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Abstract
The Liouville equation is well known to be linearizable by a point transfor-
mation. It has an infinite dimensional Lie point symmetry algebra isomorphic
to a direct sum of two Virasoro algebras. We show that it is not possible to
discretize the equation keeping the entire symmetry algebra as point sym-
metries. We do however construct a difference system approximating the
Liouville equation that is invariant under the maximal finite subgroup

 ⊗SL SL(2, ) (2, )x y . The invariant scheme is an explicit one and provides
a much better approximation of exact solutions than a comparable standard
(noninvariant) scheme and also than a scheme invariant under an infinite
dimensional group of generalized symmetries.

Keywords: Lie algebras of Lie groups, integrable systems, partial differential
equations, discretization procedures for PDEs
PACS numbers: 02.20.Sv, 02.30.Jr, 02.30lk, 02.60.Lj

(Some figures may appear in colour only in the online journal)

1. Introduction

The purpose of this article is to investigate the possibility of discretizing the Liouville
equation

=z e , (1.1)xy
z
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or its algebraic version

− = =uu u u u u e, , (1.2)xy x y
z3

while preserving all of its Lie point symmetries. This is quite a challenge, since the Lie point
symmetry group of these equations is infinite dimensional. We shall call (1.2) the algebraic
Liouville equation.

The article is part of a general program on the study of continuous symmetries of discrete
equations [8–10, 13, 17–24, 32–35] and on the symmetry preserving discretization of dif-
ferential equations [2–7, 15, 16, 30, 31]. This program has several aspects, each possibly
requiring different approaches. Among them we mention:

1. In relativistic and nonrelativistic quantum mechanics or field theory on a discrete space–
time, a problem is to discretize the continuous theory while preserving continuous
symmetries such as rotational, Lorentz, Galilei or conformal invariance. One possible
way of doing this is the way explored in the present article, namely to not use a
preconceived constant lattice. Instead one can construct an invariant set of equations
defining both the lattice and system of difference equations. The lattice thus appears as
part of a solution of a set of discrete equations and the symmetry group acts on the
solutions of the equation and on the lattice.

2. The second aspect of this program fits into the general field of geometrical integration
[11, 14, 26, 27]. The basic idea is to improve numerical methods of solving specific
ordinary and partial differential equations (PDEs), by incorporating important qualitative
features of these equations into their discretization. Such features may be integrability,
linearizability, Lagrangian or Hamiltonian formulation, or some other features.

We concentrate on the preservation of Lie point symmetries. In our case the idea is to
take an ordinary or partial differential equation (ODE or PDE) with a known Lie point
symmetry algebra  realized by vector-fields. The differential equation is then approximated
by a difference system with the same symmetry algebra. The difference system consists of a
set of difference equations, describing both the approximation of the ODE (PDE) and the
lattice. The difference system is constructed out of the invariants of the Lie point symmetry
group  of the original ODE (PDE). The Lie algebra  of  is realized by the same vector
fields as for the continuous equation, however its action is prolonged to all points of the
lattice, rather than to derivatives.

In section 2 we present the Lie point symmetry algebra of the continuous algebraic
Liouville equation and the corresponding vector fields depending on two arbitrary functions
of one variable each. The symmetry algebra is isomorphic to the direct sum of two Virasoro
algebras (with no central extension). We also give the two second order differential invariants
of the maximal finite-dimensional subgroup  ⊗SL SL(2, ) (2, )x y of the corresponding
infinite dimensional symmetry group. Section 3 is devoted to a brief exposition of the method
of discretizing differential equations while preserving their point symmetries. In section 4 we
discretize the Liouville equation on a four-point stencil. The discretization is invariant under
the maximal finite dimensional subgroup, not however under the entire infinite-dimensional
group. An alternative symmetry preserving discretization of the Liouville equation due to
Rebelo and Valiquette [32] is discussed in section 5. They have succeeded in preserving the
entire symmetry group but as generalized symmetries rather than point ones (only translations
and dilations remain as point symmetries). Section 6 is devoted to numerical experiments. We
choose three different exact solutions of the continuous Liouville equation and formulate a
boundary value problem that leads to these solutions. The boundary value problem is then
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solved numerically, using three different discretizations: standard, Rebelo–Valiquette and
 ⊗SL SL(2, ) (2, )x y invariant, respectively. The results are compared to the analytic

solutions. In all three cases our invariant discretization is shown to perform considerably
better than the other ones. The last section 7 is devoted to conclusions and comments on the
other discretizations of the Liouville equation. A linearizable discretization and its symmetries
are discussed in the appendix.

