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Abstract. We consider a charged particle moving in a static electromagnetic
field described by the vector potential ~A(~x) and the electrostatic potential V (~x).
We study the conditions on the structure of the integrals of motion of the first
and second order in momenta, in particular how they are influenced by the gauge
invariance of the problem. Next, we concentrate on the three possibilities for inte-
grability arising from the first order integrals corresponding to three nonequivalent
subalgebras of the Euclidean algebra, namely (P1, P2), (L3, P3) and (L1, L2, L3).
For these cases we look for additional independent integrals of first or second or-
der in the momenta. These would make the system superintegrable (minimally
or maximally). We study their quantum spectra and classical equations of mo-
tion. In some cases nonpolynomial integrals of motion occur and ensure maximal
superintegrability.
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1. Introduction

The purpose of this article is to initiate a systematic study of integrable and
superintegrable systems in the presence of a magnetic field in three-dimensional
Euclidean space E3, both in classical and quantum mechanics.

We recall that a classical Hamiltonian system with n degrees of freedom is
(Liouville) integrable if it allows n integrals of motion X1, . . . , Xn including the
Hamiltonian. They must be in involution, be well defined functions on phase space
and be functionally independent. The system is superintegrable if further integrals
Ya exist with 1 ≤ a ≤ n − 1. They must also be well-defined functions on phase
space, the set {Xi, Ya} must be functionally independent, however the integrals Ya
need not be in involution with Xi nor with each other. On the contrary, the set
of all integrals generates a non-Abelian algebra under Poisson commutation. In
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quantum mechanics the definitions must be modified. The integrals X1, . . . , Xn will
be well-defined operators in the enveloping algebra of the Heisenberg Lie algebra, i.e.
polynomials in the coordinates xi and pi, or more general objects, such as convergent
series in these objects. Instead of functional independence we shall require polynomial
independence. In other words no nontrivial fully symmetrized polynomial (Jordan
polynomial) in the integrals of motion should vanish.

The best known superintegrable systems in En (n ≥ 2) are the Coulomb-Kepler
system and the isotropic harmonic oscillator with their o(n+ 1) and su(n) symmetry
algebras, respectively [1, 2, 3, 4]. It follows from Bertrand’s theorem [5] that these are
the only spherically symmetric maximally superintegrable systems in E3 (and actually
in En (n ≥ 2)). Most of the recent research on superintegrability concentrated on
“natural” Hamiltonians with scalar potentials. For a recent review see [6]. For early
systematic work on superintegrability in E2 see [7, 8] and in E3 [9, 10, 11, 12], see also
[13, 14, 15] and references therein.

Earlier work on integrability with magnetic fields (velocity dependent potentials)
mainly concerned the two-dimensional case [16, 17, 18, 19, 20, 21] with notable
exceptions [22, 23].

A particle moving under the influence of a static electromagnetic field is described
by the classical Hamiltonian

H =
1

2
(~p+ ~A(~x))2 + V (~x) (1)

where ~p = (p1, p2, p3) are components of the linear momentum, ~x = (x1, x2, x3) ≡
(x, y, z) the spatial coordinates, the vector and electrostatic potential ~A(~x), V (~x) are
functions only of the coordinates ~x and we choose the units in which the mass of the
particle has the numerical value 1 and the charge of the particle is −1 (having an
electron in mind as the prime example).

We recall that the equations of motion of the Hamiltonian (1) are gauge invariant,
i.e. that they are the same for the potentials

~A′(~x) = ~A(~x) +∇χ, V ′(~x) = V (~x) (2)

for any choice of the function χ(~x). Thus, the physically relevant quantity is the
magnetic field

~B = ∇× ~A, i.e. Bj = εjkl
∂Al
∂xk

(3)

rather than the vector potential ~A(~x) (where εjkl is the completely antisymmetric
tensor with ε123 = 1).

We shall also consider the quantum Hamiltonian defined as the properly
symmetrized analogue of (1) in terms of the operators of the linear momenta P̂j =

−i~∂/∂xj and coordinates X̂j = xj :

Ĥ =
1

2

∑
j

(
P̂jP̂j + P̂jÂj(~x) + Âj(~x)P̂j + ÂjÂj

)
+ V̂ (~x). (4)

The operators Âj(~x) and V̂ (~x) act on wavefunctions as multiplication by the functions
Aj(~x) and V (~x), respectively.

On the quantum level, the gauge transformation (2) demonstrates itself as a
unitary transformation of the Hilbert space. Namely, let us take

Ûψ(~x) = exp

(
i

~
χ(~x)

)
· ψ(~x). (5)
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Applying (5) on the states and the observables we get an equivalent description of the
same physical reality in terms of

ψ → ψ′ = Ûψ, Ô → Ô′ = Û ÔÛ†. (6)

In particular, the following observables transform covariantly

(P̂j + Âj)→ Û(P̂j + Âj)Û
† = Pj + Â′j , V̂ → Û V̂ Û† = V̂ . (7)

We recall that the quantum dynamics may not depend only on the magnetic field ~B.
In nontrivial topologies of the configuration space, e.g. when singularities are present
in the potential, not all vector potentials ~A inducing the same magnetic field ~B are
gauge equivalent, as the observable Aharonov-Bohm effect demonstrates [24].

2. The conditions for the integrals of motion

Let us consider integrals of motion which are at most second order in the momenta.
Because our system is gauge invariant (2), (7) we find it convenient to express the
integrals in terms of gauge covariant expressions

pAj = pj +Aj , P̂Aj = P̂j + Âj (8)

rather than the momenta themselves. The operators (8) do not commute amongst
each other. They satisfy

[P̂Aj , P̂
A
k ] = −i~εjklB̂l, [P̂Aj , X̂k] = −i~δjk (9)

and analogous relations for Poisson brackets in classical mechanics.
Classically, we write a general second order integral of motion as

X =

3∑
j=1

hj(~x)pAj p
A
j +

3∑
j,k,l=1

1

2
|εjkl|nj(~x)pAk p

A
l +

3∑
j=1

sj(~x)pAj +m(~x). (10)

We define the Poisson bracket in the standard manner

{a(~x, ~p), b(~x, ~p)}P.B. =

3∑
j=1

(
∂a

∂xj

∂b

∂pj
− ∂b

∂xj

∂a

∂pj

)
. (11)

