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Abstract

The main purpose of this article is to show how structure reflected in partial differential
equations can be preserved in a discrete world and reflected in difference schemes. Three
different structure preserving discretizations of the Liouville equation are presented and
then used to solve specific boundary value problems. The results are compared with exact
solutions satisfying the same boundary conditions. All three discretizations are on four
point lattices. One preserves linearizability of the equation, another the infinite dimensional
symmetry group as higher symmetries, the third preserves the maximal finite dimensional
subgroup of the symmetry group as point symmetries. A 9-point invariant scheme that gives
a better approximation of the equation, but worse numerical results for solutions is presented
and discussed.

1 Introduction

This article is part of a general program the aim of which is to make full use of the theory of
continuous groups (Lie groups) to study the solution space of discrete equations and in particular
to solve difference equations [6, 13, 17, 23]. This is one of the areas to which Luc Vinet made
important original contributions [8–10,15].

Several recent articles [1,14,22] were devoted to discretizations of the Liouville equation [19]

zxy = ez, (1.1)

or its algebraic version
uuxy − ux uy = u3, u = ez. (1.2)
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The Liouville equation is of interest for many reasons. In differential geometry it is the
equation satisfied by the conformal factor z(x, y) of the metric ds2 = z2(dx2 + dy2) of a two-
dimensional space of constant curvature [7]. In the theory of infinite dimensional nonlinear
integrable systems it is the prototype of a nonlinear partial differential equation (PDE) lin-
earizable by a transformation of variables, involving the dependent variables (and their first
derivatives) alone [19]

u = 2
φxφy
φ2

φxy = 0. (1.3)

In Lie theory this is probably the simplest PDE that has an infinite-dimensional Lie point
symmetry group [21]. The symmetry algebra of the algebraic Liouville equation (1.2) is given
by the vector fields

X(f(x)) = f(x)∂x − fx(x)u∂u, Y (g(y)) = g(y)∂y − gy(y)u∂u, (1.4)

where f(x) and g(y) are arbitrary smooth functions.
Eq. (1.4) is a standard realization of the direct product of two centerless Virasoro alge-

bras and we shall denote the corresponding Lie group V IR (x) ⊗ V IR (y). Restricting f(x)
and g(y) to second order polynomials we obtain the maximal finite–dimensional subalgebra
slx (2,R)

⊕
sly (2,R) and the corresponding finite dimensional subgroup SLx (2,R)⊗SLy (2,R)

of the symmetry group.
The Liouville equation is also an excellent tool for testing numerical methods for solving

PDE’s, since eq. (1.3) provides a very large class of exact analytic solutions, obtained by
putting

φ(x, y) = φ1(x) + φ2(y), (1.5)

where φ1(x) and φ2(x) are arbitrary C(2)(I) functions on some interval I.
In [1] Adler and Startsev presented a discrete Liouville equation that preserves the property

of being linearizable. In [22] Rebelo and Valiquette wrote a discrete Liouville equation that has
the same infinite dimensional V IR (x) ⊗ V IR (y) symmetry group as the continuous Liouville
equation. The transformations are however generalized symmetries, rather than point ones. In
our article [14] we presented a discretization on a four–point stencil that preserves the maximal
finite–dimensional subgroup of the V IR (x) ⊗ V IR (y) group as point symmetries. It was also
shown that it is not possible to conserve the entire infinite dimensional Lie group of the Liouville
equation as point symmetries. In [14] we also compared numerical solutions obtained using
standard (non invariant) discretizations, the Rebelo–Valiquette invariant discretization [22] and
our discretization with exact solutions (for 3 different specific solutions). It turned out that the
discretization based on preserving the maximal subgroup of point transformations always gave
the most accurate results for the considered solutions (all of them strictly positive in the area
of integration).

The purpose of this article is to further explore and compare the different discratizations of
the Liouville equation from two points of view. One is a theoretical one, namely to investigate
the degree to which different discretizations preserve the qualitative feature of the equation: its
exact linearizability, its infinite dimensional Lie point symmetry algebra, the behavior of the
zeroes of the solutions. The other point of view is that of geometric integration: what are the
advantages and disadvantages of the different discretizations as tools for obtaining numerical
solutions.

In Section 2 we reproduce our previous [14] SLx (2,R) ⊗ SLy (2,R) symmetry preserving
discretization using a 4-point stencil and show that in theory it can reproduce solutions that
have horizontal or vertical lines of zeroes (or both). In Section 3 we propose an alternative dis-
cretization, using a 9–point stencil, instead of the 4–point one. It approximates the continuous
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Liouville equation with ε2 precision, as opposed to the ε precision of the 4–point discretization.
We show that increasing the number of points does not allow us to preserve the entire infinite–
dimensional symmetry algebra, nor to treat the lines of zeroes of solutions in a satisfactory
manner. The Adler–Startsev discretization [1] is reproduced in Section 4 in a form suitable
for numerical calculations. Section 5 is devoted to numerical experiments. Four different exact
solutions of the algebraic Liouville equation are presented and then used to calculate boundary
conditions on two lines parallel to the coordinate axes. The solutions are then calculated nu-
merically using four different discretizations. We compare the goodness of the different methods
and their qualitative features.