2. Lie point symmetries of the continuous Liouville equation

The Liouville system (1.1) is a remarkable equation that has already been thoroughly
investigated. It was shown by Liouville himself [25] that it is linearized into the linear wave
equation by the transformation

ϕ ϕ

ϕ
ϕ= =

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥z ln 2 , 0. (2.1)

x y
x y2

Putting ϕ ϕ ϕ= +x y x y( , ) ( ) ( )1 2 , where ϕ =i, 1, 2i are arbitrary functions, we get a very
general class of solutions of (1.1) (and (1.2)), namely

ϕ ϕ

ϕ ϕ
=

+

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( )

z ln 2 . (2.2)
x y1, 2,

1 2
2

In view of (2.1) the Liouville equation is linearizable and it is not surprising that its
symmetry algebra is infinite dimensional, as was already known in 1898 [28]. The symmetry
algebra of the algebraic Liouville equation (1.2) is given by the vector fields

= ∂ − ∂ = ∂ − ∂X f x f x f x u Y g y g y g y u( ( )) ( ) ( ) , ( ( )) ( ) ( ) , (2.3)x x u y y u

where =f f x( ) and =g g y( ) are arbitrary smooth functions. The nonzero commutation
relations of the vector fields (2.3) are

= −

= −

=

⎡⎣ ⎤⎦
( )

( ) ( )
[ ]

X f X f X ff f f

Y g Y g Y g g g g

X f Y g

( ), ˜ ˜ ˜ ,

( ), ( ˜) ˜ ˜ ,

[ ( ), ( )] 0. (2.4)

x x

y y

The algebra (2.3)–(2.4) is isomorphic to the direct sum of two Virasoro algebras. We denote it
= ⊕L vir virx y. Its maximal finite dimensional subalgebra is  ⊕sl sl(2, ) (2, )x y , obtained

by restricting f x( ) and g y( ) to be second order polynomials. Limiting ourselves to a
neighborhood of the origin, the above vector fields can be expanded in the basis

∈{ }( )X xn
n

and
∈{ }( )Y yn

n
, which leads to the commutation relations

= −

= −

=

+ −

+ −

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
( )

( ) ( )

( ) ( )
( ) ( )

X x X x n m X x

Y y Y y n m Y y

X x Y y

, ( ) ,

, ( ) ,

, 0. (2.5)

m n m n

m n m n

m n

1

1

As said above, the maximal finite subalgebra corresponds to the basis elements with
=m n, 0, 1, 2.
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Let us find the most general second order expression of the form I x y u u u( , , , , ,x y

u u u, , )xx xy yy invariant under the group corresponding to the algebra (2.3). The second order
prolongation of X f( ) is

= ∂ − ′ ∂ + ∂ + ∂ + ∂ + ∂ + ∂

− ″ ∂ + ∂ + ∂ − ‴ ∂

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

X f f f u u u u u u

f u u u f u

pr ( ) 2 2 3

3 (2.6)

x u x u y u xy u xx u yy u

u y u x u u

(2)
x y xy xx yy

x xy xx xx

and similarly for Y g( ). We see that the last term in (2.6) is absent in the subalgebra.
The group  ⊗SL SL(2, ) (2, )x y allows two functionally independent ‘strong’ invar-

iants, namely

=
−

=
− −( ) ( )

I
uu u u

u
I

uu u uu u

u
,

2 3 2 3
. (2.7)

xy x y xx x yy y
1 3 2

2 2

6

We have

= =X f I Y g Ipr ( ) pr ( ) 0 (2.8)(2)
1

(2)
1

for arbitrary f and g, but

=
−

=
−( ) ( )

X f I
f u uu

u
Y g I

g u uu

u
pr ( )

2 3 2
, pr ( )

2 3 2
. (2.9)

xxx y yy yyy x xx
(2)

2

2

4
(2)

2

2

4

Thus, I1 is invariant under the direct product the two Virasoro groups ⊗VIR x VIR y( ) ( ). The
PDE =I A1 , for any real constant A, is invariant under this group. For ≠A 0 we scale to A=1
and obtain the equation (1.2). For =A 0 we obtain an equation equivalent to the linear wave
equation =z 0xy , namely

− =uu u u 0. (2.10)xy x y

On the other hand I2 is invariant only for = =f g 0xxx yyy , i.e. it is only invariant under
 ⊗SL SL(2, ) (2, )x y . Even the equation =I 02 is only invariant on the manifold satis-

fying the system

− = − =uu u uu u2 3 0, 2 3 0, (2.11)xx x yy y
2 2

i.e. on a very restricted class of solutions, namely

= + + + −u axy bx cy d( ) , (2.12)2

for arbitrary constants a d,..., .

3. Symmetry preserving discretization of partial difference equations

The basic idea of the invariant discretization of a PDE is to replace it by a system of
difference equations, formed out of invariants of the action of the symmetry group of the
PDE. This difference system (ΔS) describes both the original PDE and a lattice
[8, 9, 22, 34, 35].

To be specific, let us restrict to the case of one scalar PDE involving two independent
variables (x y, ) and one dependent one u x y( , ). The PDE is

⋯ =F x y u u u u u u( , , , , , , , , ) 0 (3.1)x y xx xy yy
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and its Lie point symmetry group  is assumed to be known, together with its symmetry
algebra . The ΔS describing (3.1) will have the form

α

=

= ⩽ ⩽ ⩽ ⩽
α + + + + + +( )E x y u

N i i i j j j

, , 0,

1 ,..., , , . (3.2)

m i n j m i n j m i n j, , ,

min max min max

On figure 1 we depict a general lattice, a priori extending indefinitely in all directions. An
orthogonal lattice (not necessarily uniform) is obtained by setting ϵ δ= =0, 0ik ik (ϵik and δik

are defined in figure 1). The difference system (3.2) is written on a stencil: a finite number N
of adjacent points, sufficient to reproduce, in the continuous limit, all derivatives figuring in
the differential equation (3.1). For instance, for a first order PDE the minimal number of
points on a stencil is three: (m, n) +m n( 1, ) +m n( , 1). Since the system (3.2) is auton-
omous, i.e. the labels (m, n) do not figure in the ΔS (3.2) explicitly, we can shift the stencil
around on the lattice arbitrarily. For convenience we will choose the reference point to be

=m n( , ) (0, 0) and build the stencil around it. Thus, in (3.2) we start with = =m n 0 and
then shift as needed.