The condition that the Poisson bracket of the integral (10) with the Hamiltonian (1)
vanishes

{H,X}P.B. = 0 (12)

leads to terms of order 3, 2, 1 and 0 in the momenta and respectively to the following
equations:
Third order

∂xh1 = 0, ∂yh1 = −∂xn3, ∂zh1 = −∂xn2,
∂xh2 = −∂yn3, ∂yh2 = 0, ∂zh2 = −∂yn1, (13)

∂xh3 = −∂zn2, ∂yh3 = −∂zn1, ∂zh3 = 0,

∇ · ~n = 0.
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Second order

∂xs1 = n2B2 − n3B3,

∂ys2 = n3B3 − n1B1,

∂zs3 = n1B1 − n2B2,

∂ys1 + ∂xs2 = n1B2 − n2B1 + 2(h1 − h2)B3, (14)

∂zs1 + ∂xs3 = n3B1 − n1B3 + 2(h3 − h1)B2,

∂ys3 + ∂zs2 = n2B3 − n3B2 + 2(h2 − h3)B1.

It follows that we have
∇ · ~s = 0.

First order

∂xm = 2h1∂xV + n3∂yV + n2∂zV + s3B2 − s2B3,

∂ym = n3∂xV + 2h2∂yV + n1∂zV + s1B3 − s3B1, (15)

∂zm = n2∂xV + n1∂yV + 2h3∂zV + s2B1 − s1B2.

Zero order

~s · ∇V = 0. (16)

Equations (13) are the same as for the system with vanishing magnetic field and
their explicit solution is known. They imply that the highest order terms in the
integral (10) are linear combinations of products of the generators of the Euclidean
group p1, p2, p3, l1, l2, l3 where lj =

∑
k,l εjklxkpl (up to a redefinition of lower order

terms). When expressed explicitly in terms of the covariant expressions (8), we have

X =
∑

1≤a≤b≤6

αabY
A
a Y

A
b +

3∑
j=1

sj(~x)pAj +m(~x) (17)

where Y A = (pA1 , p
A
2 , p

A
3 , l

A
1 , l

A
2 , l

A
3 ),

lAj =
∑
k,l

εjklxkp
A
l , (18)

and αab ∈ R. The functions ~h, ~n are expressed in terms of the constants αab as follows

h1 = α66y
2 + (−α56z − α16)y + α55z

2 + α15z + α11,

h2 = α66x
2 + (−α46z + α26)x+ α44z

2 − α24z + α22,

h3 = α55x
2 + (−α45y − α35)x+ α44y

2 + α34y + α33, (19)

n1 = −α56x
2 + (α46y + α45z − α25 + α36)x+ (−2α44z + α24)y − α34z + α23,

n2 = (α56y − 2α55z − α15)x− α46y
2 + (α45z + α36 + α14)y + α35z + α13,

n3 = (−2α66y + α16 + α56z)x+ (α46z − α26)y − α45z
2 + (α25 − α14)z + α12.

Since we have the relation

~p ·~l = 0 (20)

one of the parameters α14, α25, α36 is irrelevant and can be set equal to any chosen
value. However that explicitly breaks the symmetry of our equations; thus we prefer
to keep all parameters α14, α25, α36 in our formulas and we use (20) as a constraint.
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The conditions (14) allow us to express all the second order derivatives of ~s

explicitly in terms of ~n, ~h, ~B and their derivatives

∂2xxs1 = ∂xn2B2 + n2∂xB2 − ∂xn3B3 − n3∂xB3,

∂2xys1 = ∂yn2B2 + n2∂yB2 − ∂yn3B3 − n3∂yB3,

∂2xzs1 = ∂zn2B2 + n2∂zB2 − ∂zn3B3 − n3∂zB3,

∂2yys1 = n1∂xB1 − 3∂xn3B3 − n3∂xB3 + ∂xn1B1 + 2h1∂yB3 − ∂yn2B1

− n2∂yB1 + n1∂yB2 − 2h2∂yB3 + ∂yn1B2,

∂2yzs1 = − 3

2
∂zn2B1 −

1

2
n2∂zB1 +

3

2
∂yn3B1 +

1

2
n3∂yB1 −

3

2
∂xn2B3

− 1

2
n2∂xB3 + h1∂zB3 +

1

2
∂yn1B3 − h2∂zB3 −

1

2
∂zn1B2 +

1

2
n1∂zB2

− 1

2
n1∂yB3 +

3

2
∂xn3B2 − h1∂yB2 + h3∂yB2 +

1

2
n3∂xB2 − h2∂xB1 + h3∂xB1,

∂2zzs1 = 3∂xn2B2 + n2∂xB2 − ∂xn1B1 − n1∂xB1 − 2h1∂zB2 − ∂zn1B3

− n1∂zB3 + n3∂zB1 + 2h3∂zB2 + ∂zn3B1,

∂2xxs2 = − ∂yn2B2 − n2∂yB2 + 3∂yn3B3 + n3∂yB3 + 2h1∂xB3 − ∂xn2B1

− n2∂xB1 + n1∂xB2 − 2h2∂xB3 + ∂xn1B2,

∂2xys2 = ∂xn3B3 + n3∂xB3 − ∂xn1B1 − n1∂xB1,

∂2xzs2 =
1

2
∂zn2B1 −

1

2
n2∂zB1 −

3

2
∂yn3B1 −

1

2
n3∂yB1 −

1

2
∂xn2B3 +

1

2
n2∂xB3

+ h1∂zB3 +
3

2
∂yn1B3 − h2∂zB3 +

3

2
∂zn1B2 +

1

2
n1∂zB2 +

1

2
n1∂yB3

− 3

2
∂xn3B2 + h1∂yB2 − h3∂yB2 −

1

2
n3∂xB2 + h2∂xB1 − h3∂xB1,

∂2yys2 = ∂yn3B3 + n3∂yB3 − ∂yn1B1 − n1∂yB1,

∂2yzs2 = ∂zn3B3 + n3∂zB3 − ∂zn1B1 − n1∂zB1, (21)

