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Montréal (QC), Canada.
4On sabbatical leave at Dipartimento di Fisica, Università degli studi Roma Tre,
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Abstract. Ordinary differential equations (ODEs) and ordinary difference
systems (O∆Ss) invariant under the actions of the Lie groups SLx(2), SLy(2)
and SLx(2) × SLy(2) of projective transformations of the independent variables
x and dependent variables y are constructed. The ODEs are continuous limits
of the O∆Ss, or conversely, the O∆Ss are invariant discretizations of the ODEs.
The invariant O∆Ss are used to calculate numerical solutions of the invariant
ODEs of order up to five. The solutions of the invariant numerical schemes are
compared to numerical solutions obtained by standard Runge-Kutta methods and
to exact solutions, when available. The invariant method performs at least as well
as standard ones and much better in the vicinity of singularities of solutions.

1. Introduction

The application of Lie groups to the study of difference equations is a relatively new
topic that has been actively pursued for the last 30 years or so. For recent reviews we
refer the reader to [8, 9, 10, 19, 24, 30, 42, 43]. Some of the original articles pertinent
for this study are [7, 11, 12, 13, 14, 17, 29, 39, 37, 38].

This line of research has several aspects. From the point of view of physics,
one aim is to preserve such fundamental symmetry properties as Lorentz, Galilei and
conformal invariance in a discrete space-time. From the point of view of mathematics,
both pure and applied, the aim is to turn Lie group theory into an efficient tool for
studying the solution space of difference equations as it has long been for differential
ones [2, 31, 32, 34]. From the point of view of computing, this approach belongs
into the field of geometrical integration [18, 21, 20, 36]. The aim is to improve the
qualitative and quantitative features of numerical solutions of differential equations
by introducing difference systems that have the same Lie point symmetry groups as
their continuous limits (invariant discretization).
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The original idea [7] has been applied to both ordinary differential equations
(ODEs) [3, 12, 13, 14, 15, 27, 39, 40] and partial differential equations (PDEs)
[1, 4, 12, 15, 22, 23, 25, 26, 28, 37, 38, 41].

For first order ODEs the method provides exact discretizations, i.e. differential
systems that have the same solutions as the ODEs [40]. For second and higher order
ODEs invariant discretization often provides difference schemes that can be solved
analytically, using either a Lagrangian [12, 14] or the adjoint equation method [11].
It was shown for numerous second and third order ODEs that invariant discretization
provides qualitatively better fits to solutions than standard methods, specially in the
neighborhoods of singularities [3, 39].

The purpose of this article is to extend the method of invariant discretization
of differential equations to larger Lie groups and higher order ODEs than have been
treated so far. More specifically, we consider the direct product group SLx(2)×SLy(2),
where x and y are the independent and dependent variables, respectively and treat
ODEs up to order 5.

In Section 2 we briefly outline the general method of invariant discretization for
ODEs. In Section 3, we sum up the differential invariants of SLy(2) (to all orders),
and of SLx(2) and SLx(2) × SLy(2) (up to order 5). The main results of the article
are presented in Section 4. Thus we derive complete sets of difference invariants up
to order 5 (using 6 points on a stencil) for all 3 groups under consideration and show
how to obtain the differential invariants in the continuous limit. Section 5 is devoted
to numerical examples in which we compare results using the invariant discretization
with standard numerical methods.

2. Differential and difference invariants of a Lie group

Let us consider a Lie group of local point transformations acting on a Euclidean plane
with Cartesian coordinates (x, y) generated by a Lie algebra of vector fields of the
form

X = ξ(x, y)∂x + φ(x, y)∂y (1)

We can view the Lie group as acting either on solutions (u = f(x)) of an ODE:

E ≡ y(N) − F (x, y, y′, y′′, . . . , y(N−1)) = 0 (2)

or on solutions of an ordinary difference scheme O∆S

Ea ≡ Ea({xk, yk}Nk=0) = 0, a = 1, 2. (3)

The difference scheme (3) that we use consists of two equations, each connecting the
N + 1 points, satisfying

∂(E1, E2)

∂(xN , yN )
6= 0 (4)

so that we can calculate (xN , yN ) if the previous points (xk, yk) are known. In the
continuous limit we put

xn − xn−1 = hn, hn = αnε, ε→ 0 (5)

where αn are some constants of the order αn ∼ 1 and we require

{E1 = 0} → {E = 0}, {E2 = 0} → {0 = 0}, ε→ 0 (6)

Thus the lattice equation goes into an identity and the difference scheme goes into the
target ODE.
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We will take a given group G and find a basis for the differential invariants up to
a certain order (i.e. fix the order N of the highest derivative) and for the difference
invariants up to the corresponding order (i.e. fix the number of points of the lattice to
be used as N + 1). The ODEs and the O∆Ss will be constructed out of the respective
invariants, I1, . . . , IK or ID1 , . . . , I

D
L respectively and we have K < L.