For a first order initial value problem

ϕ= =F x y u u u u x x( , , , , ) 0, ( , 0) ( ) (3.3)x y

it would be sufficient to choose N = 3 in (3.2) and give as initial data x y u, ,m m m,0 ,0 ,0 for
all m.

Figure 1. Points on a general lattice, e.g. =x x0,0 , = +x x h1,0 1,0, ϵ= +x x0,1 0,1,
ϵ= + +x x h1,1 1,0 1,1, = + +x x h h2,0 1,0 2,0, ϵ ϵ= + +x x0,2 0,1 0,2, =y y0,0 ,

= +y y k0,1 0,1, δ= +y y1,0 1,0, δ= + +y y k1,1 0,1 1,1, = + +y y k k0,2 0,1 0,2,

δ δ= + +y y2,0 1,0 2,0.
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On the first stencil we know x x y y u u, , , , ,0,0 1,0 0,0 1,0 0,0 1,0 and calculate x y u, ,0,1 0,1 0,1

from (3.2). Then we shift the stencil one step in any direction and calculate further values till we
fill the entire lattice.

To facilitate the calculations of the continuous limit we perform a transformation of vari-
ables on the stencil, introducing differences between coordinates and discrete partial derivatives
[18, 19, 22, 23]. The new coordinates are ϵ δx y u h k u u{ , , , , , , , , }x

d
y
d

0,0 0,0 0,0 1,0 0,1 0,1 1,0 ,
with

δ ϵ= − = − = − = −h x x k y y y y x x, , , , (3.4)1,0 1,0 0,0 0,1 0,1 0,0 1,0 1,0 0,0 0,1 0,1 0,0

ϵ δ

= − − − − −

= − − − − −

= − ≠






⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

u y y u u y y u u

u x x u u x x u u

h k

1
( )( ) ( )( ) ,

1
( )( ) ( )( ) ,

0. (3.5)

x
d

y
d

1,0 0,0 0,1 0,0 0,1 0,0 1,0 0,0

0,1 0,0 1,0 0,0 1,0 0,0 0,1 0,0

0,1 1,0 1,0 0,1

To describe an arbitrary second order PDE we need a stencil consisting of at least six
points. A possible choice is to take points {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}. For
PDEs of the type

=u F x y u u u( , , , , ), (3.6)xy x y

i.e. not involving uxx, uyy, it may be sufficient to take four points: {(0, 0), (1, 0), (0, 1), (1, 1)}.
An element of the symmetry algebra  of the PDE (3.1) will have the form

ξ η ϕ= ∂ + ∂ + ∂Z x y u x y u x y uˆ ( , , ) ( , , ) ( , , ) , (3.7)x y u

where the smooth functions ξ, η and ϕ are known (obtained by a standard algorithm for
PDEs [29]).

In order to obtain an invariant ΔS (3.2) we must construct it out of difference invariants
of the group , the Lie point symmetry group of the PDE (3.1). To calculate these invariants
we consider the action of the vector field Ẑ at some reference point x y u{ , , }0,0 0,0 0,0 and
prolong it to all points figuring on a chosen stencil. This amounts to a prolongation to the
discrete jet space:

∑ ξ η ϕ= ∂ + ∂ + ∂( )Zpr ˆ . (3.8)
i j

i j x i j y i j u

,

, , ,i j i j i j, , ,

As in the continuous case, we can use both strong and weak invariants. The strong and weak
invariants satisfy

=ZIpr ˆ 0, (3.9)s

==ZIpr ˆ 0, (3.10)w I 0w

respectively. To determine both types of invariants we choose a basis ⋯{ }Z Zˆ , , ˆA1

( = A dim ) for the Lie algebra  and solve the set of equations

= = ⋯( )Z I x y u a Apr ˆ , , 0, 1, , . (3.11)a i j i j i j, , ,

For strong invariants the rank r of the matrix of coefficients in (3.11) is maximal and the same
for all points ( + +m j n k, ). Invariants exist if we have = <r A N . Weak invariants are only
invariant on some manifold in the space of points, obtained by requiring that the rank of
coefficients in (3.11) be less than maximal. Thus, there may be more weak invariants than
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strong ones (strong invariants satisfy both (3.9) and (3.10)). The number of strong invariants
is = −n N A.

4. Invariant discretization of the algebraic Liouville equation on a four-point
stencil

We choose the four-points stencil ≡s {(0, 0), (0, 1), (1, 0), (1, 1)}4
0 on figure 1 and can

translate them to any stencil = + + + +s m n m n m n m n{( , ), ( 1, ), ( , 1), ( 1, 1)}m n
4

, on
the (x y, ) plane. The vector fields (2.3) of the symmetry algebra  can be discretized and
prolonged to all points of the stencil:

∑

∑

= = ∂ − ′ ∂

= = ∂ − ′ ∂

∈

∈

s

s

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦( ) ( )

X f X f f x f x u

Y g Y g g y g y u

( ) pr ( ) ( ) ( ) ,

( ) pr ( ) . (4.1)

D

m n

m n x m n mn u

D

m n
m n y m n mn u

( , )

, ,

( , )
, ,

m n
mn mn

m n
mn mn

4
,

4
,

The prime and the dot denote (continuous) derivatives with respect to x and y, respectively.
Let us first restrict to the maximal finite-dimensional subalgebra  ⊕sl sl(2, ) (2, )x y .