∂2zzs2 = − n1∂yB1 + ∂yn2B2 + n2∂yB2 − 3∂yn1B1 + 2h2∂zB1 − ∂zn3B2

− n3∂zB2 − 2h3∂zB1 + ∂zn2B3 + n2∂zB3,

∂2xxs3 = n3∂zB3 − 3∂zn2B2 − n2∂zB2 + ∂zn3B3 − 2h1∂xB2 − ∂xn1B3

− n1∂xB3 + n3∂xB1 + 2h3∂xB2 + ∂xn3B1,

∂2xys3 =
3

2
∂zn2B1 +

1

2
n2∂zB1 −

1

2
∂yn3B1 +

1

2
n3∂yB1 +

3

2
∂xn2B3 +

1

2
n2∂xB3

− h1∂zB3 −
3

2
∂yn1B3 + h2∂zB3 −

3

2
∂zn1B2 −

1

2
n1∂zB2 −

1

2
n1∂yB3

+
1

2
∂xn3B2 − h1∂yB2 + h3∂yB2 −

1

2
n3∂xB2 + h2∂xB1 − h3∂xB1,

∂2xzs3 = − ∂xn2B2 − n2∂xB2 + ∂xn1B1 + n1∂xB1,

∂2yys3 = − ∂zn3B3 − n3∂zB3 + 3∂zn1B1 + n1∂zB1 + 2h2∂yB1 − ∂yn3B2

− n3∂yB2 − 2h3∂yB1 + ∂yn2B3 + n2∂yB3,

∂2yzs3 = − ∂yn2B2 − n2∂yB2 + ∂yn1B1 + n1∂yB1,

∂2zzs3 = − ∂zn2B2 − n2∂zB2 + ∂zn1B1 + n1∂zB1.
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Taking various first and second order derivatives of these expressions and comparing
them, e.g.

∂y(∂2xxsj) = ∂x(∂2xysj),

we arrive at compatibility conditions for ~h, ~n and ~B. Altogether there are 6
independent second order PDEs relating them which can be solved e.g. for

∂yyB1, ∂zzB1, ∂xxB2, ∂zzB2, ∂xxB3, ∂yyB3

but they are too cumbersome to reproduce here.

In the quantum case we have to consider a properly symmetrized analogue of (10).
We choose the following convention

X̂ =

3∑
j=1

{hj(~x), P̂Aj P̂
A
j }+

3∑
j,k,l=1

|εjkl|
2
{nj(~x), P̂Ak P̂

A
l }+

3∑
j=1

{sj(~x), P̂Aj }+m(~x) (22)

where { , } denotes the symmetrization

{â, b̂} =
1

2

(
âb̂+ b̂â

)
and hj(~x), nj(~x), sj(~x),m(~x) are to be interpreted as the corresponding operators
of multiplication by the given function. All possible choices of symmetrization are
equivalent up to redefinition of the lower order terms.

Imposing the condition that the integral of motion in the form (22) commutes
with the Hamiltonian (4) we obtain a similar set of conditions as above. In particular,
the conditions (13) remain the same, i.e. their solution has the same form (19). The
conditions (14) get apparent quantum corrections

∂xs1 = n2B2 − n3B3,

∂ys2 = n3B3 − n1B1,

∂zs3 = n1B1 − n2B2,

∂ys1 + ∂xs2 = n1B2 − n2B1 + 2(h1 − h2)B3 + i~∂2xxn3, (23)

∂zs1 + ∂xs3 = n3B1 − n1B3 + 2(h3 − h1)B2 + i~∂2xxn2,
∂ys3 + ∂zs2 = n2B3 − n3B2 + 2(h2 − h3)B1 + i~∂2yyn1.

Due to the explicit solution (19) we have

∂2xxn3 = 0, ∂2xxn2 = 0, ∂2yyn1 = 0,

i.e. these apparent quantum corrections vanish and equations (23) and (14) are the
same.

Similarly, in the quantum version of equations (15) we obtain some extra terms
but they vanish once the solution (19) of equations (13) is substituted in, i.e. also the
conditions (15) remain in the quantum case.

The situation is however different for the last equation (16) which does obtain
~2–proportional corrections. Using equations (13), (14), (15) and their differential
consequences we find

~s · ∇V +
~2

4
(∂zn1∂zB1 − ∂yn1∂yB1 + ∂xn2∂xB2 − ∂zn2∂zB2+ (24)

+∂yn3∂yB3 − ∂xn3∂xB3 + ∂xn1∂yB2 − ∂yn2∂xB1) = 0.
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Notice that the last line seems to violate the obvious symmetry of our problem under
Euclidean transformations. However, this is not the case in view of the identity

∂xn1∂yB2 − ∂yn2∂xB1 = ∂yn2∂zB3 − ∂zn3∂yB2 = ∂zn3∂xB1 − ∂xn1∂zB3 (25)

which is a consequence of

∇ · ~B = 0, ∇ · ~n = 0.

Notice that for the special case of first order integrals the conditions (13)–(16)
become significantly simpler. Namely, the conditions (13) do not arise. The right hand
sides of the conditions (14) vanish and thus equations (14) imply that the first order

term
∑3
j=1 sj(~x)pAj in the integral is a constant linear combination of the covariant

linear and angular momenta pA1 , p
A
2 , p

A
3 , l

A
1 , l

A
2 , l

A
3 (see (8), (18)). The conditions (15)

simplify to

∂xm = s3B2 − s2B3, ∂ym = s1B3 − s3B1, ∂zm = s2B1 − s1B2 (26)

and imply first order compatibility conditions relating ~B and ~s

∂ys3B2 + s3∂yB2 − ∂ys2B3 − s2∂yB3 − ∂xs1B3 − s1∂xB3 + ∂xs3B1 + s3∂xB1 = 0,

∂zs1B3 + s1∂zB3 − ∂zs3B1 − s3∂zB1 − ∂ys2B1 − s2∂yB1 + ∂ys1B2 + s1∂yB2 = 0,(27)

∂zs3B2 + s3∂zB2 − ∂zs2B3 − s2∂zB3 − ∂xs2B1 − s2∂xB1 + ∂xs1B2 + s1∂xB2 = 0.

The condition (16) remains the same as for the second order integral. In this case it
gets no quantum correction, i.e. (16) and (24) now coincide.