Equations written in terms of these invariant will be “strongly invariant”. Other
equations may be “weakly invariant”, i.e. invariant on some submanifold. We will
encounter such cases below for both ODEs and O∆Ss.

Basically two methods exist for calculating invariants of a given group action on
a homogeneous manifold. One is the infinitesimal method based on the prolongations
of the vector fields representing the Lie algebra of the group [31, 32]. The other
method is a global one, called the method of moving frames [6, 16, 33]. In the second
method it is necessary to express the group parameters in terms of the values of a
sufficient number of the transformed variables on some section of the generic orbits.
For simple and semisimple groups this typically leads to algebraic equations to solve.
In particular for the SLx(2)×SLy(2) action studied in this article that leads to a third
order algebraic equation. We find the infinitesimal method more convenient for the
problem at hand and we use it throughout the article.

The group G and the vector fields X of (1) act on the variables (x, y) and on
functions y = f(x) in the same manner, whether we are considering differential
equations or difference systems. However in the continuous case we prolong to actions
on derivatives in a a standard manner [32]. In the discrete case we write X at some
point xk of the one dimensional lattice and then sum over all points involved in the
O∆S [9, 30]:

prDXn =
∑
k

(
ξ(xn+k, yn+k)∂xn+k

+ φ(xn+k, yn+k)∂yn+k

)
(7)

The summation over k is over all points on one stencil. The index n labels the position
of the stencil used in the calculation.

In both cases we find the invariant by solving the system of determining equations
following from the invariance condition

prXΦ(x, y, y′, . . . , y(N)) = 0 (8)

or

prDXnΦ(xn+k, yn+k) = 0 (9)

There will be more functionally independent difference invariants than differential
ones. We will divide the difference ones into two sets; those that go into differential
ones in the continuous limit and those that vanish in this limit.

The connection between difference and differential invariants is established by
using Taylor expansions of the discrete quantities. We restrict ourselves to a single
stencil, i.e. points (x0, y0), . . . , (xN , yN ), and choose a point about which to develop,
say x0. All other points are expressed as:

xk = x0 +

k∑
l=1

hl, yk = y(xk), 1 ≤ k ≤ N (10)

and we expand all discrete invariants using the truncated Taylor series:

yk =

N∑
j=0

1

j!
y
(j)
0

(
k∑

l=1

hl

)j

(11)
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The continuous limit is taken as in (5). The result will be expressed in terms of the
basis of differential invariants. In general the limit may depend on the constants αn

in (5). These will be specific numbers once the lattice is chosen. Detailed examples
will be given in Section 4.

3. Differential invariants under SLy(2), SLx(2) and SLx(2)× SLy(2)

In this section we restrict the group G to be SLy(2), SLx(2) and SLx(2) × SLx(2)
respectively, and will present bases for all differential invariants up to order 5, though
it would be easy to proceed to higher orders. The reason for this choice is that N = 5
is the lowest order at which an SLx(2)× SLy(2) invariant exists.

3.1. Invariants of SLy(2)

The Lie algebra of the group SLy(2) is generated by vector fields ∂y, y∂y, y2∂y with
prolongations:

pr(N)∂y = ∂y

pr(N)y∂y = y∂y +

N∑
k=1

y(k)∂y(k)

pr(N)y2∂y = y2∂y +

N∑
k=1

(y2)(k)∂y(k) ,

(12)

Solving the corresponding PDEs (8) for N = 5 we find the lowest order differential
invariant

J3 =
y′′′

y′
− 3

2

(
y′′

y′

)2

(13)

The third and fourth invariants can also be calculated directly.
Alternatively, since the variable x is invariant we can start from the lowest order

invariant involving derivatives of y, namely J3 and generate a different basis of SLy(2)
invariants, by invariant differentiation:

Jk+3 =
dk

dxk
J3, k = 1, 2, . . . (14)

All SLy(2) differential invariants of order up to N will be functions of

{x, J3, J4, J5, . . . , JN} (15)

We mention that J3 is the well known Schwarzian derivative with many interesting
applications [35]. We will use in this work the first three invariants, J3, J4 and J5.
The explicit form of J4 and J5 are:

J4 ≡ J ′3 =
y(4)

y′
− 4

y′′y′′′

y′2
+ 3

y′′3

y′3
(16)

J5 ≡ J ′′3 =
y(5)

y′
− 5

y′′y(4)

y′2
+ 17

y′′2y′′′

y′3
− 4

y′′′2

y′2
− 9

y′′4

y′4
(17)

We could also use a simplified fifth order invariant, adding a multiple of J2
3

J̃5 ≡ J5 + 4J2
3 =

y(5)

y′
− 5

y′′y(4)

y′2
+ 5

y′′2y′′′

y′3
(18)
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3.2. Differential invariants of SLx(2)

The Lie algebra of SLx(2) has the basis ∂x, x∂x, x2∂x with prolongations

pr(N)∂x = ∂x

pr(N)x∂x = x∂x −
N∑

k=1

ky(k)∂y(k)

pr(N)x2∂x = x2∂x −
N∑

k=1

k
(
(k − 1)y(k−1) + 2xy(k)

)
∂y(k)

(19)

It is of course equivalent to SLy(2) and the two are transformed into each other by
a hodograph transformation. We treat SLx(2) separately here since we are interested
mainly in the action of SLx(2)× SLy(2).

