraic solution
	4.3. Cnoidal wave and soliton solution
	4.4. Double soliton solution and Galilean invariance

	5. Conclusions
	Acknowledgments
	References