2 Point symmetries on a four point lattice and solutions with
zeroes

In our previous article [14] we discretized the algebraic Liouville equation (1.2) on a four point
regular orthogonal lattice preserving the SLx (2,R)⊗ SLy (2,R) subgroup of its Lie point sym-
metries. The discretization was shown to provide good numerical results for solutions that were
strictly positive in the entire integration region (a quadrant to the right and above a chosen
point (x0, y0), i.e. for x ≥ x0, y ≥ y0).

A particular property of the Liouville equation is that the zeroes of its solutions are not
isolated. They occur on lines parallel to the x or y axes. Indeed, consider the infinite family of
solutions of (1.2) parametrized by two arbitrary smooth functions of one variable φ1(x), φ2(y)
(1.5). We take a region in which we have φ1(x) + φ2(y) 6= 0. Zeroes of u(x, y) occur if φ1,x(x),
or φ2,y(y) are zero at some point xs, or ys (or both), respectively. We then have

u(xs, y) = 0, ∀y, or u(x, ys) = 0, ∀x . (2.1)

This must be reflected in any computational scheme and the value u(x, y) = 0 will also occur
on the intersection with the corresponding coordinate axis.

In [14] we considered several different boundary value problems. Here we restrict to the case
of boundary conditions given on the lines x ≥ x0, y ≥ y0 parallel to the coordinate axis. We
can impose

u(xs, 0) = 0 and/or u(0, ys) = 0 (2.2)

in order to obtain a solution satisfying (2.1).
The SLx (2,R)⊗SLy (2,R) invariants used in [14] to describe both the lattice and the discrete

algebraic Liouville equation on a four point stencil were

ξ1 =
(xm,n+1−xm,n)(xm+1,n+1−xm+1,n)
(xm,n−xm+1,n)(xm,n+1−xm+1,n+1)

, η1 =
(ym,n − ym+1,n) (ym,n+1 − ym+1,n+1)

(ym,n+1 − ym,n) (ym+1,n+1 − ym+1,n)
(2.3)

J1 = um+1,num,n+1h
2k2, J2 = um,num+1,n+1h

2k2. (2.4)

The lattice equations

ξ1 = 0, η1 = 0 (2.5)

are satisfied by the uniform orthogonal lattice

xm,n = hm+ x0, ym,n = kn+ y0 (2.6)

where the scale factors h and k are the same as in (2.4). The continuous limit corresponds to
h → 0, k → 0. Two further independent SLx (2,R) ⊗ SLy (2,R) invariants exist on the four
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point stencil but any combination of them will either vanish, or be infinite on the lattice given
by (2.5) (see [14]).

The Liouville equation (1.2) was approximated in [14] by the difference scheme

J2 − J1 = a |J1|3/2 + b J1|J2|1/2 + c |J1|1/2J2 + d |J2|3/2, (2.7)

ξ1 = η1 = 0, a+ b+ c+ d = 1.

Eq. (2.7) can be solved for um+1,n+1 in terms of un,m, un+1,m and un,m+1. On the first stencil
we have m = n = 0. The boundary conditions are um,0 = f(m) and u0,n = g(n) with f and g
given.

Let us now rewrite the recurrence relation (2.7) in terms of um,n, choose b = d = 0, c =
1− a, a ∈ R (in order to have an explicit scheme) and solve for um+1,n+1. We have

um+1,n+1 =
um,n+1um+1,n

um,n
Am,n+1;m+1,n, (2.8)

Am,n+1;m+1,n =
1 + ahk

√
|um,n+1um+1,n|

1 + (a− 1)hk
√
|um,n+1um+1,n|

. (2.9)

We shall use (2.8, 2.9) to investigate the behavior of the numerical schemes for solutions that
have rows (horizontal lines) or column (vertical lines) of zeroes. We impose boundary conditions
on the lines x = xs and y = ys. To see the influence of the boundary conditions we introduce
small quantities µ and ν on the coordinate axes that shall later be set to zero. We shall see that
these small values do not propagate elsewhere but are confined to the columns and rows where
they were introduced. This procedure is analogous to ”singularity confinement” [11,12] used as
an integrability criterion for difference equations.

We first note that we have

lim
um,n+1→0

Am,n+1;m+1,n = lim
um+1,n→0

Am,n+1;m+1,n = 1. (2.10)

Three cases will be considered separately:

1. A column of zeroes. The boundary conditions are

um0,0 = µ, um,0 6= 0 for m 6= m0. (2.11)

Using (2.8, 2.10) we obtain expressions for um0,n, namely

um0,n =
um0−1,n
um0−1,0

µ, n ≥ 0. (2.12)

In the column to the right of the zeroes we obtain two equivalent expressions:

um0+1,n = um0+1,n−1
um0−1,n
um0−1,n−1

, (2.13)

um0+1,n = um0−1,n
um0+1,0

um0−1,0
. (2.14)

Thus the zero quantity µ cancels out and um0+1,n is finite and nonzero for all n ≥ 0.
Moreover um0+1,n is expressed in terms of the given initial values and values calculated at
previous nonzero values.