The three lowest order invariants are (higher order ones are also computed in a
straightforward way [5])

K3 =
1

(y′)2

(
y′′′

y′
− 3

2

(
y′′

y′

)2
)
,

K4 =
y(4)

y′4
− 6

y′′′y′′

y′5
+ 6

y′′3

y′6
,

K5 =
y(5)

y′5
− 10

y(4)y′′

y′6
− 4

y′′′2

y′6
+ 42

y′′′y′′2

y′7
− 63

2

y′′4

y′8

(20)

and, of course, y itself is an invariant.
It is interesting to consider the behavior of the SLy(2) invariant J3. We have

(pr(3)∂x)J3 = 0, (pr(3)x∂x)J3 = −2J3, (pr(3)x2∂x)J3 = −4xJ3(21)

Thus, while J3 is not invariant under SLx(2), the equation

J3 = 0 (22)

determines an invariant manifold and the equation (22) is “weakly invariant” under
the entire group SLx(2)× SLy(2). The same of course holds for K3 = 0.

3.3. Differential invariants of SLx(2)× SLy(2)

We start from the invariants of SLy(2), I(J3, J4, J5, ) and require that this function be
annihilated by the vector fields (19). We find that there are no differential invariants
of order N < 5 and only one of order 5, namely

H5 =
J5
J2
3

− 5J2
4

4J3
3

=
K5

K2
3

− 5K2
4

4K3
3

=
2

(2y′′′y′ − 3y′′2)3

(
2y′3(2y′y′′′ − 3y′′2)y(5) + 20y′3y′′y′′′y(4) − 5y′4(y(4))2

−16y′3y′′′3 + 12y′2y′′2y′′′2 − 18y′y′′4y′′′ + 9y′′6
)

(23)
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4. Difference invariants and their continuous limits for the groups SLx(2),
SLy(2) and SLx(2)× SLy(2)

4.1. General comments. The cross-ratios

The Lie group actions that we are considering in this article are the standard projective
action of SL(2) on a real or complex line (the action of the Möbius group). The
fundamental invariants of this action are well-known (and can easily be reobtained
using the prescription (9)). The lowest order invariants involve 4 points and are the
cross-ratios (anharmonic ratios):

Rk+3 =
(yk+3 − yk+1)(yk+2 − yk)

(yk+3 − yk+2)(yk+1 − yk)
(24)

Sk+3 =
xk+3 − xk+1)(xk+2 − xk)

(xk+3 − xk+2)(xk+1 − xk)
(25)

for SLy(2) and SLx(2) respectively.
For SLx(2)×SLy(2) these are the only four-points invariants and all higher order

invariants can be formed by shifting the four points to the right, forming e.g. the
cross-ratios Rk+4,Rk+5 . . . , and taking linear combinations of Rk+3, Rk+4 . . . , etc.
The problem is to form the linear combinations that will have the chosen differential
invariants of Section 3 as a continuous limit.

For SLx(2) and SLy(2) we have further difference invariants, namely the
dependent variables yn and the independent variables xn for SLx(2) and SLy(2),
respectively

The cross-ratios Sj will be used to write invariant lattices, e.g. Sk+3 = A or
Sk+3 = ASk+4, where A is a constant.

The cross-ratios Rj will be expanded into power series, and using equations (10)
and (11) we relate them to differential invariants.

Let us consider SLy(2), SLx(2) and SLx(2)× SLy(2) separately.

4.2. The group SLy(2)

Taking 4 adjacent points, x0, x1, x2, x3 (we simplify the notation writing xn+k ≡ xk)
and expanding around x0 we obtain:

R3 = S3

[
1− 1

6
h2(h1 + hk+2 + hk+3)

(
J3 +

1

4
(3h1 + 2hk+2 + h3)J4

+
1

60

(
3(6h21 + 3h22 + h23 + 8h1h2 + 4h1h3 + 3h2h3)J5

−10(7h21 + 4h22 + h23 + 10h1h2 + 5h1h3 + 4h2h3)J2
3

))]
+O(h5) (26)

We can make a similar expansion for two more sets of four points, x1, x2, x3, x4
and x2, x3, x4, x5 (always expanding around x0). We see that to lowest order in h the
difference invariant that has the correct continuous limit is