Let us now turn our attention to the situation where the Hamiltonian (1) or (4)
is integrable in the Liouville sense, with at most quadratic integrals. That means
that in addition to the Hamiltonian itself there must be at least two independent
integrals of motion of the form (10) or (22) which commute in the sense of the
Poisson bracket or Lie commutator, respectively. Independence is to be understood as
functional independence in the classical situation and in the sense that no nontrivial
fully symmetrized polynomial in the given operators vanishes in the quantum case.

Since the highest order conditions (13) are the same whether or not there is
a magnetic field present, the first step of the analysis can be performed as in [9],

leading to 11 nonequivalent possibilities for the functions ~h, ~n. Next one should
look into equations (14), (15), (16) (resp. (24)) and their consequences to determine

the nonequivalent possible choices of the magnetic field ~B(~x) and the electrostatic
potential V (~x). This is the approach used by A. Zhalij in [22] for the special case of
the integrals X1 = P 2

1 + . . . , X2 = P 2
2 + . . .

We shall follow a different route here. Keeping in mind that our main goal is
to arrive at examples of superintegrable systems with nonvanishing magnetic field
we shall assume that the integrability arises in the simplest way possible. Namely,
we assume that there are at least two independent first order integrals for our
Hamiltonian.

Assuming that we have

X1 = γi1l
A
i + βi1p

A
i +m1(~x), X2 = γi2l

A
i + βi2p

A
i +m2(~x) (28)

(or its quantum analogue) we may use the Euclidean transformations to simplify
X1, X2. Another allowed transformation is replacing X1, X2 by an arbitrary regular
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linear combination,

X1 → X̃1 = κ1X1 +κ2X2, X2 → X̃2 = λ1X1 +λ2X2, det

(
κ1 κ2
λ1 λ2

)
6= 0.

For convenience, we redefine the yet unknown functions m1(~x),m2(~x) as needed
without renaming them.

We arrive at the following possibilities

• If we have ~γ1 = ~γ2 = 0 then we can set X1 and X2 by rotation and linear
combination to

X1 = pA1 +m1(~x), X2 = pA2 +m2(~x). (29)

• If (~γ1, ~γ2) 6= (~0,~0) we can transform e.g. X1 by rotation and translation into
X1 = lA3 + βpA3 +m1(~x).

– Assuming that the integrability arises directly at the first order, i.e. that
{X1, X2}P.B. = 0, we arrive at a single possibility

X1 = lA3 +m1(~x), X2 = pA3 +m2(~x). (30)

– However, there is another option - to allow X1 and X2 to be not in involution
and expect the second commuting integral to arise via Poisson brackets and
polynomial combinations of X1, X2. Thus we may up to rotation and linear
combination take

X1 = lA3 + βpA3 +m1(~x), X2 = σlA1 + βi2p
A
i +m2(~x), σ = 0, 1.(31)

In order to have nontrivial dynamics, i.e. nontrivial electric and/or magnetic
field, we cannot have the full Euclidean algebra represented in terms of the
integrals of motion. Thus we must require that the algebra generated by
the highest order terms l3 + βp3 and σl1 + βi2pi in (31) via Poisson brackets
closes as a proper subalgebra of the Euclidean algebra. We have the following
options:
(i) The algebra isomorphic to su(2)

X1 = lA3 +m1(~x), X2 = lA1 +m2(~x),

X3 = {X1, X2}P.B. = lA2 +m3(~x). (32)
(ii) The algebra isomorphic to the Euclidean algebra e2

X1 = lA3 + pA3 +m1(~x), X2 = pA1 +m2(~x),

X3 = {X1, X2}P.B. = pA2 +m3(~x).
This case is, however, already included in (29) as a special subcase.

3. Superintegrability for the integrable system with integrals P1, P2

Let us start our detailed investigation by considering the case of the integrals (29)

X1 = pA1 +m1(~x), X2 = pA2 +m2(~x).

The condition that X1 and X2 are in involution is equivalent to

∂ym1 − ∂xm2 = B3. (33)

Equations (15) reduce to

∂xm1 = 0, ∂ym1 = B3, ∂zm1 = −B2,

∂xm2 = −B3, ∂ym2 = 0, ∂zm2 = B1 (34)
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and together with (33) imply that

B3(~x) = 0, Bj(~x) = Bj(z), mj(~x) = mj(z), j = 1, 2.

Writing the components of the magnetic field as

Bj(~x) = F ′j(z), j = 1, 2, (35)

we have

mj(~x) = Fj(z), j = 1, 2. (36)

We choose a suitable vector potential in the form (satisfying the Coulomb gauge

condition ∇ ~A = 0)

~A(~x) = (F2(z),−F1(z), 0) (37)

and from the conditions (16) we find that

V (~x) = V (z). (38)

Plugging all the information obtained about functions ~A, ~B,mj into the assumed form
of the integrals (29) we find a very simple solution (unique up to the choice of gauge)

X1 = p1, X2 = p2. (39)

The same result arises also in the quantum case, via essentially the same arguments.

Let us now assume that our system (1) with the potentials

~A(~x) = (F2(z),−F1(z), 0) , V (~x) = V (z)

is superintegrable, i.e. that an additional independent integral of motion exists. For
simplicity, let us assume that it is of first order in momenta. Up to addition of X1

and X2 we have

X3 = γilAi + βpA3 +m3(~x). (40)

We consider equations (15) and their compatibility conditions which take the form

γ2xF
′′
1 − γ1yF ′′1 − βF ′′1 − γ3F ′2 = 0, γ1F

′
2 − γ2F ′1 = 0,

−γ2xF ′′2 + γ1yF
′′
2 − γ3F ′1 + βF ′′2 = 0. (41)

We arrive at two distinct possibilities:

• If γ21 + γ22 6= 0 then F ′′1 = F ′′2 = 0, i.e. the magnetic field (35) is constant. This
case has already been well studied in the literature, see e.g. [25, 26]. Solving
equations (15) and (16) we find that the electrostatic potential is constant too,
i.e. we have a motion in constant magnetic field and no electric field. This system
is superintegrable and exactly solvable as follows. Without loss of generality we
can rotate the coordinate system so that we have

~B(~x) = (B, 0, 0), ~A(~x) = (0,−B z, 0), V (~x) = 0. (42)

Four independent first order integrals exist in this case. We write them down in
the classical situation, quantum mechanically they are the same expressions in
terms of operators. They read