2. A row of zeroes can be treated completely analogously.

The boundary conditions are replaced by

u0,n0 = ν, u0,n 6= 0 forn 6= n0, (2.15)
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and we obtain

um,n0 =
um,n0−1
u0,n0−1

ν, m ≥ 0 (2.16)

i.e. a row of zeroes for ν = 0. The row above the zeroes satisfies

um,n0+1 = um−1,n0+1
um,n0−1
um−1,n0−1

, (2.17)

um,n0+1 = um,n0−1
u0,n0+1

u0,n0−1
. (2.18)

3. Two intersecting lines of zeroes.

The boundary conditions are

u0,n0 = ν, um0,0 = µ; um,0 6= 0 form 6= m0, u0,n 6= 0 forn 6= n0. (2.19)

Using the same considerations as above we find a column and a row of zeroes satisfying

um0,n =
um0−1,n
um0−1,0

µ, n 6= n0, um,n0 =
um,n0−1
u0,n0−1

ν, m 6= m0, (2.20)

um0,n0 =
um0−1,n0−1

u0,n0−1um0−1,0
µν. (2.21)

Thus, for µ = 0, ν = 0 the solutions um,n have zeroes precisely where they should. Now
let us use (2.8, 2.10) to calculate the values of um0+1,n and um,n0+1, i.e. the column at
the right and the row above the zeroes. The final result is that (2.13) is valid for all
n 6= n0, n0 + 1 and (2.17) for all m 6= m0,m0 + 1 with

um0+1,n0+1 = um0−1,n0+1
um0+1,n0−1
um0−1,n0−1

, (2.22)

while (2.14) is valid for all n 6= n0 and (2.18) for all m 6= m0.

Finally we see that the zeroes are confined to the rows and columns determined by a zero
in the boundary condition and that the values of um,n everywhere else are finite, non zero
and determined by the equations (2.8, 2.9) and the boundary conditions.

3 Invariant discretization of the algebraic Liouville equation on
a 9-point stencil

In Section 2 and in [14] we have shown that the Liouville equation can be approximated on 4
points. To approximate an arbitrary second order PDE for a function u(x, y) we need at least
6 points. An invariant discretization may need more than six.

Eq. (2.7) satisfies

lim
h,k→0

1

h3k3
{J2 − J1 − [a|J1|3/2 + bJ1|J2|1/2 + c|J1|1/2J2 + d|J2|3/2]} = (3.1)

= [uuxy − uxuy − u3][1 +O(h, k)],

and thus provides a first order approximation of the algebraic Liouville equation. In this section
we will explore a second order approximation (order O(h2, k2, hk)) of the equation (1.2). To do
this we shall use a 9-point stencil as shown on Fig. 1 and 2. The 4 well–behaved invariants (2.3,
2.4) of Section 2 make use of the four vertices of rectangle I on Fig.2. Instead of the vertices
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(0,0)

(1, 0)

(0, 1)

(1,1)

(0, 2)

(2, 0)

(1, 2)

(2, 2)

(2, 1)

k01+k02

δ10

k01

δ10+δ20

k01+δ11

h10

ϵ01+ϵ02
ϵ01 h10+h20

h10+ϵ11

Figure 1: Points on a general lattice, e.g. x00 = x, x10 = x+h10, x01 = x+ε01, x11 = x+h10+ε11,
x20 = x + h10 + h20, x02 = x + ε01 + ε02, x12 = x + h10 + ε11 + ε12, x21 = x + h10 + h20 + ε21,
x22 = x + h10 + h20 + ε21 + ε22, y00 = y, y01 = y + k01, y10 = y + δ10, y11 = y + k01 + δ11,
y02 = y + k01 + k02, y20 = y + δ10 + δ20, y12 = y + k01 + k02 + δ12, y21 = y + k01 + δ10 + δ20,
y22 = y + k01 + k02 + δ12 + δ22 .

Figure 2: A stencil for the 9-points scheme.
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of rectangle I we could use any other 4 points, and we shall use the vertices of the rectangles
II, III and IV . The invariants involving the independent variables ξa and ηa (a = 1, · · · , 4) all
vanish on the orthogonal lattice (2.6). The invariants depending on the dependent variables uij
that are finite and nonzero on this lattice are

J1 = u01u10h
2k2, J2 = u00u11h

2k2, (3.2)

J3 = u11u20h
2k2, J4 = u10u21h

2k2,

J5 = u11u02h
2k2, J6 = u01u12h

2k2,

J7 = u12u21h
2k2, J8 = u11u22h

2k2.