L
(3)
k+3 =

6

(xk+2 − xk+1)(xk+3 − xk)

(
1− Rk+3

Sk+3

)
; (27)
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indeed for all values of k (we will only need k = 0, 1, 2) we have

lim
hj→0

L
(3)
k+3 = J3. (28)

In view of (26) we can define a new set of difference invariants:

L
(4)
k+4 =

4

xk+4 − xk

(
L
(3)
k+4 − L

(3)
k+3

)
(29)

which can be expanded in h as:

L
(4)
4 = J4 +

1

15(h1 + h2 + h3 + h4)

[
3

(
4h21 + 3h22 + 2h23 + h24

+7h1h2 + 6h1h3 + 5h1h4 + 5h2h3 + 4h2h4 + 3h3h4

)
J5

−2
(
h21 − 3h22 + 3h23 − h24 − 2h1h2 − h1h3 + h2h4 + 2h3h4

)
J2
3

]
+O(h2) (30)

and a similar expression for L
(4)
5 . In the continuous limit, we have, for all k (in

particular, for the only two values we need, k = 0, 1):

lim
hj→0

L
(4)
k+4 = J4 (31)

Similarly, to obtain the fifth order differential invariant in the continuous limit
we form another set of difference invariants, namely

L
(5)
5 =

5

x5 − x0

(
L
(4)
5 − L

(4)
4

)
(32)

and

L
(5)
5 = J5 +

10

3

[
1

5
− h4
h1 + h2 + h3 + h4 + h5

− (h1 + h2)(h2 + h3)

(h1 + h2 + h3 + h4 + h5)(h1 + h2 + h3 + h4)

+
(h2 + h3)(h3 + h4)

(h1 + h2 + h3 + h4 + h5)(h2 + h3 + h4 + h5)

]
J2
3 +O(h). (33)

From (26) (e.g. for k = 0, 1 and 2) we see that the limit of L
(5)
5 is not exactly J5 of

(14) but rather a combination of J5 and J2
3

lim
hj→0

L
(5)
5 = J5 +W0J

2
3 (34)

with

W0 = lim
hj→0

W (35)

and

W =
10

3

(
1

5
− x4 − x3
x5 − x0

− (x3 − x1)(x2 − x0)

(x5 − x0)(x4 − x0)
+

(x4 − x2)(x3 − x1)

(x5 − x0)(x5 − x1)

)
(36)

The coefficient W depends on the specific form of the lattice, and W0 is a finite number
(not necessarily zero).

For instance, let us consider an SLx(2)× SLy(2) invariant lattice given by

Sj = K, ∀j (37)
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where K is a constant. This equation (37) was solved in [11] for arbitrary values of
K. The result is particularly simple for K = 4. A particular solution, not contained
in the general one is

xm = Am+B (38)

and the general one is

xm =
1

Am+B
+ C (39)

(A, B, C are constants). Solution (38) corresponds to a uniform lattice with hm = A
for all m. For (38) and (39) we have

W0 = 0, W0 =
2A2(8A2 − 5AB −B2)

(A+B)(2A+B)(3A+B)(4A+B)
(40)

respectively.
Thus, W0 is a definite number (and can be set equal to zero in the case (39) by

choosing B = 1
2 (A(−5±

√
57)).

We see that it is not difficult to construct SLy(2) difference invariants of arbitrary
orders. The challenge is to find an appropriate basis for these invariants that in the
continuous limit reproduces the chosen basis of difference invariant.

The connection between the difference and differential SLy(2) invariants of order
3, 4 and 5 is given by equations (27), (29) and (32), respectively.

4.3. The group SLx(2)

The approach used for SLy(2) must be modified since the differences hk are not
invariant under SLx(2). Instead of (27) we expand the SLx(2) invariants:

M
(3)
k+3 =

6

(yk+3 − yk)(yk+2 − yk+1)

(
1− Rk+3

Sk+3

)
(41)

and obtain

M
(3)
3 = K3 +

1

4
(3h1 + 2h2 + h3)y′K4

+
1

120

(
6(6h21 + 3h22 + h23 + 8h1h2 + 4h1hk+3 + 3h2h3)y′2K5

−4(19h21 + 12h22 + 4h23 + 27h1h2 + 11h1h3 + 12h2h3)y′2K2
3

+ 15(3h21 + 2h22 + h23 + 4h1h2 + 2h1h3 + 2h2h3)y′′K4

)
+O(h3) (42)

and similar expressions for k = 1, 2. Thus we have

lim
hj→0

M
(3)
k+3 = K3, ∀k (43)

In analogy, we define

M
(4)
k+4 =

4

yk+4 − yk

(
M

(3)
k+4 −M

(3)
k+3

)
, ∀k (44)

satisfying

lim
hj→0

M
(4)
k+4 = K4, ∀k (45)
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Finally, to obtain a fifth order differential invariant in the continuous limit we
define

M
(5)
5 =

5

y5 − y0

(
M

(4)
5 −M (4)

4

)
(46)

satisfying

lim
hj→0

M
(5)
5 = K5 −Wx,0K

2
3 , Wx,0 = lim

hj→0
Wx (47)

where

Wx =
20

6

(
4

5
− h3
h1 + h2 + h3 + h4 + h5

)
(48)

As in the case of SLx(2) we do not obtain K5 in the limit but have an additional
term involving a scalar multiple, Wx,0, of a lower order invariant K3. The number
Wx,0 can be evaluated on any lattice and is

Wx,0 = 2 (49)

on a uniform lattice.