X1 = p1, X2 = p2, X3 = p3 −By, X4 = l1 +
B

2
(z2 − y2). (43)
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The Hamiltonian can be expressed in terms of X1, . . . , X4 as

H =
1

2
(p21 + p22 + p23)−Bzp2 +

B2

2
z2 =

1

2

(
X2

1 +X2
2 +X2

3

)
+BX4. (44)

The classical equations of motion

ẋ = p1, ẏ = p2 −Bz, ż = p3, (45)

ṗ1 = 0, ṗ2 = 0, ṗ3 = B(p2 −Bz)
are solved explicitly as

x(t) = x0 + p01t,

y(t) = y0 −
p03
B

+ cos(Bt)
p03
B
− sin(Bt)

(
z0 −

p02
B

)
, (46)

z(t) =
p02
B

+ sin(Bt)
p03
B

+ cos(Bt)

(
z0 −

p02
B

)
,

p1(t) = p01, p2(t) = p02, p3(t) = cos(Bt)p03 + sin(Bt)(p02 −Bz0)

where (x0, y0, z0) are the initial coordinates and (p01, p
0
2, p

0
3) the initial momenta.

From (46) we find that the trajectory is a helix with axis parallel to the x–axis and
the integrals X2, X3, X4 determine the diameter and position of the enveloping
cylinder in the yz–plane(

y +
X3

B

)2

+

(
z − X2

B

)2

=
1

B2

(
X2

2 +X2
3 + 2BX4

)
. (47)

When p1 = 0 the helix collapses into a circle in the plane x = x0. Thus the
problem reduces to the two-dimensional one. Let us now restrict to the case
p1 6= 0.
By inspection of the solution of the equations of motion one finds that this system
is maximally superintegrable with, however, the fifth independent integral not
polynomial in momenta. It reads

X5 = (Bz − p2) cos

(
Bx

p1

)
− p3 sin

(
Bx

p1

)
. (48)

How to interpret this integral in the quantum case is not too clear. However, if we
restrict ourselves to the subspace in the Hilbert space defined by the constraint

P̂1ψ(~x) = k1ψ(~x), k1 6= 0 (49)

we can expand X̂5 into a convergent Taylor series in Bx
k1

. We can then interpret

the quantum integral of motion X̂5 as an operator in the “extended enveloping
algebra” of the Heisenberg algebra.
Alternatively, for the classical Hamiltonian we can perform a canonical
transformation in the x, p1 plane

p̃1 =
p21
2
, x̃ =

x

p1
, p1 > 0 (50)

which transforms the integrals into

H̃ = p̃1 +
1

2

(
(p2 −Bz)2 + p23

)
, X̃1 = p̃1, X̃2 = p2,

X̃3 = p3 −By, X̃4 = l1 +
B

2

(
z2 − y2

)
, (51)

X̃5 = (Bz − p2) cos (Bx̃)− p3 sin (Bx̃) .
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Thus X̃5 becomes a first order polynomial in the momenta. The price is that H̃
no longer has the “natural” form (44).

The integrals X1, . . . , X5 give rise to a Lie algebra of integrals of motion in the
following manner. We define additional functionally dependent integrals

X6 = {X4, X5}P.B. = (p2 −Bz) sin

(
Bx

p1

)
− p3 cos

(
Bx

p1

)
, X7 = 1 (52)

and redefine the first integral to be

X̃1 =
X2

1

2
=
p21
2
. (53)

The Poisson brackets now form a 7–dimensional Lie subalgebra of integrals of
motion in the algebra of observables on our system, with the Lie brackets

{ , }P.B. X̃1 X2 X3 X4 X5 X6 X7

X̃1 0 0 0 0 −BX6 BX5 0
X2 0 0 BX7 −X3 0 0 0
X3 0 −BX7 0 X2 0 0 0
X4 0 X3 −X2 0 X6 −X5 0
X5 BX6 0 0 −X6 0 −BX7 0
X6 −BX5 0 0 X5 BX7 0 0
X7 0 0 0 0 0 0 0

(54)

This algebra is solvable with 5–dimensional nilradical spanned byX2, X3, X5, X6, X7.
The nilradical is isomorphic to the Heisenberg algebra in two spatial dimensions
(n5,3 in the notation of [27]). The element X7 spans the center. Its Casimir invari-

ants are the central element X7 and two second order invariants 2X̃1X7+X2
5 +X2

6 ,
2(BX4 + X̃1)X7 +X2

2 +X2
3 which both reduce to the Hamiltonian (44) once the

explicit form of the integrals is inserted into them.
We observe that in terms of the original integral X1 instead of its square X̃1 we
obtain an infinite-dimensional loop algebra.
As it is well-known in the physics literature (see e.g. [26], pg. 220), the Schrödinger
equation for the Hamiltonian (44) separates in Cartesian coordinates as follows

ψ(~x) = f(z) exp

(
i

~
k1x

)
exp

(
i

~
k2y

)
,

~2f̈(z) =
(
(Bz − k2)2 + k21 − 2E

)
f(z), (55)

X1ψ(~x) = k1ψ(~x), X2ψ(~x) = k2ψ(~x).

The reduced Schrödinger equation (55) is the stationary Schrödinger equation

for the 1–dimensional harmonic oscillator with the energy E − k21
2 , frequency

ω = B and the center of the force at z = k2/B. Thus the spectrum of the
Hamiltonian (44) is continuous due to the arbitrary momentum k1 and reads

E =
k21
2

+ ~B
(
n+

1

2

)
, n ∈ N0, k1 ∈ R. (56)

The eigenvectors are expressed in terms of Hermite polynomials

ψn,k1,k2(~x) = Hn

(√
B

~

(
z − k2

B

))
exp

(
i

~
(k1x+ k2y)

)
exp

(
− B

2~

(
z − k2

B

)2
)
.(57)
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It was conjectured in [28] that all maximally superintegrable quantum systems in
Euclidean spaces are exactly solvable. Equations (56), (57) confirm this conjecture
for a particle in a constant magnetic field. This is true even though one of the
independent integrals X5 is not polynomial in its natural setting.