The corresponding group acts transitively on the space of the continuous variables
∈x y u( , , ) 3, and sweeps out an orbit of codimension 6 on the 12-dimensional direct

product  ⊗ s3
4. Hence we obtain six functionally independent invariants. A simple basis for

these invariants is given by

ξ
ϵ ϵ

ϵ ϵ

η
δ δ

δ δ

=
− −
− −

=
+ −

=
− −

− −
=

+ −
( )( )
( )( )

( )

( )

x x x x

x x x x h h

y y y y

y y y y k k

( )( )

( )( )
,

, (4.2)

1
0,1 0,0 1,1 1,0

0,0 1,0 0,1 1,1

0,1 1,1

1,0 1,0 1,1 0,1

1
0,0 1,0 0,1 1,1

0,1 0,0 1,1 1,0

1,0 1,1

0,1 0,1 1,1 1,0

ϵ

ϵ δ δ

ϵ δ

ϵ

ϵ δ δ

δ

=

= + −

=
− −

=
+ −

( )
( ) ( )

( )

H u u k

H u u k

H
u h k

u k

H
u k

u h

,

,

,

. (4.3)

1 0,0 0,1 0, 1
2

0, 1
2

2 1,0 1,1 1, 1
2

0,1 1,1 1,0
2

3
1,0 1,0 0,1

2
0,1 1,0

2

0,0 0, 1
2

0, 1
2

4
1,1 1, 1

2
0,1 1,1 1,0

2

0,0 1, 0
2

1, 0
2

The quantities h1,0, k0,1, ϵ0,1, ϵ1,1, δ1,0 and δ1,1 are defined in figure 1. The invariants ξ1 and η1
can be conveniently used to define an invariant lattice, e.g. by putting ξ = A1 , η = B1 , where A
and B are constants. We choose the simplest possibility, namely

ξ η= =0, 0. (4.4)1 1

This implies that e.g. ϵ− = =x x 00,1 0,0 0,1 and also as a consequence ϵ− = =x x 01,1 1,0 1,1 .
Similarly δ δ= = 01,0 1,1 . Thus we have

= =x x y y, , (4.5)m n m m n n, ,
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i.e. xm n, depends only on the first index, ym n, only on the second one. We thus obtain an
orthogonal lattice (in an invariant manner). The quantities ξ1 and η1 are only invariant under

⊗SL SL(2) (2)x y , however we have

ξ ξ

η

= − − =

=

ξ =( )
( )

X x x x x x

X x

ˆ ( )( ) 0

ˆ 0. (4.6)

D

D

3
1 1,1 0,0 1,0 0,1 1 0

3
1

1

It follows from the commutation relations (2.4) that a quantity annihilated by X xˆ ( )D 3 is also

annihilated by X xˆ ( )D n for any n. Thus the lattice condition (4.4) is invariant under
⊗VIR x VIR y( ) ( ). On the other hand the equations ξ = A1 and η = B1 are not Virasoro

invariant, if A and B are nonzero constants. We conclude that an orthogonal lattice is
obligatory if we define it in terms of ξ1 and η1 alone. Conditions (4.4) and (4.5) are compatible
with choosing a uniform orthogonal lattice

= + = +x hm x y kn y, , (4.7)m n0 0

where >h 0, >k 0, x0, y0 are constants, but the choice (4.7) is not obligatory.
The invariants ⋯H H, ,1 4 of (4.3) are not suitable on the lattice (4.4) since they all vanish

or become infinite on the lattice. Before specifying the lattice we must choose new invariants
(functions of those in (4.2) and (4.3)) which remain finite and nonzero for ϵ δ= = 0i j i j, , . Only
two such ⊗SL SL(2) (2)x y invariants exist, namely:

= =J H H u u h k , (4.8)1 1 3 0,1 1,0 1, 0
2

0, 1
2

ξ
= =J

H

H
u u h k

1
. (4.9)2

1
2

2

3
0,0 1,1 1, 0

2
0, 1
2

Neither of them is strongly invariant under the Virasoro group, since we have

= − = −( ) ( )X x J h J X x J h Jˆ , ˆ . (4.10)
D D3

1 1, 0
2

1
3

2 1, 0
2

2

The equation − =J J 02 1 is Virasoro invariant (on its solution set) and this equation is a
discretization of − =uu u u 0xy x y (equivalent to the wave equation =z 0xy ).