4.4. The group SLx(2)× SLy(2)

For the group SLx(2) × SLy(2) all invariants must be constructed out of the cross-
ratios Rk+3, Sk+3. To obtain the lowest order differential invariant H5 given by (23)
we need three values of k, e.g. k = 0, 1, 2. As always, the difficulty is to identify
the combination or combinations of them that go to H5 in the continuous limit. One
way to do this is to expand Qk+3 = 1 − Rk+3

Sk+3
for k = 0, 1, 2 into power series, and

eliminate terms of order h2 and h3 using Sk−3 whenever possible. Another way is to
inspire oneself by the continuous limit (23) and build up an invariant with the correct
limit using discretized versions of J5, J4, J3 and K5, K4 K3. Both methods are quite
laborious, even using computer algebra, and lead to the result

H(5) =
(x5 − x4)(x1 − x0)

(x4 − x3)(x2 − x1)

1

L
(3)
5

(
L(5)

L
(3)
3

− 5

4

L
(4)
4 L

(4)
5

L
(3)
3 L

(3)
4

)
(50)

or explicitly in terms of the invariants Ri and Si

H(5) =
10

3

S4

(S3(1− S4) + S4)(S4(1− S5) + S5)(S4(1− S3)(1− S5)− S3S5)

×
(
S4(1− S5)

1

Q5
+ S4(1− S3)

1

Q3

−(1− S4)(S4(1− S3)(1− S5)− S3S5)
1

Q4

−S4(1− S3)(1− S5)
Q4

Q3Q5

)
(51)

where

Qi = 1− Ri

Si
, i = 3, 4, 5 (52)

The continuous limit is given by (the quantity W was defined in (36)):

lim
hj→0

H(5) =

(
lim
hj→0

h5h1
h4h2

)
(H5 + lim

hj→0
W ) (53)
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For the case of a uniform lattice (Sj = 4, hj = hj+1) we have W = 0 and

lim
h→0

H(5) = H5 =
J5
J2
3

− 5J2
4

4J3
3

(54)

with

H(5) =
16R5 +R4(3R4 +R5 − 32) +R3(R4 − 5R5 + 16)

2(R3 − 4)(R4 − 4)(R5 − 4)
(55)

For other invariant lattices we have W = constant 6= 0.
The overall conclusion from this section is that we have constructed all difference

and differential invariants up to order 5 for all groups considered. We have also shown
how to proceed to higher orders, using the fundamental invariants, specifically the
cross-ratios.

We now proceed to test the invariant O∆Ss presented in this section and numerical
schemes for specific equations. So far, only the group SLy(2) has been used in this
manner and only for ODEs of order 2 or 3 [3, 39].

5. Numerical examples

We present in this section some representative examples of differential equations which
are invariant under the groups SLy(2), SLx(2) and SLx(2)× SLy(2). Some particular
solutions are numerically computed using the invariant discretizations studied in this
work. In some cases the discretized scheme provides the exact solution. In other
cases, the roundoff errors will forbid to find the solutions at some points. Increasing
the working precision would allow to find more approximate solutions, but we cannot
keep the same working precision beyond a certain point. These quantitative aspects
of the theory have been studied elsewhere [3] and will not be discussed in detail in
this work. Since our purpose is to provide some qualitative remarks on the invariant
method, the standard numerical approach has been carried out using the software
Mathematica, which allows a high level performance in all the examples we will discuss
below, while being very simple to use. In each case, the program chooses the most
appropriate method (for instance, an Adams predictor-corrector or an explicit Runge-
Kutta method) and, whenever necessary, a variable step, looking for higher accuracy.
In both approaches (standard and invariant) some control parameters, like working
precision and accuracy, have also been chosen in order to get the best results.

5.1. Example 1: fourth order equation, invariant under SLy(2)

The differential equation:

y(4)

y′
− 4

y′′y′′′

y′2
+ 3

y′′3

y′3
= cosx (56)

is invariant under SLy(2), but not under any transformation of SLx(2). Note that the
equation can be written as:

J ′3 = cosx (57)

and a first integral is:

J3 = sinx+A (58)

However, to check the invariant method, we will use the invariant scheme for fourth
order differential equations (31).
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We choose as initial data:

y(1) = 1.0, y′(1) = −1.0, y′′(1) = −2.5, y′′′(1) = 5.0 (59)

Using a standard numerical solution in the interval [1, 2.5], we obtain the graphics
of Figure 1.
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1.0

Figure 1. Example 1. Solution of equation (56). Standard numerical method.