• If γ1 = γ2 = 0 we have to distinguish further subcases. If γ3 = 0 the system
again reduces to a constant magnetic field and vanishing electric field. If γ3 6= 0
and β = 0 the magnetic field must vanish and we are in a situation without
vector potential, which is not of interest here (and already well studied, see e.g.
[9, 10, 11, 12]). However, if γ3 6= 0, β 6= 0 (and without loss of generality we can

assume γ3 = 1) we obtain a nontrivial solution for ~A and V

~A(~x) =

(
−A cos

(
z + φ0
β

)
,−A sin

(
z + φ0
β

)
, 0

)
,

~B(~x) =

(
A

β
cos

(
z + φ0
β

)
,
A

β
sin

(
z + φ0
β

)
, 0

)
, (58)

V (~x) = const.

where A > 0 and φ0 are integration constants. We can simplify it by Euclidean
transformations and a shift of the potential to

~A(~x) =

(
−A cos

(
z

β

)
,−A sin

(
z

β

)
, 0

)
,

~B(~x) =

(
A

β
cos

(
z

β

)
,
A

β
sin

(
z

β

)
, 0

)
, V (~x) = 0. (59)

The integral of motion X3 (40) reduces to

X3 = l3 + βp3 (60)

in the gauge chosen above. As before, this calculation is the same in both classical
and quantum mechanics.
The classical equations of motion take the form

ṗ1(t) = 0, ṗ2(t) = 0, ṗ3(t) =
A

β

(
− sin

(
z(t)

β

)
p1(t) + cos

(
z(t)

β

)
p2(t)

)
,

ẋ(t) = p1(t)−A cos

(
z(t)

β

)
, ẏ(t) = p2(t)−A sin

(
z(t)

β

)
, ż(t) = p3(t) (61)

and can be solved by quadratures. Namely, we express the conserved momenta
in the polar form

p1 = p cos

(
φp
β

)
, p2 = p sin

(
φp
β

)
(62)

where p ≥ 0 and φp are constants, and find a second order equation for z(t)

z̈(t) = −Ap
β

sin

(
z(t)− φp

β

)
. (63)

The order of this equation can be lowered, obtaining

1

2
(ż(t))

2
= Ap

(
cos

(
z(t)− φp

β

)
+ κ

)
, κ ≥ −1. (64)

(κ < −1 is unphysical since then (64) doesn’t have real solutions.) We substitute

z(t) = φp + β arccos(ζ(t)) (65)
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and we find a separable first order ODE for ζ(t)

(ζ̇(t))2 = −2Ap

β2
(ζ(t)− 1)(ζ(t) + 1)(ζ(t) + κ) (66)

solvable in terms of elliptic integrals. Explicitly, we change the independent
variable

t =
β√
2Ap

τ (67)

to have a simpler equation

(ζ̇(τ))2 = −(ζ(τ)− 1)(ζ(τ) + 1)(ζ(τ) + κ). (68)

The solution depends on the value of the integration constant κ, namely 1 < κ <
−1 and 1 ≤ κ demonstrate different behavior, and on the initial value for ζ(τ).
For κ > 1 we find a solution in the form

ζ(τ) =
1− κ2

2sn2
(

1
2

√
κ+ 1(τ − τ0),

√
2

κ+1

)
− κ− 1

− κ. (69)

For −1 < κ < 1 we find a solution in the form

ζ(τ) =
2(1− κ)

2− (κ+ 1)sn2
(

1
2

√
2(τ − τ0),

√
κ+1
2

) − 1. (70)

The equations of motion for x(t), y(t) now reduce to quadratures (61) in terms
of the Jacobi elliptic function sn. Solving them numerically we obtain the
trajectories for our system. For −1 < κ < 1 they are bounded in the plane
perpendicular to (p1, p2, 0) and appear like a deformed helix whose axis is parallel
to the vector (p1, p2, 0). For 1 ≤ κ they are no longer bounded in the z-direction

Figure 1. Sample trajectory for −1 < κ < 1 (with A = 3, β = 3, p1 = 1, p2 =
0, x(0) = 0.08, y(0) = 0.05, z(0) = 0, ż(0) = 3.2)

and appear like a deformed helix whose axis is no longer parallel to the xy-plane.
The value κ = 1 appears to be a limiting case of the κ > 1 situation.
In the quantum case the stationary Schrödinger equation

Ĥψ(~x) = Eψ(~x)

separates in Cartesian coordinates. We have

ψ(~x) = χ(z) exp

(
i
K

~
cos(φK)x

)
exp

(
i
K

~
sin(φk) y

)
,

X1ψ(~x) = K cos(φK)ψ(~x), X2ψ(~x) = K sin(φK)ψ(~x), (71)

~2χ̈(z) =

(
−2AK cos

(
z

β
− φK

)
+A2 +K2 − 2E

)
χ(z).
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Figure 2. Sample trajectory for κ > 1 (with A = 3, β = 3, p1 = 1, p2 = 0, x(0) =
0.08, y(0) = 0.05, z(0) = 0.1, ż(0) = 3.5)

Figure 3. Sample trajectory for κ = 1 (with A = 3, β = 3, p1 = 1, p2 = 0, x(0) =
0.08, y(0) = 0.05, z(0) = 0, ż(0) = 2

√
3)

The separated equation for χ(z) is solved in terms of Mathieu sine and cosine
functions C(a, q, x) and S(a, q, x), i.e. independent solutions of the Mathieu’s
differential equation

ÿ + (a− 2q cos(2x))y(x) = 0,

as follows

χ(z) = C1 C

(
−4

β2

~2
(A2 +K2 − 2E),−4

β2

~2
AK,

φk
2
− z

2β

)
+ (72)

+C2 S

(
−4

β2

~2
(A2 +K2 − 2E),−4

β2

~2
AK,

φk
2
− z

2β

)
.

This leads to the conjecture that the Hamiltonian system with the potentials (59)
is maximally superintegrable but an explicit calculation shows that that
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hypothetical further integral cannot be of order one or two in momenta. In
the classical case an additional fifth integral can be found from the Hamiltonian
flow (61). We use the method of characteristics to arrive at the equation

dy

p2 −A sin
(
z
β

) =
dz√

2A cos( zβ )p1 + 2A sin
(
z
β

)
p2 + u

(73)

where u = p23− 2A
(
p1 cos( zβ )) + p2 sin

(
z
β

))
= 2H −X2

1 −X2
2 −A2 is a constant

of motion. Its solution is expressed in terms of Jacobi elliptic functions whose
arguments depend on the momenta p1, p2 and p3. Hence is not polynomial in the
momenta at all.