The quantities J1, · · · , J8 are linearly independent but one polynomial relation exists between
them, namely

J4J6 = J1J7. (3.3)

The continuous limit is obtained by expanding the invariants into Taylor series and then taking
h→ 0, k → 0. We shall assume that they tend to zero at the same rate i.e. k = αh, α ∼ 1. We
have:

J1 = h2k2[u2 + huux + kuuy + hkuxuy + (1/2)h2uuxx + (1/2)k2uuyy + · · · ], (3.4)

J2 = h2k2[u2 + huux + kuuy + hkuuxy + (1/2)h2uuxx + (1/2)k2uuyy + · · · ],
J3 = h2k2[u2 + 3huux + kuuy + (1/2)k2uuyy + hk(uuxy + 2uyux) +

+h2((5/2)uuxx + 2u2x) + · · · ],
J4 = h2k2[u2 + 3huux + kuuy + (1/2)k2uuyy + hk(2uuxy + uyux) +

+h2((5/2)uuxx + 2u2x) + · · · ]
J5 = h2k2[u2 + huux + 3kuuy + k2((5/2)uuyy + 2u2y) + hk(uuxy + 2uyux) +

(1/2)h2uuxx + · · · ],
J6 = h2k2[u2 + huux + 3kuuy + k2((5/2)uuyy + 2u2y) + hk(2uuxy + uyux) +

+(1/2)h2uuxx + · · · ]
J7 = h2k2[u2 + 3huux + 3kuuy + k2(2u2y + (5/2)uuyy) + hk(4uuxy + 5uyux) +

+h2(2u2x + (5/2)uuxx) + · · · ]
J8 = h2k2[u2 + 3huux + 3kuuy + k2((5/2)uuyy + 2u2y) + hk(5uuxy + 4uyux) +

+h2((5/2)uuxx + 2u2x) + · · · ]

We see that u22, u02, u20 and u00 figure only once each in the invariants, namely in J8, J5, J3
and J2, respectively. On the other hand u01, u10, u12, and u21 figure twice each, respectively in
(J1, J6), (J1, J4), (J6, J7) and (J4, J7). The value u11 figures in all four of J2, J3, J5 and J8.

To lowest order we have

J2 − J1 = J4 − J3 = J6 − J5 = J8 − J7 = h3k3(uuxy − uxuy)[1 +O(h, k)]. (3.5)

To obtain the left hand side of the algebraic Liouville equation (1.2) up to orderO(h2, hk, k2)
we need the differences J2a − J2a−1 to a higher order than in (3.3), namely

J2 − J1 = h3k3{(uuxy − uxuy) +
h

2
(uuxxy − uyuxx) +

k

2
(uuxyy − uxuyy)}, (3.6)

J4 − J3 = h3k3{(uuxy − uxuy) +
3h

2
(uuxxy − uyuxx) +

k

2
(uuxyy − uxuyy)},

J6 − J5 = h3k3{(uuxy − uxuy) +
h

2
(uuxxy − uyuxx) +

3k

2
(uuxyy − uxuyy)},

J8 − J7 = h3k3{(uuxy − uxuy) +
3h

2
(uuxxy − uyuxx) +

3k

2
(uuxyy − uxuyy)}.
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In [14] equation (1.2) was approximated to order O(h, k). To approximate it to O(h2, hk, k2)
we must get rid of the terms of order O(h, k) in (3.6).

The left hand side is approximated to the needed order by

α[4(J2 − J1)− (J6 − J5 + J4 − J3)] + β[4(J8 − J7)− 3(J6 − J5 + J4 − J3)] = (3.7)

= 2h3k3(uuxy − uxuy)(α− β)[1 +O(h2, hk, k2)],

where α and β are arbitrary real constants.
To express the right hand side of (1.2) we use the basis:

B1 =
1

2
(3J1 − J8) = h2k2u2(1 +R1), B2 = J4 + J6 − J8 − J1 = h2k2R2, (3.8)

B3 = J2 − J1 = h2k2R3, B4 = J4 − J3 = h2k2R4, B5 = J6 − J5 = h2k2R5,

B6 = J8 − J7 = h2k2R6,

where R1, · · · , R6 are all of the order O(h2, hk, k2).
The left hand side of (1.2) is already expressed in this basis (see (3.7) using B3, · · · , B6).
From the basis elements (3.8) we can calculate u2 as

B1 +
6∑
i=2

ciBi = h2k2u2[1 +O(h2, hk, k2)], (3.9)

with 5 free real parameters ci. To obtain u3 we have several possibilities. One is to take

(B1 +
6∑
i=2

ciBi)
3/2 = h3k3u3[1 +O(h2, hk, k2)]. (3.10)

The corresponding discrete Liouville equation is then

α[4B3 − (B4 +B5)] + β[4B6 − 3(B4 +B5)] = (3.11)

= (B1 +
6∑
i=2

ciBi){|B1 +
6∑
i=2

ciBi|}1/2,

with

2(α− β) = 1. (3.12)

Another possibility is to replace the basis (3.8) by

A1 = B1, Aa = B1 +
1

2
Ba, a = 2, · · · , 6. (3.13)

We can then approximate the RHS of the discrete algebraic Liouville equation by

6∑
a,b=1

γa,bAa
√
|Ab| = h3k3u3

6∑
a,b=1

γa,b[1 +O(h2, hk, k2)]. (3.14)

Then the discrete algebraic Liouville equation reads

2α[4A3 − 2A1 − (A4 +A5)] + 2β[4A6 + 2A1 − 3(A4 +A5)] = (3.15)

=

6∑
a,b=1

γa,bAa
√
|Ab|,

6∑
a,b=1

γa,b = 2(α− β).
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In any case we have a large number of free parameters that can be chosen a priori to simplify
calculations.