We use a uniform lattice with step h (which like any lattice depending only on
the variables xi is invariant under SLy(2)) on a five-point stencil. The equations are

yn =

(
1− yn−3 − yn−2

yn−3 − yn−1

(
(yn−1 − yn−3)(yn−2 − yn−4)

(yn−1 − yn−2)(yn−3 − yn−4)
− 2h3 cos(h(n− 2) + x0)

))−1
×
(
yn−2 −

yn−1(yn−3 − yn−2)

yn−3 − yn−1

(
(yn−1 − yn−3)(yn−2 − yn−4)

(yn−1 − yn−2)(yn−3 − yn−4)

−2h3 cos(x0 + h(n− 2))
))

xn = x0 + nh

(60)

with initial conditions taken from the numerical solution computed with a standard
procedure. We compute the cosine function in the middle point of the stencil and
consider three cases, with three different steps h.

Table 1 compares the values at several points using standard numerical methods
(explicit Runge-Kutta) and the invariant approach (Inv) with different steps. The
accuracy of the method improves when h goes to 0, (although the increasing number
of steps will correspondingly increase the roundoff errors. We have used the same
working precision in all cases).

x Standard Inv h = 0.1 Inv h = 0.01 Inv h = 0.001
1.5 0.451089 0.451095 0.451084 0.451089
2.0 0.310434 0.310466 0.310435 0.310434
2.5 0.298849 0.298885 0.298850 0.298849

Table 1. Equation (56). Values of the solution at points 1.5, 2.0 and 2.5. The
columns are the values obtained with a standard numerical procedure and with
the invariant one with different steps, respectively.

To test the precision of the results we can use the distance, as mean square
averages, between the numerical solutions computed by the invariant scheme and the
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standard method, defining a global estimator χ:

χ =

√∑
n(yInvn − yn)2∑

n y
2
n

(61)

and get the results in Table 2 at different values of the step, in the interval [0, 2.5].
The table shows the deviation of the invariant solution from the standard one. The
precision of the method is improved when h diminishes, as it was expected. In other
cases when we know the exact solution, we could compare yInvn with the exact solution
yExact
n in (61).

h 0.1 0.01 0.001
χ 4.6729.× 10−5 1.7866× 10−6 7.2291× 10−8

Table 2. Equation (56). Values of χ. Invariant approach with different steps
versus standard numerical approach

In Figure 2, the dots are the values of the numerical solutions computed with an
invariant approach, for h = 0.001. The solid curve is the standard numerical approach.

1.2 1.4 1.6 1.8 2.0 2.2 2.4
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0.8

1.0

Figure 2. Equation (56). Invariant approach versus standard approach for step
h = 0.001

5.2. Example 2: third order equation invariant under SLx(2)

Let us consider the differential equation:

1

y′2

(
y′′′

y′
− 3y′′2

2y′2

)
= c, c 6= 0 (62)

where c is a constant. This equation is invariant under SLx(2) (and under translations
in y). The order can be easily reduced by one, and the general solution in terms of
elementary functions can be written as

y(x) = c3 +

√
2

c
arctanh (c1x+ c2) (63)

A 2-parameter family of particular solutions not contained in (62) is

y = a+
1√
2c

log(x− b) (64)
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When c = 1/2, a particular solution is:

y(x) = log |x| (65)

which has a singularity at x = 0. The initial values for the solution in the region x < 0
can be chosen as

y(−1) = 0, y′(−1) = −1, y′′(−1) = −1 (66)

and the solution can be numerically computed by any standard method which will
obviously stop at t = 0.

We shall now apply the method of invariant discretization to calculate solutions
of the type (63) and (65) numerically. Let us start with solution (65). The invariant
approach is obtained with the difference and x-lattice equations (we choose a uniform
lattice, yielding S = 4)

6

(yn−1 − yn−2)(yn − yn−3)

(
1− (yn−3 − yn−1)(yn−2 − yn)

4(yn−3 − yn−2)(yn−1 − yn)

)
=

1

2
,

xn = x0 + nh

(67)

The initial conditions are taken from the exact solution:

x0 = −1, h = 0.0001, y0 = 0., y1 = log(0.9999), y2 = log(0.9998)

However, in contrast with Example 1, the difference equation is not linear in yn,
but quadratic. Apart from technical difficulties, one obtains two possible solutions.
One of them provides the approximate solution. Note that the difference equation
could be, in principle, computed beyond the stop point x = 0 but yn becomes complex
if xn is greater than 0. See Figure 3 for a graphics of the approximate solution (dots)
versus the exact one (solid line).