4. Superintegrability for the integrable system with integrals L3, P3

Let us perform a similar analysis for the case (30)

X1 = lA3 +m1(~x), X2 = pA3 +m2(~x).

Requiring that X1 and X2 are in involution we find the condition

xB1 + yB2 + x∂ym2 − y∂xm2 − ∂zm1 = 0. (74)

Equations (15) reduce to

∂xm1 = −xB3, ∂ym1 = −yB3, ∂zm1 = yB2 + xB1,

∂xm2 = B2, ∂ym2 = −B1, ∂zm2 = 0. (75)

Solving these equations and their compatibility conditions we find that

m1(~x) = −F2(R), m2(~x) = F1(R), R =
√
x2 + y2,

~B(~x) =

(
−F ′1

y

R
, F ′1

x

R
,

1

R
F ′2

)
, (76)

~A(~x) =
(
− y

R2
F2(R),

x

R2
F2(R),−F1(R)

)
, V (~x) = V (R).

Substituting (76) into our form of the integrals (30) we find that in our choice of gauge
we have in fact

X1 = l3, X2 = p3, (77)

i.e. the first order integrals are again of direct geometric origin and there is no other
possibility for them if we assume their form as in (30).

The computation in the quantum case is essentially the same. We obtain the
same structure of the potentials (76) and the integrals

X̂1 = L̂3, X̂2 = P̂3. (78)

Thus the stationary Schrödinger equation separates in the polar coordinates

x = R cosφ, y = R sinφ, z = z (79)

as follows

ψ(~x) = exp(imφ) exp(ikz)ρ(R),

~2ρ̈(R) = − ~2
ρ̇(R)

R
+ (F1(R)− ~k)

2
ρ(R) + 2V (r)ρ(R) (80)

+
1

R2
(F2(R) + ~m)

2
ρ(R)− 2Eρ(R).
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Like in the previous section let us now turn our attention towards possible
superintegrable Hamiltonians which are integrable by virtue of the integrals (77).
We assume first an additional integral in the first order form

X3 =

2∑
i=1

(
γi3li + βi3pi

)
+m3(~x). (81)

As before, the compatibility of equations (15) strongly restricts the possibilities.
Namely,

• if (γ13)2 + (γ23)2 6= 0 then the magnetic field ~B(~x) must vanish, i.e. this case is of
no interest to us here;

• if γ13 = γ23 = 0 then we arrive at the already discussed superintegrable case of the
constant magnetic field and vanishing electric field.

Thus we have not found any nontrivial Hamiltonian with magnetic field
superintegrable at the first order with the integrals (77).

Next we consider the same problem with the second order integral of the form (17).
By subtracting a function of the known integrals and the Hamiltonian and using the
relation ~p ·~l = 0 we can a priori set to zero the constants

α11, α14, α33, α36, α66. (82)

We substitute these into (17) and consider equations (14), (15) and (16) and their
compatibility conditions. We find after a tedious but straightforward calculation
whose details we are not presenting here that for nonconstant functions F1 and/or
F2 in (76) no second order integral (17) independent of the Hamiltonian, X1 and X2

can be found.
Thus we have to conclude that the system with the potentials and field

strength (76) is not first or second order minimally superintegrable for any nonconstant

choice of the magnetic field ~B(~x) and the electrostatic potential V (~x). The same result
applies also to the quantum case where only the difference between equations (16)
and (24) needs to be considered.

5. Superintegrability for the integrable system with integrals L1, L2, L3

Let us now turn our attention to the case when we have three first order integrals of
motion (32). We cannot choose among them two in involution but we easily obtain a
second order integral

( ~X)2 = (X1)2 + (X2)2 + (X3)2 (83)

which is in involution with all of them. Thus assuming that we have the integrals

X1 = lA3 +m1(~x), X2 = lA1 +m2(~x)

we have immediately a minimally superintegrable system.
The compatibility of equations (15) for the three integrals X1, X2 and X3 =

lA2 + m3(~x) leads directly to the following 1–parameter family of solutions for the
magnetic field

~B(~x) = g
~x

|~x|3
, (84)
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i.e. the only possibility is a magnetic monopole of an arbitrary strength g. The vector
potential ~A is always singular at least along a halfline connecting the origin to infinity.
We can take e.g.

~A(~x) =
g

|~x|(x2 + y2)
(y(z − |~x|),−x(z − |~x|), 0) (85)

which satisfies the Coulomb gauge condition ∇ ~A = 0. The functions mj(~x) are
obtained by integrating equations (15) and up to an irrelevant additive constant read

mj(~x) = g
xj
|~x|
. (86)

From the condition (16) we find that the electrostatic potential V (~x) must be
spherically symmetric,

V (~x) = V (|~x|). (87)

Thus the classical Hamiltonian system (1) with the potentials and field strengths
defined in (84), (85), (87) is the only system which possesses the three first order
integrals (32) and is minimally superintegrable due to the functionally independent
integral X3. Explicitly, the integrals of motion in our choice of gauge (85) read

X1 = l1 + g
x(|~x| − z)
x2 + y2

,

X2 = l2 + g
y(|~x| − z)
x2 + y2

, (88)

X3 = l3 + g,

( ~X)2 = (l1)2 + (l2)2 + (l3)2 + 2g(l3 + g)|~x| |~x| − z
x2 + y2

.

Since all the conditions considered are the same for both the classical and quantum
situation, we have the same structure of minimally superintegrable system also at
the quantum level. This rotational invariance of the magnetic monopole was already
observed in [29].

Next, we shall look for an additional independent integral X4 of the form (17),
i.e. at most second order in momenta, which would make our system maximally
superintegrable. That means looking at the conditions (13)-(16) for the already

determined magnetic field ~B (84) and restricted electrostatic potential V (|~x|) (87)
and establishing for which choices of V (~x) an additional integral exists. We assume
that a suitable polynomial combination of the Hamiltonian and the already known
integrals X1, X2, X3 was subtracted from X4. Together with the relation

~l · ~p = 0

we can thus set to zero the following constants αij in the integral (17)

α11, α14, α44, α45, α46, α55, α56, α66.