The choice of the parameters (α, β, c1, · · · , c6) or (α, β, γa,b) is restricted by the type of
boundary conditions we wish to impose.

The quantity u22 figures in J8 only. An explicit scheme is obtained if J8 figures linearly in
the corresponding invariant discrete Liouville equation.

One possibility is to choose α = −3β and c2 = c3 = c4 = c5 = 0, c6 = 1/2 in (3.11, 3.12).
Then β = −1/8 and the invariant Liouville equation reduces to:

J8 = J7 + 3(J2 − J1)−
1√
2

(3J1 − J7)
√
|3J1 − J7|. (3.16)

In term of the field uij (3.16) reads:

u22 =
1

u11
[u12u21 + 3(u11u00 − u10u01)−

1√
2
hk(3u01u10 − u12u21)

√
|3u01u10 − u12u21|].(3.17)

Another simple possibility is to choose α = −3β and γab = δa1δb6 in (3.15). Then we have
β = −1/8 and we obtain

J8 =
J7 + 3(J2 − J1)− 3√

2
J1
√
|3J1 − J7|

1− 1√
2

√
|3J1 − J7|

. (3.18)

In term of the field uij (3.18) reads:

u22 =
u12u21 + 3(u11u00 − u10u01)− 3√

2
hku01u10

√
|3u01u10 − u12u21|

u11[1− hk√
2

√
|3u01u10 − u12u21|]

(3.19)

Equations (3.17) and (3.19) are to be viewed as recursion relations, expressing u2,2 in terms
of the closest 8 points on a rectangle of which the point (22) is the top right vertex (see Fig.2).

By construction (3.17) and (3.19) are better approximations of the equation (1.1) than is
(2.7). This does not mean that they will provide better numerical results and some comments
are in order

1. Boundary conditions for a numerical solution on a 4-point lattice require the knowledge
of u(x, y) on two lines, e.g. um,0 and u0,n, i.e. u(x, 0) and u(0, y). On the 9-point lattice
we must start with 2 sets of parallel lines, e.g. um,0, um,1 and u0,n, u1,n. This amounts to
giving u(x, 0), u(0, y) and the first term of uy(x, 0), ux(0, y). This is more information than
is needed in standard (non invariant) discretizations and indeed more information than is
needed in theory to determine a solution completely. Hence once u(x, 0) and u(0, y) are
given uy(x, 0) and ux(0, y) cannot be chosen arbitrarily.

2. Contrary to the case of a 4-point lattice, instabilities close to zero lines of solutions cannot
be avoided on a 9-point lattice. Indeed let us give initial conditions on the first square
satisfying u00 6= 0, u01 6= 0, u10 6= 0, u11 6= 0, u12 6= 0, u20 = ε1, u21 = ε2. From the known
solution of the PDE (1.1) we expect the solution to satisfy u2,m = 0 for m ≥ 2. Eq. (3.17)
implies

u22 =
1

u11
[u12ε2 + 3(u11u00 − u10u01)−

1√
2
hk(3u01u10 − u12ε2)

√
|3u01u10 − u12ε2|].(3.20)

Thus u22 is not strictly zero for ε1 = ε2 = 0, it does however satisfy u22 ∼ O(h2, k2, hk).
This is acceptable, however the problem arises when we shift the stencil and calculate u32
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which is supposed to be finite and nonzero if we assume u30 6= 0, u31 6= 0. What we obtain
from (3.17) is

u32 =
1

ε2
[O(h2, k2, hk)u31 + 3(ε2u10 − ε1u11)−

− 1√
2
hk(3ε1u11 −O(h2, k2, hk)u31)

√
|3ε1u11 −O(h2, k2, hk)u31|].

Thus, u32 is singular for ε2 = 0 and becomes finite only in the continuous limit h = k = 0.
This will quite obviously create numerical instabilities. They are avoided only for very
special initial conditions, such that u22 = 0 for all h and k. Using (3.19) leads to the same
kind of problems.

Numerical results for several exact solutions showed that serious instabilities occur for the 9–
point scheme and thus we abandon it in favour of the 4–point one.