-1.0 -0.8 -0.6 -0.4 -0.2

-4

-3

-2

-1

Figure 3. Differential equation (62) x < 0. Invariant approach, h = 0.0001,
(dots) versus exact solution (solid line).

We can also compute the solution in the region x > 0. Starting at x0 = 1 and
using a negative step h = −0.0001, we get for the invariant numerical solution the
graphics in Figure 4. As in the previous case, the yn values become complex when
xn becomes negative. Then, we have reproduce in these graphics, 3 and 4, the two
regions of the logarithmic solution.

Let us now choose a different solution of (62) (with c = 2), namely

y(x) = arctanhx (68)

which exists only in the interval (−1, 1). The initial values for this solution are:

y(0) = 0, y′(0) = 1, y′′(0) = 0 (69)
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Figure 4. Differential equation (62), x > 0. Invariant approach, h = −0.0001,
(dots) versus exact solution (solid line).

and can be numerically computed by any standard method which will stop at x = 1.
The invariant approach is obtained with the same difference equation as above (67),
but the initial conditions (which are again taken from the exact solution) are:

x0 = −0.9, h = 0.01, y0 = arctan(−0.9), y1 = arctan(−0.89), y2 = arctan(−0.88)

As above, one of the two solutions for yn provides the approximate solution. See
Figure 5 for a plot of the invariant numerical solution (dots) versus the exact one
(solid line). The χ estimator in the interval [−0.9, 0.9] can be computed against the

-0.5 0.5 1.0

-1

1

2

3

Figure 5. Differential equation (62). Invariant approach, h = 0.001, (dots)
versus exact solution (solid line).

exact solution, for different values of the step, see Table 3.

h 0.1 0.01 0.001
χ 0.145901 0.007028 0.001131

Table 3. Equation (62). χ for different values of the step h.

5.3. Example 3: third order equation invariant under SLx(2)

The differential equation:

1

y′2

(
y′′′

y′
− 3y′′2

2y′2

)
= y (70)
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is invariant under SLx(2). Apparently, the general solution cannot be constructed in
terms of elementary functions.

With the initial values

y(0) = 10, y′(0) = −1, y′′(0) = −10 (71)

the standard numerical methods stop at x ≈ 0.14. A singularity (or a point with
infinite derivative) is expected.

The invariant approach is obtained with the difference and x-lattice equations (we
choose a uniform lattice, yielding S = 4). The difference equation is a polynomial of
third degree in yn and the search for real solutions becomes rather involved. However,
it can be done and the results appear in the tables and graphics we present. The role
of the other branches, which can contain complex values, is not well understood.

If the initial conditions are taken from the approximate solution:

x0 = 0., h = 0.001, y0 = 10., y1 = 9.9989, y2 = 9.9979 (72)

the graphics of the invariant approach is given in Figure 6. Although the difference
equation could be solved beyond the point x = 1.4, yn becomes complex (for the
chosen branch).

0.02 0.04 0.06 0.08 0.10 0.12

9.4

9.6

9.8

10.0

Figure 6. Invariant approach (dots) versus standard approach (solid line) for
equation (70).

5.4. Example 4: invariant equation under SLx(2)× SLy(2); a discrete exact solution

We will consider differential equations invariant under the direct product group
SLx(2)× SLy(2).

The equations are of the form

H5 = c, y(5) =
1

y′3 (2y′y′′′ − 3y′′2)

(
5

2
y′4(y(4))2 − 10y′3y′′y′′′y(4) + 2(c+ 4)y′3y′′′3

−9

4

(
c+

2

3

)(
4y′2y′′2y′′′2 − 6y′y′′4y′′′ + 3y′′6

))
(73)

where c is a constant. The equation can be easily solved, although the general solution
can adopt several equivalent forms. We will consider the particular solution:

y(x) =
1

1− ex
, c = 0 (74)



Symmetry preserving discretization of ODE 16

The values corresponding to this solution can be easily obtained by a standard
numerical method with initial conditions:

y(k)(x) =
d

dxk
1

1− ex

∣∣∣∣
x=−1

, k = 0, 1, 2, 3, 4 (75)

until x = 0 where the function has a singularity (see Figure 7, black curve).
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-10
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Figure 7. The solution (74) of equation (73) obtained by a standard numerical
method. Grey line, the exact solution.

The invariant approach is obtained with the difference and x-lattice equations
(we choose a uniform lattice, yielding S = 4).