The compatibility conditions for equations (21) lead to the following values of the
remaining constants αij in (17)

α12 = 0, α13 = 0, α22 = 0, α23 = 0,

α24 = −α15, α25 = 0, α33 = 0, (89)

α34 = −α16, α35 = −α26, α36 = 0
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leaving three yet undetermined constants α15, α16, α26. Solving the conditions (14)
for ~s we find

s1(~x) = g

(
α15

y

|~x|
+ α16

z

|~x|

)
,

s2(~x) = g

(
α26

z

|~x|
− xα15

x

|~x|

)
, (90)

s3(~x) = −g
(
α16

x

|~x|
+ α26

y

|~x|

)
.

The compatibility of the conditions (15), e.g. ∂x(∂ym) = ∂y(∂xm), requires that either

• α15, α16, α26 are all equal to zero and thus also ~s = 0, i.e. there is no additional
independent integral, or

• the scalar potential must satisfy

V (~x) =
g2

2

1

|~x|2
− Q

|~x|
, (91)

i.e. the particle moves in the Coulomb potential modified by the |~x|−2 term
proportional to the strength of the magnetic monopole. Solving the remaining
conditions (15) we find that the scalar part of the integral X4 now reads

m(~x) =
2Q

|~x|
(α16y − α26x− α15z) . (92)

The condition (16) is satisfied identically after plugging-in (90) and (91).
The three constants α15, α16, α26 remain arbitrary and we have three additional
integrals of the given form which are the components of the Laplace-Runge-Lenz
vector modified by the presence of the magnetic monopole

Rj = εjkl (pk +Ak)Xl −Q
xj
|~x|
, j = 1, 2, 3. (93)

Of course, only one of them is functionally independent of the Hamiltonian and
the integrals X1, X2, X3.
The same conclusions apply also to the quantum case where the analysis is
essentially the same, taking into account appropriate symmetrization, and the
expressions (84), (90), (91) and (92) can be taken over literally.
The fact that the system with the magnetic field (84) and the modified Coulomb
potential (91) is maximally superintegrable has of course been known for long
time (see e.g. [30, 31] and references therein). Here we have shown that under
the restrictions imposed on the structure and order of the integrals there is no
other maximally superintegrable case in this class. We notice that the restrictions
imposed are more general than the ones under which a similar result was derived
in [32].
While it may be surprising that no modification of the isotropic harmonic
oscillator arose in our calculation, we refer the reader to [31, 33] where it was
demonstrated that it is maximally superintegrable but with fourth order integrals,
not at most second, as considered here.

6. Conclusions

In Section 2 we derived the determining equations (13)–(16) for the coefficients of
a general second order integral of motion (10) and discussed their compatibility
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conditions. As in the case of a purely scalar potential [8] the coefficients hj(~x), nj(~x)
satisfy equations (13) that do not depend on the potentials. These equations (13) are
easy to solve and imply that the leading terms in the integral X lie in the enveloping
algebra of the Euclidean Lie algebra e3. As opposed to the scalar case ( ~A(~x) = 0), first
order terms in X are not excluded (even and odd terms do not commute separately).

Also, for ~A(~x) 6= 0 the classical and quantum determining equations differ, see (24).
We recall that for scalar particles the classical and quantum determining equations
and hence also the integrals of motion and the superintegrable Hamiltonians differ
only for integrals of order N ≥ 3 [34, 35, 36, 37, 38].

In general, these determining equations and also their compatibility conditions
are difficult to solve. Indeed, if the magnetic field ~B(~x) and the potential V (~x) are not
known the equations are nonlinear. They can be used in several manners. First of all,
for the system to be second order integrable two such integrals must exist in addition
to the Hamiltonian and they must commute. The leading order terms of such pairs
of commuting integrals were classified into 11 conjugacy classes [9] under Euclidean

transformations and this classification remains the same for ~B(~x) 6= 0 though the
nonleading terms are different. In the purely scalar case each class corresponds to
the separation of variables in the Hamilton-Jacobi equation and in the Schrödinger
equation, respectively.

This correspondence no longer holds in the presence of a magnetic field. However,
for ~B(~x) 6= 0 it is still possible to consider each class separately and this allows
significant simplifications. The case of integrals of motion with leading terms of the
form P 2

1 , P
2
2 was studied in [22].

It is actually easier to study superintegrable systems than integrable ones since the
conditions on the potentials are more constraining. In this article we have determined
all superintegrable systems with at least 2 first order integrals and at least four
independent integrals altogether (including the Hamiltonian). We have found the
following superintegrable systems:

(i) A constant magnetic field and no electric field (42). This system has 4 first
order integrals (43), the Hamiltonian is a polynomial in these four. The system
is maximally superintegrable but the fifth integral X5 (48) is a transcendental
function of the momenta rather than a polynomial. In classical mechanics this is
not a problem. In quantum mechanics there are difficulties with its interpretation.
This system is well-known to be exactly solvable [25, 26] but to our knowledge
its maximal superintegrability has not be noticed before. The Poisson algebra of
integrals of motion is given in (54).

(ii) The system (59) with a periodic magnetic field and zero electric one. There are 3
first order integrals p1, p2 and l3+βp3, the Hamiltonian H and one nonpolynomial
integral. The classical trajectories are given in terms of elliptic functions (66) and
examples are given on Figure 1 and Figure 2. The Schödinger equation is solved
in terms of periodic Mathieu functions (72). The energy spectrum is continuous.

(iii) The magnetic monopole with the magnetic field (84) and the scalar potential (91).
Its second order maximal superintegrability is well-known [30]. We have shown
that it is the only second order spherically symmetric maximally superintegrable
system in E3 with nonvanishing magnetic field. A fourth order superintegrable
system is also known [31, 33].

All maximally superintegrable systems presented in this article are exactly solvable,
both in classical and quantum mechanics. To show their superintegrability it was
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necessary to consider nonpolynomial and nonrational integrals of motion. In a
completely different context nonpolynomial integrals arise also for the purely scalar
potentials, see e.g. [39, 40, 41, 42].

In [17] the structure of the gauge–invariant integrable and superintegrable systems
involving vector potentials was considered in two spatial dimensions. Among other
results it was shown there that under the assumption that the integrals are at most
second order in momenta every superintegrable system in dimension 2 has constant
magnetic field. However, as we have seen in Section 5 in three spatial dimensions the
second order maximal superintegrability does not imply constant magnetic field.
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