4 The Adler–Startsev linearizable discrete Liouville equation

Adler and Startsev [1] have presented a discretization of the algebraic Liouville equation (1.2)
on a four-point lattice, namely

am+1,n+1(1 +
1

am+1,n
)(1 +

1

am,n+1
)am,n = 1. (4.1)

This equation is linearizable by the substitution

am,n = −(bm+1,n − bm,n)(bm,n+1 − bm,n)

bm+1,nbm,n+1
, (4.2)

where bm,n satisfies the linear equation

bm+1,n+1 − bm+1,n − bm,n+1 + bm,n = 0. (4.3)

Hence the general solution of (4.1) is

am,n = −(cm+1 − cm)(kn+1 − kn)

(cm+1 + kn)(cm + kn+1)
, (4.4)

where cm, kn are arbitrary functions of one index each.
In [14] we showed, following [1] that the continuous limit of (4.1), for am,n = −hk

2 um,n when
h and k go to zero, gives (1.2) and that it has no continuous point symmetries but must have
generalized symmetries. Moreover by defining cm = φ1(xm,n), kn = φ2(ym,n) with xm,n and
ym,n defined in (2.6) we have

cm+1 = φ1(x) + h
dφ1
dx

+O(h2), kn+1 = φ2(y) + k
dφ2
dy

+O(k2) (4.5)

and thus am,n = −hk φ1,xφ2,y
(φ1+φ2)2

+ O(h3, h2k, hk2, k3) a first order approximation of the general

solution of (1.2) given by (1.3) .
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5 Numerical experiments

In this section we shall apply the invariant recursion formula (2.8, 2.9) to solve a set of boundary
value problems on a quadrant in the xy–plane. Boundary conditions will be given on two
orthogonal lines parallel to the x and y axes and numerical solutions will be constructed above
and to the right of these lines. The numerical solutions will be compared with exact solutions
of the continuous equation for the same boundary conditions. In practice we will start from
exact solutions given by choosing φ(x, y) = φ1(x) + φ2(y) in (1.3) and calculate the values of
these functions on the boundaries. The global estimator which we use is the discrete analog of
relative distance in L2

D. We compute the quantity

χα (F ) =

√√√√√∑ij

(
Fαij − Fij

)2∑
ij F

2
ij

, (5.1)

where Fij are the values of the exact solution F on the lattice sites and Fαij , with α = Inv,AS,RV,
or stand are the values computed numerically for the invariant, Adler–Startsev, Rebello–Valiquette
or standard discretization, respectively. The summation will be over all points of the lattice for
which the calculation was performed.

We will compare results using four different discretization methods and thus four different
recursion formulae, expressing um+1,n+1 in terms of um,n, um+1,n and um,n+1. For comparison
we present the four formulae for the first position of the stencil, i.e. m = n = 0. In all cases the
left hand side of (1.2) is approximated by

u11u00 − u10u01 = h2k2(uuxy − uxuy), (5.2)

where h and k are the lengths of the steps in the x and y directions, respectively. The right hand
side of (1.2) is approximated differently in each case. The corresponding recursion formulae are:

1. The invariant method (2.8, 2.9) (preserving the SLx (2,R) ⊗ SLy (2,R) symmetry group
as point symmetries):

u11u00 − u10u01 = hk[au01u10 + (1− a)u00u11]
√
|u01u10|. (5.3)

2. The Rebelo and Valiquette method (preserving the entire infinite-dimensional symmetry
algebra as generalized symmetries):

u11u00 − u10u01 = hku00u01u10. (5.4)

3. The Adler–Startsev method (preserving linearizability of the Liouville equation):

u11u00 − u10u01 = hku00u11[
u01 + u10

2
− hku01u10]. (5.5)

4. The standard method (not preserving any specific structure):

u11u00 − u10u01 = hku300. (5.6)

Each of these formulae gives a different explicit expression for u11 in terms of the already known
values of u00, u01 and u10.
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We consider 4 different solutions of the continuous algebraic Liouville equation (1.2), namely

f1 =
2

(x2 + 1) (y2 + 1) (tan−1(x) + tan−1(y) + 6)
2 , (5.7)

f2 =
8
(
1− 4

(
x+ 1

2

))
(1− 4y) exp (−2x (1 + 2x)− 2y (y + 2))(

e−2x(1+2x) + e2y(1−2y) + 1
)2 , (5.8)

f3 = − 3.38 sin(1.3(x+ 0.01)) cos(1.3(y + 0.01))

(cos(1.3(x+ 0.01)) + sin(1.3(y + 0.01)) + 3)2
(5.9)

f4 =
8xy

(x2 + y2 + 2)2
(5.10)

The function f1 does not contain any zeroes in any finite domain. The functions f2 and f4 have
one row and one column of zeroes each. The function f3 contains infinitely many orthogonal
lines of zeroes, since it is a periodic function.

a) b)

c) d)

Figure 3: Plotting of the functions (a) f1, (b) f2, (c) f3 and (d) f4 in the domain used later in
the numerical integration

We mention that the right hand sides of (5.4–5.6) are polynomials whereas the invariant case
(5.3) involves square roots. These square roots may cause certain numerical instabilities for x
and y close to the lines of zeroes of u(x, y). To address this problem we have made use of the
results of Section 2. Namely if um0,n and um0−1,n have different signs (a column of zeroes is
between them), we replace the calculated um0+1,n by the expression (2.14). Similarly we use
(2.18) for a row of zeroes and (2.21) in the case of the intersection of a row and a column of
zeroes.