Putting =u u x y( , )0,0 , = +u u x h y( , )1,0 1,0 , = +u u x y k( , )0,1 0,1 and
= + +u u x h y k( , )1,1 1,0 0,1 , expanding in a Taylor series and keeping only the lowest order

terms, we find

− = −J J h k uu u u( ). (4.11)xy x y2 1 1, 0
3

0, 1
3

The Liouville equation is approximated by the difference scheme

ξ η

− = + + +

= = + + + =

J J a J bJ J c J J d J

a b c d

,

0, 0, 1. (4.12)

2 1 1
3 2

1 2
1 2

1
1 2

2 2
3 2

1 1
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Indeed the Taylor expansion yields

− − + + + =

× − − + − −

+ − − + 

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

J J aJ bJ I cJ J dJ h k

uu u u u h k u u u u u

h k u u u u u h k

1

2
( 1)

3

2
1

2
( 1)

3

2
, (4.13)

xy x y y xx x

x yy y

2 1 1
3 2

1 2
1 2

1
1 2

2 2
3 2

1, 0
3

0, 1
3

3
1, 0
4

0, 1
3 2

1, 0
3

0, 1
4 2

1, 0
4

0, 1
4

where the constants a b c d, , , only appear in the O h k( )1, 0
4

0, 1
4 terms. The differential

scheme (4.12) is ⊗SL SL(2) (2)x y invariant, not however Virasoro invariant. The scheme is
suitable for solving various types of boundary value problems, giving uik on the axes, or on
upward or downward staircases (see figures 2(a) and (b) for examples).

Equation (4.12) must be solved for the values ui k, at one vertex of the rectangle s4
0 in

terms of the three others. In view of the rhs of the (4.12), this would in general require that a
cubic equation has to be solved at each stage of the algorithm. This can be avoided by a
convenient choice of the free constants a d,..., . Let us consider two different possibilities:

1. = =b d 0 and = −c a1 for ∈a ;
2. = =a c 0 and = −d b1 for ∈b .

The case 1 allows us to calculate u1,1 (or u0,0) linearly and we have e.g. the 1-parameter
family of recursion formulae

=
+

− +

( )
( )

u
u u ah k u u

u a h k u u

1

( 1) 1
. (4.14)1,1

0,1 1,0 1,0 0,1 0,1 1,0

0,0 1,0 0,1 0,1 1,0

Figure 2. In (a) the boundary values for the discretized Liouville equation are given on
two sets of points (black disks) along the x and y axes. The value in (1, 1) is obtained
by the equation (4.14) and so are all the other points (empty circles) upwards on the
right. On the opposite quadrant, one has to use the same equation, but solved for u0,0.
In (b) the boundary data are given on the downward staircase (black discs). The two
diagonal lines of open discs are calculated using (4.14) for u1,1 (line above the original
staircase) or for u0,0 (line below staircase). The two lines of dashed open discs represent
the next level of calculations.
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This allows us to start from boundary conditions given on the horizontal and vertical axes and
proceed upwards to the right, thus filling up the entire first quadrant. Interchanging

↔u u1,1 0,0 in (4.14) we can fill up the entire third quadrant (see figure 2(a)). Similarly,
starting from the downward staircase of figure 2(b), we can use (4.14) to fill up all points
above and also below the staircase.

In the case 2 we obtain

=
−

− −

( )
( )

u
u u dh k u u

u d h k u u

1

1 (1 )
, (4.15)1,0

0,0 1,1 1,0 0,1 0,0 1,1

0,1 1,0 0,1 0,0 1,1

which allows to fill out the second and the fourth quadrants. If boundary conditions are given
on an upward staircase we can fill in the area below and above it.

5. Symmetries of the Rebelo–Valiquette discretized Liouville equation

In [32] Rebelo and Valiquette considered a symmetry preserving discretization of the
Liouville equation (1.2) namely:

= − − − − =

= =
( )L u u u u u u u x x y y

x x y y

( ) 0,

, . (5.1)

RV
D

1,1 0,0 1,0 0,1 0,0 0,1 1,0 1,0 0,0 0,1 0,0

0,1 0,0 1,0 0,0

The equation for the lattice clearly states that =x xi j i, and =y yi j j, , so the lattice coincides
with the one we used above. They constructed (5.1) from the invariance with respect to the
pseudo-group

= = =
−
−

−

−
+

+

+

+

( ) ( )
x F x y G y u

u
˜ ( ), ˜ ( ), ˜ (5.2)i i j j i j

i j

F x F x

x x

G y G y

y y

,
,

( ) ( )i i

i i

j j

j j

1

1

1

1

for arbitrary regular F and G.
First, let us notice that the equation (5.1) is not invariant with respect the algebra

 ⊕sl sl(2, ) (2, )x y considered in the previous sections. In fact it results that

= − −=( )X x L u u u x x y y( ) ( ) (5.3)D
RV
D

L
2

0 0,0 0,1 1,0 1,0 0,0
2

0,1 0,0RV
D

and similarly for ( )Y yD 2 .
Let us look here for infinitesimal symmetries of (5.1) of the form

= ∂ + ∂

+ ∂+ +

( ) ( )
( )

X Q x y u Q x y u

Q x x y y u

ˆ , , , ,

, , , , . (5.4)

ij i j i j i j x ij i j i j i j y

ij i j i j i j i j i j u

(1)
, , ,

(2)
, , ,

(3)
, 1, , , 1 ,

i j i j

i j

, ,

,

The determining equations are:

=Q Q , (5.5)01
(1)

00
(1)

=Q Q , (5.6)10
(2)

00
(2)
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+ − −

= − −

+ − −

+ − −

+ − −

+ − −

(

Q u u Q u Q u Q

Q u u x x y y

Q u u x x y y

Q u u x x y y

u u u Q Q y y

u u u x x Q Q

( )( )