3R2
4 + (R5 − 32)R4 + 16R5 +R3(R4 − 5R5 + 16) = 0, xn = x0 + nh (76)

where

R3 =
(yn−3 − yn−5)(yn−2 − yn−4)

(yn−4 − yn−5)(yn−2 − yn−3)
, R4 =

(yn−2 − yn−4)(yn−1 − yn−3)

(yn−3 − yn−4)(yn−1 − yn−2)
,

R5 =
(yn−1 − yn−3)(yn − yn−2)

(yn−2 − yn−3)(yn − yn−1)
(77)

The difference equation is linear in yn. The initial conditions are taken from the exact
solution:

x0 = 0, h = 0.1, yk =
1

1− exk
, k = 0, 1, 2, 3, 4 (78)

and the invariant solution is represented in Figure 8.

-1.0 -0.5 0.5 1.0 1.5 2.0

-5

5

Figure 8. The invariant approach (dots) versus the exact solution (74) of
equation (73)
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It turns out that the solution provided by the invariant approach is an exact
solution:

yn =
1

1− exn
, xn = −1 + nh (79)

This is easy to check. Compute Ri, for any four consecutive points, for instance R3,
when yn = 1

1−exn . We get (for a uniform lattice, xn = −1 + hn)

R3 = 2 + eh + e−h (80)

and the same expression for R4 and R5. Substituting in H5 we get zero. This can be
also observed from another point of view. The expression for yn is a solution of the
equation:

Rk = α (81)

and this provides a solution of the difference equation we are considering.
This observation allows to study the problem in the opposite direction. Since

Rk = α is a solution of H5 = 0, the equation Ri = α should provide solutions of the
difference equation and approximation of solutions of the differential equation. These
exact solutions have been computed in [11] (for the case under study, see equation
(5.24) of this reference).

5.5. Example 5: invariant equation under SLx(2)× SLy(2)

Our final example is a discussion of the equation

H5 = 0 (82)

and the particular solution:

y(x) = tan
1

x
(83)

The numerical values of this solution can be easily obtained by a standard
numerical method, although it cannot be prolonged beyond the singularities (the first
one greater than x = 0.1 is located at x = 2/(5π)). We take an initial condition at
x0 = 0.1 with the values of the function and its derivatives computed using the exact
solution (see Figure 9):

y(x0) = tan 10, y(k)(x0) =

(
tan

1

x

)(k)

x=0.1

, k = 1, . . . , 4 (84)

The invariant approach is obtained with the difference and x-lattice equations
(we choose a uniform lattice, yielding S = 4):

3R2
4 + (R5 − 32)R4 + 16R5 +R3(R4 − 5R5 + 16) = 0, xn = x0 + nh (85)

and is linear in yn. The initial conditions are also taken from the exact solution:

x0 = 0.1, yk = tan

(
1

0.1 + kh

)
, k = 0, 1, 2, 3, 4 (86)

The scheme is very sensitive to the step size and the fixed working precision.
However, it is possible, using the invariant approach, to go beyond the singularities of
the solution. We will just present a qualitative summary of results.

The graphics in Figures 10, 11 and 12 represent the solution and the invariant
discretization for h = 0.01, h = 0.005, and h = 0.001, respectively.

Smaller steps provide a better approximation, although the roundoff errors
prevent us (even at the cost of greater working precisions) to go beyond a certain
point.
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Figure 9. Standard numerical approach versus the exact solution (83) of equation
(82). The grey line corresponds to the exact solution.
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Figure 10. Invariant approximation for solution (82) of equation (83). Step
h = 0.01
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Figure 11. Invariant approximation for solution (82) of equation (83). Step
h = 0.005

6. Conclusions

The main theoretical results of this paper are contained in Section 4. We have shown
that starting from the four-point difference invariants Ri (24) and Si (25) of SLy(2)
and SLx(2) we can construct difference invariants of arbitrary order, for the 3 groups
considered in this article. In the continuous limit they approach the corresponding
differential invariants. Explicitly we go up to order N = 5 and this provides invariant
schemes for solving invariant ODEs of order up to five numerically.
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Figure 12. Invariant approximation for solution (82) of equation (83). Step
h = 0.001

The numerical results are presented in Section 5. We consider several ODEs of
order N = 3, 4 and 5. The main features that emerge are the following:

(i) Invariant numerical methods and standard methods provide very similar results
for smooth solutions.

(ii) For solutions with singularities invariant methods provide significantly better
results, specially close to singularities and beyond them.

(iii) In some cases the “invariant numerical” solutions are exact (see example 4 for a
fifth order ODE. This is always true for first order ODEs [40] and was already
observed for some second order ones [12, 13].

Since symmetries are an essential part of any physical problem preserving them in a
discretization is important in itself. This is true independently of whether invariant
discretization improves numerical results.

An open question which merits further study is that of identifying equations and
initial or boundary conditions for which invariant methods provide exact solutions.
Work in this direction is currently in progress. Another line of research is related
to the study of the several solutions arising from nonlinear discrete schemes (implicit
schemes, where the highest point yn is not defined as a unique function of the previous
points in the stencil).
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