The numerical computations were performed on the square domain D0 = [−1.5, 1.08] ×
[−1.0, 1.58] , with steps of equal length h = k = 0.02, for a lattice of 130×130 points. Somewhat
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arbitrarily we choose the parameter a in the symmetry invariant recursion formula to be a = 1.0.
The boundaries are the bottom and left side of the square.

We summarize our calculations in Table 1. One sees that the quality of the approximation

Table 1: Relative mean square distance (5.1) between the numerical solutions and the analytic
one.

χInv χAS χRV χstand
f1 5.2× 10−6 2.7× 10−6 3.1× 10−4 9.2× 10−4

f2 1.0 1.5× 10−4 7.6× 10−3 2.2× 10−2

f3 5.0× 10−2 1.5× 10−5 3.0× 10−3 9.2× 10−3

f4 0.48 7.9× 10−5 5.2× 10−3 2.0× 10−2

worsens quite rapidly with the increase of the variability of the functions, i.e. the more rapidly
the functions fa varies (as it is the case of f2), the worse is the result. This is true for all the
proposed procedures, but specially for the invariant method.

In order to test the stability of the algorithms with respect to the size of the adopted
meshes, we made another series of calculations involving only the function f1 over a fixed domain
D1 = [−1.905, 1.895]× [−1.905, 1.895], larger than before, and spanned it using different lattice
scales with h = k. The results are reported in the Table 2.

Table 2: Dependence of χ on the step size for the solution f1 in the domain D1. The symmetry
invariant calculations are performed with the parameter a = 1

h=k χInv χAS χRV χstand
4.× 10−1 2.6× 10−5 , 1.2× 10−5 , 1.3× 10−3 , 3.8× 10−3

3.× 10−1 1.5× 10−5 , 6.9× 10−6 , 1.0× 10−3 , 2.9× 10−3

2.× 10−1 6.7× 10−6 , 3.1× 10−6 , 6.7× 10−4 , 1.9× 10−3

1.× 10−1 1.7× 10−6 , 7.7× 10−7 , 3.3× 10−4 , 9.9× 10−4

We see from Table 2 that for all four methods the value of χ decreases faster then linearly
as h = k decreases linearly. For this solution (with no zeroes) the value of χInv and χAS are
comparable and at least two order of magnitude lower than the other two. The values of χRV
are always lower than χstand but of the same order.

The results presented in Table 1 clearly show that the performance of the different dis-
cretization procedures as numerical methods greatly depends on the presence or absence of lines
of zeroes in the integration region. In order to investigate this aspect we performed another
set of calculations, in which the boundary values are assigned on different pairs of orthogonal
semi-lines. In the calculations of um+1,n+1 we may. or may not cross the lines of zeroes.

In Table 3 we compare fits to the three solutions f2, f3 and f4. They all have one vertical and
one horizontal line of zeroes intersecting at the saddle point (−0.25,+0.25) for f2, (2.407, 1.218)
for f3 and (0.0, 0.0) for f4. The pair of numbers in the first column is (x0, y0), i.e. the point
where the integration starts. For each function fa, (a = 2, 3, 4), Table 3 is divided by horizontal
lines into three sections. In the first section no line of zeroes is crossed during the integration.
In the second section one line is crossed. In the third section both lines are crossed, so that the
saddle point is included. We see from Table 3 that in the first section we have χInv ≈ χAS ,
with χAS slightly better for all three solutions. Similarly we have χRV ≈ χstand with χRV
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Table 3: The relative mean square distance (5.1) between the numerical solutions and the
analytic one for f2 with (xs = −.25, ys = .25), f3 with (xs = 2.407, ys = 1.218) andf4 with
(xs = 0.0, ys = 0.0), for the different boundary value problems, defined on two orthogonal semi-
lines parallel to axes x, y. In the first column we first identify the function fa and then we
give the values (x0, y0) indicating the left bottom corner where the numerical calculation starts.
The mesh constants are h = k = .02 and the integration is applied for 129 × 129 steps. The
parameter in the invariant recursive formula is a = 1.