)( )

( )( )

( )( )

( )( ). (5.7)

11
(3)

0,0 1,1 00
(3)

1,0 01
(3)

0,1 10
(3)

00
(3)

0,1 1,0 1,0 0,0 0,1 0,0

10
(3)

0,1 0,0 1,0 0,0 0,1 0,0

01
(3)

0,0 1,0 1,0 0,0 0,1 0,0

0,0 0,1 1,0 10
(1)

00
(1)

0,1 0,0

0,0 0,1 1,0 1,0 0,0 01
(2)

00
(2)

We put =x x0,1 0,0, =y y1,0 0,0 and = + − −u u u x x y y[ ( )( )]
u1,1 0,1 1,0

1
1,0 0,0 0,1 0,0

0,0
so that x0,0,

y0,0, y0,1, x1,0, u0,0, u0,1 and u1,0 are independent variables in the determining equations. From

(5.5) we deduce that =Q f x( )ij i
(1) and from (5.6) =Q g y( )ij j

(2) where f and g are arbitrary
functions of their arguments. Dividing (5.7) by u0,0 and applying the operator

= ∂ − ∂A u uu u1,0 0,11,0 0,1 (we have ϕ =A u( ) 01,1 for any function ϕ) and we get

−
∂
∂

= −
∂
∂

Q

u

Q

u

Q

u

Q

u
, (5.8)01

(3)

0,1

01
(3)

0,1

10
(3)

1,0

10
(3)

1,0

i.e. the quantity − = +∂
∂ h i j( )

Q

u

Q

u

ij

i j

ij

i j

(3)

,

(3)

,
. So

= + + + +
⎡⎣ ⎤⎦( )Q u h i j u A x x y y( ) log ( ) , , , . (5.9)ij i j e i j ij i j i j i j i j

(3)
, , , 1, , , 1

Introducing this result into (5.7) and taking into account that
= + + + − −u u u x x y ylog ( ) log ( ) log ( ) log [ ( )( )]e e e e u1,1 1,0 0,1

1
1,0 0,0 0,1 0,0

0,0
we find from

the coefficient of + − −x x y ylog [ ( )( )]e u

1
1,0 0,0 0,1 0,0

0,0
that + =h i j( ) 0. Thus

= + +Q u A x x y y( , , , )ij i j ij i j i j i j i j
(3)

, , 1, , , 1 . Introducing this last result into (5.7) we find two
equations for + +A x x y y( , , , )ij i j i j i j i j, 1, , , 1

+ − − =A A A A 0, (5.10)00 11 01 10

= −
−
−

−
−
−

+

+

+

+
A

f x f x

x x

g y g y

y y

( ) ( ) ( ) ( )
. (5.11)ij

j j

j j

i i

i i

1

1

1

1

Equation (5.10) is identically satisfied by the result obtained in (5.11) and as a consequence
the symmetry algebra of the Liouville equation presented by Rebelo and Valiquette is indeed
the sum of two Virasoro algebras determined by the two functions f and g:

= ∂ + ∂ −
−
−

+
−
−

∂
+

+

+

+

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )X f g f x g y

f x f x

x x

g y g y

y y
ˆ ( , ) ( )

( ) ( ) ( ) ( )
. (5.12)i x j y

j j

j j

i i

i i
u

1

1

1

1
i j i j,

The main difference between these generators and those in (4.1) is that in (4.1) the coefficients
of ∂ui j,

are locally dependent on the space points, while two points are involved in (5.12). Thus,
the expression (5.4) has to be understood as a summation over all points of the lattice. On the
contrary (4.1) contains only finite sums over the stencil points. Thus the Rebelo–Valiquette
discretization of the Liouville equation is invariant under ⊗VIR x VIR y( ) ( ), but these are
generalized symmetries that reduce to point ones only if f(x) and g(y) are linear (rather then
quadratic) functions. These are actually very special generalized symmetries: The Lie algebra
(5.12) can be integrated to the finite transformations (5.2). These finite transformations were
actually the starting point in the Rebelo–Valiquette approach.
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6. Numerical results and analysis

In order to test the efficiency of the numerical algorithms based on the invariant difference
scheme (4.12), we will solve a set of boundary value problems for the Liouville equation on a
uniform lattice = =h h k k,m n m n, , .

We will compare the results with the analytic solutions and with numerical solutions
obtained by the standard (naive) finite difference approximation

− =u u u u hk u (6.1)1,1 0,0 0,1 1,0 0, 0
3

and by the Rebelo–Valiquette discretization

− =u u u u h k u u u . (6.2)1,1 0,0 1,0 0,1 0,0 0,1 1,0

The equations (4.12), (6.1) and (6.2) all relate the values of ui k, at the corners of a rectangle on
the mesh with sides of length h and k, respectively. We will solve boundary value problems

0.06

0.04

0.02

0.00

-2

0

2
-2

0

2
0.00002

0.00001

0

-2

0

2
-2

0

2

0.0010

0.0005

0.0000

-2

0

2
-2

0

2

0.004
0.003
0.002
0.001
0.000

-2

0

2
-2

0

2

(a) (b)

(c) (d)

Figure 3. The solution s1 with the choice of parameters α β γ δ= = = =6, 1, 1, 1
is numerically computed giving a boundary value problem on a lattice with corner
point = − −x y( , ) ( 2.5, 2.5)00 00 and steps of equal length = =h k 0.02 for a lattice of

×260 260 points. In (a) we show the graph of the analytic expression and in (b) the
relative error of the numerical results using the invariant formula (4.14) with respect to
the analytic solution. Analogously, the errors of the numerical results for the Rebelo–
Valiquette representation are reported in (c), while in (d) we present the corresponding
relative errors of the numerical results for the standard formula (6.1). Despite the
generic similarities of the two results, the difference of two orders of magnitude in the
relative errors is remarkable.
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with boundaries along the vertical and horizontal axes and we will calculate values of ui k, in
the first quadrant. Thus, um,0 and un,0 will be given for ⩾m 0 and ⩾n 0 (see figure 2(a)), in
the computational basis. We will use (4.12), (6.1) and (6.2) to compute the top right values of
ui k, . More precisely, equation (4.14) is a 1-parameter family of recursion relations. For the

actual calculations we use the symmetric case = =a c 1

2
. We could also study the

dependence on the parameter a to get the best numerical fits. We have not done this and do
not consider it important at this stage, since equation (4.13) shows that the dependence on
a d,..., only appears in higher order terms (order hk rather than h or k).

We analyzed several exact solutions of the Liouville equations. We reproduce the results
for three of them, namely

βγδ

β δ β γ α
=

+ + + +− −( )( )( )
s

x y x y

2

1 1 tan ( ) tan (d )
, (6.3)1

2 2 2 2 1 1 2

=
− + − − + + + − +

+ ++ − + −

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )( ) ( ) ( )
( ) ( )

s
x y x x y y8 1 4 (1 4 ) exp 4 2 4 2

e e 1

, (6.4)
x x y y

2

1
2

1
2

2 1
2

2

2 4 2 4
2

1
2

1
2

2 2

1.5
1.0
0.5
0.0

0.015

0.010
0.005
0.000

0.0

0.0

0.0

0.0

0.04
0.03
0.02
0.01
0.00

0.0005

0.0010

0.0000
-1.5

-1.5

-1.5

-1.5

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

-0.5

(a) (b)

(c) (d)

Figure 4. The same analysis as for s1 is carried out for s2 on a lattice with corner point
= − −x y( , ) ( 1.5, 1.0)00 00 and steps of equal length = =h k 0.02 for a lattice of

×60 60 points.
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=
+

+

( )
s

Ap

A

2 e

e e
, (6.5)

p x y

py px
3

2 ( )

2

for certain values of the constants α β γ δA p, , , , , specified in figures 3–5 .
To proceed numerically we specify the lattice constants h and k and place the corner

point (0, 0) on the lattice. Using the analytic solutions we compute the values of the solutions
on the boundary. These values are then used as initial data for the numerical calculations. We
used the boundaries on the axes as on figure 2(a). The three different discretizations used here
were the  ⊗SL SL(2, ) (2, )x y invariant one (4.14), the Rebelo–Valiquette invariant one
(6.2) and the naive non invariant one (6.1). On figures 3–5 we show the results for solutions
s1, s2 and s3, respectively.

On each figure the picture (a) represents the exact solution plotted from (6.3), (6.4) or
(6.5), respectively. The pictures (b)–(d) show the errors of the numerical results using the

 ⊗SL SL(2, ) (2, )x y invariant formula (4.14), the invariant Rebelo–Valiquette formula
(6.2) and the naive non invariant one (6.1), respectively.

In all cases the errors are small so that visually all numerical results almost coincide with
the exact one. The differences between the individual discretizations are best seen in table 1.
There we give the mean square averages (the normalized


L 2

2 metric) of the distances between
the analytic solutions and the three numerical ones. We see that for all three solutions we have

6
4
2
0
-3

-2

-1

-10

-3

-2

-1

0

0

0

0

1

2

-1

0

1

2

1

2

0.4

1.0

0.5

0.0

1.0

0.5

0.0

0.2

0.0
-3

-2

-1

0

-3

-2

-1

-1

0

1

2

-1

(a) (b)

(c) (d)

Figure 5. The same analysis as for s1 is carried out for s3 for the choice of parameters
= =A p12.8397, 3.862 33 on a lattice with corner point = − −x y( , ) ( 3, 1)00 00 and

steps of equal length = =h k 0.02 for a lattice of ×180 180 points.
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χ χ χ< <Inv RV stand, i.e. the invariant method performs better than the other two. The Rebelo–
Valiquette method that preserves the infinite dimensional symmetry group as generalized
symmetries also performs better than the standard one in agreement with [32].

7. Conclusions

We have shown that at least on a four-point lattice it is not possible to discretize the Liouville
equation (1.2) (nor (1.1)) while preserving ⊗VIR x VIR y( ) ( ) as the Lie point symmetry
group. On the other hand, Rebelo and Valiquette [32] have introduced a special type of
generalized symmetries that leave their discretization of the algebraic Liouville equation
invariant. In the continuous case these symmetries reduce to point ones. In the discrete case
they are special in that the vector fields can be integrated to group transformations acting on
the equation and on the lattice. This is somewhat similar to the case of the symmetries of the
Toda hierarchy [12] where some generalized symmetries contract to point ones in the con-
tinuous limit.