f2 (x0, y0) χInv χAS χRV χstand

(−.225, .275) 6.21× 10−4 2.53× 10−4 1.03× 10−2 2.61× 10−2

(−.205, .305) 5.3× 10−4 2.3× 10−4 9.29× 10−3 2.4× 10−2

(−.15, .35) 4.14× 10−4 1.91× 10−4 7.23× 10−3 1.91× 10−2

(−.151, .051) 6.32× 10−2 2.58× 10−4 1.2× 10−2 1.94× 10−2

(−.351, .351) 1.18× 10−2 2.48× 10−4 1.09× 10−2 4.32× 10−2

(−.551,−.051) 3.41× 10−1 5.2× 10−4 1.19× 10−2 4.4× 10−2

(−.351, .051) 7.9× 10−2 4.21× 10−4 1.47× 10−2 3.92× 10−2

(−.305, .151) 1.39× 10−2 3.55× 10−4 1.38× 10−2 2.11× 10−2

f3 (x0, y0) χInv χAS χRV χstand

(2.51,−1.12) 2.7× 10−4 1.1× 10−4 5.4× 10−3 1.5× 10−2

(2.46,−1.17) 3.5× 10−4 1.3× 10−4 6.9× 10−3 1.8× 10−2

(2.43,−1.2) 4.4× 10−4, 1.4× 10−4 7.8× 10−3 2.× 10−2

(2.39,−1.2) 8.× 10−4 2.8× 10−4 8.3× 10−3 1.3× 10−1

(2.43,−1.24) 8.× 10−4 2.8× 10−4 8.3× 10−3 1.3× 10−1

(2.39,−1.24) 1.2× 10−3 3.1× 10−4 9.× 10−3 1.8× 10−1

(2.36,−1.27) 2.2× 10−3 1.6× 10−4 9.7× 10−3 2.6× 10−2

(2.31,−1.32) 1.8× 10−2 1.8× 10−4 1.1× 10−2 5.× 10−2

f4 (x0, y0) χInv χAS χRV χstand

(0.23, 0.27) 3.3× 10−5 , 9.7× 10−5 , 6.8× 10−3 , 1.9× 10−2

(0.13, 0.17) 4.1× 10−4 , 1.2× 10−4 , 9.9× 10−3 , 2.7× 10−2

(0.03, 0.07) 5.6× 10−4 , 1.4× 10−4 , 1.3× 10−2 , 3.5× 10−2

(0.01, 0.01) 7.0× 10−4 , 1.5× 10−4 , 1.4× 10−2 , 3.7× 10−2

(0.03,−0.07) 3.8× 10−3 , 1.5× 10−4 , 1.5× 10−2 , 4.1× 10−2

(−0.03, 0.07) 3.5× 10−4 , 1.4× 10−4 , 1.4× 10−2 , 3.7× 10−2

(−0.11,−0.11) 2.7× 10−2 , 1.7× 10−4 , 1.7× 10−2 , 4.8× 10−2
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always better. Remarkably χInv ≈ χAS is always about two order of magnitude lower than
χRV ≈ χstand (in the first section). For all three solutions in all sections χAS is excellent and
is not much influenced by the zeroes. Similarly χRV is always lower than χstand in all sections,
sometimes significantly so (for f3). The method most influenced by the presence of zeroes in
the integration domain is the invariant one. This is particularly evident for the rapidly varying
solution f2 where χInv in section 2 and 3 becomes comparable to χstand (or worse). For f3 and
f4 χInv becomes comparable to χstand only after passing past the saddle point.

Another observation is that for all functions fa the invariant method seems to accumulate
errors while approaching a line of zeroes.The further from the zero the calculation starts the
larger is the error. This is specially visible in Table 1 where the distance between the starting
point (x0, y0) and the saddle point (xs, ys) is much larger than in the case of Table 3.

6 Conclusions.

Both from the point of physics and from the point of view of geometric integration we see that for
discretizing the Liouville equation we have to choose which characteristic feature of the equation
we wish to preserve. Adler and Startsev [1] have shown how to preserve linearizability and the
existence of a class of exact solutions depending on two arbitrary functions of one variable.
We have shown that for a wide class of solutions a recurrence formula based on their method
provides the most accurate results. On the other hand, linearizability, just like integrability is a
property of a very restricted class of nonlinear PDEs.

The existence of a nontrivial Lie point symmetry group is a much more generic property,
specially for PDEs coming from fundamental physical theories. From this point of view the
Liouville equation is again special: its Lie point symmetry group is infinite dimensional. Rebelo
and Valiquette [22] have presented a discretization that preserves this entire infinite–dimensional
symmetry group as a special type of generalized symmetries. As opposed to more general higher
symmetries, their symmetries have a global group action and are very interesting from the
theoretical point of view. From the numerical one we have shown that the goodness of the
solutions based on their recursion formula is systematically better (though of the same order of
magnitude) than that of the standard method. The measure of goodness is the quantity χ of
(5.1).

Finally, the method proposed in [14] and further developed in this article preserves point
invariance under the maximal finite subgroup of the infinite dimensional symmetry group. Nu-
merical methods based on this partial preservation of symmetries perform extremely well for
solutions not vanishing on any line in the integration region, or for boundary conditions such
that no line of zeroes is crossed in the calculation. On the other hand, if the integration region
includes a line of zeroes, or specially two orthogonal lines of zeroes, the quality of the numerical
solutions may be worse than for the standard method.

In future work we plan to study symmetry preserving discretizations of other equations
with infinite–dimensional symmetry groups, such as the Kadomtsev-Petviashvili equation [3,4],
the three-wave interaction equation [20] and specific Liouville type equations [25]. A symmetry
preserving discretization of the Korteweg-de Vries equation has provided encouraging results [2].
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