From the point of view of numerical methods for the three exact solutions considered the
discretization preserving the maximal finite subgroup of the infinite dimensional point
symmetry group, performs better than the one that transforms point symmetries into gen-
eralized ones.

As stated in the Introduction, the main purpose of this article is to investigate how
continuous physical theories can be discretized while preserving their continuous Lie point
symmetries. For the Liouville equation we have shown that in a complete discretization it is
possible to preserve invariance under the maximal finite subgroup. The infinite dimensional
Lie pseudogroup does not survive as a group of point symmetries. Rebelo and Valiquette
have shown that the entire Virasoro pseudogroup does survive in a different discretization
[32], but as generalized symmetries. We also see that preserving the maximal finite sub
algebra as point symmetries is incompatible with preserving the entire symmetry group as
generalized symmetries.

In section 5 we have tested the quality of our invariant discretization as a numerical
method. We have shown that it actually performs very well. We are of course aware that what
we here call ‘standard’ methods can be improved in many other ways. The use of point
symmetries in numerical solutions of PDEs deserves a further detailed analysis, in particular
for other classes of solutions of the Liouville equation.

Another interesting point is that the linearizable discretization of Adler and Startsev
preserves no point symmetries, see appendix. It is thus important to decide which features of a
continuous theory one wishes to preserve in a discretization. In this case linearizability is
incompatible with the preservation of point symmetries.

Table 1. Mean square average differences between the analytic solutions and the
numerical ones.

χInv χRV χstand

s1 × −4.6 10 11 × −8.0 10 7 × −7.2 10 5

s2 × −1.6 10 7 × −1.3 10 4 × −7.0 10 1

s3 × −1.7 10 2 × −3.2 10 1 × −6.0 10 1
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Appendix. Lie point symmetries of a linearizable discrete Liouville equation

Adler and Startsev [1] have presented a discretization of the algebraic Liouville equation (1.2)
on a four-point lattice, namely

+ + =+ +
+ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟u

u u
u1

1
1

1
1. (A.1)i j

i j i j
i j1, 1

1, , 1
,

This equation is linearizable by the substitution

= −
− −+ +

+ +
u

v v v v

v v

( )( )
, (A.2)i j

i j i j i j i j

i j i j
,

1, , , 1 ,

1, , 1

where vi j, satisfies the linear equation

− − + =+ + + +v v v v 0. (A.3)i j i j i j i j1, 1 1, , 1 ,

Hence the general solution of (A.1) is

= −
− −

+ +
+ +

+ +

( )
( )( )

u
c c k k

c k c k

( )
, (A.4)i j

i i j j

i j i j
,

1 1

1 1

where c k,i j are arbitrary functions of one index each.
The continuous limit of (A.1) is taken in two steps. First we define ϵ=x j and

ϵ= −u v x( )i j i, . When ϵ → 0 one gets the differential—difference Liouville equation [1]

− = ++ + + +v v v v v v v v( ). (A.5)i x i i i x i i i i1, 1 , 1 1

The continuous limit of the last equation is obtained by setting μ=y i and μ=v x w x y( ) ( , )i .
When μ → 0 one gets the algebraic Liouville equation as

=w w(log ) 2 . (A.6)x y

We restrict (A.1) to the stencil with = =i j 0, i.e.

= + + − =( )( )E u u u u u u1 1 0, (A.7)1,1 1,0 0,1 0,0 1,0 0,1

and calculate the Lie point symmetries of this equation. The equation is autonomous, the
lattice is fixed (orthogonal and uniform). Hence the symmetry algebra is generated by vector
fields of the form
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= ∂X Q uˆ ( ) , (A.8)e ij i j u, i j,

satisfying

==XEˆ 0. (A.9)E 0

We obtain

+ + + + + +

+ + + = +
( )( ) ( ) ( )

( )( )
Q u u u Q u u u Q u u u

Q u u u Q u Q u

1 1 1 1

1 1 . (A.10)

11 0,1 1,0 0,0 10 1,1 0,1 0,0 01 1,1 1,0 0,0

00 1,1 0,1 1,0 10 0,1 01 1,0

We eliminate u1,1 from (A.10) using (A.7), then differentiate with respect to u0,0 and obtain

− = −
Q

u

Q

u

Q

u

Q

u

d

d

d

d
. (A.11)11

1,1

11

1,1

00

0,0

00

0,0

The general solution of (A.11) is

= + −⎡⎣ ⎤⎦Q u g f i j u( ) log ( ) , (A.12)ij i j ij e i j, ,

where gij and −f i j( ) are functions of i and j. Substituting (A.12) into (A.10) we find
= − =g i j f i j( , ) ( ) 0. It follows that the linearizable discrete Liouville equation has no

continuous point symmetries at all! Two comments are in order.

1. The equation (A.1) is linearizable and hence must have generalized symmetries.
2. [1] also contains the linearizable differential–difference Liouville equation (A.5). It can

be shown using the formalism presented in [24] that (A.5) does have an infinite
dimensional Lie point symmetry algebra, isomorphic to the Virasoro algebra. The algebra
is realized by evolutionary vector fields of the form

= ∂ = +X Q x v v Q f x v f x vˆ ( , , ˙ ) , ( ) ˙ ˙ ( ) . (A.13)e i i i v i i ii

This corresponds to the standard factor fields

= ∂ − ∂X f x f x vˆ ( ) ˙ ( ) . (A.14)x v
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