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The Korteweg–de Vries equation is one of the most important nonlinear evolution equations

in the mathematical sciences. In this article invariant discretization schemes are constructed

for this equation both in the Lagrangian and in the Eulerian form. We also propose invariant

schemes that preserve the momentum. Numerical tests are carried out for all invariant

discretization schemes and related to standard numerical schemes. We find that the invariant

discretization schemes give generally the same level of accuracy as the standard schemes with

the added benefit of preserving Galilean transformations which is demonstrated numerically

as well.

1 Introduction

This article is part of a general program the purpose of which is to study the possibility of

discretizing the equations of physics while preserving their Lie point symmetries [12–19, 31–35,

43,47,48]. There are both conceptual and practical reasons for doing this. From the conceptual

point of view symmetries under rotations, Galilei or Lorentz transformations, conformal and

other transformations are of primordial importance both in classical and quantum physics. It

would be a pity to loose them when studying physical phenomena in a discrete world. From the

practical point of view symmetries of differential equations determine many of the properties

of solutions. Preserving symmetries in a discretization should provide difference systems that

share some exact solutions with the original differential equations, or at least provide better

approximations than noninvariant systems. In turn, this should have implications for numerical

solutions. Thus, symmetry preserving discretizations should provide solutions that are in some

sense “better” than “standard” discretizations.

The basic idea [13,35,47] of this approach is to approximate a differential equation by a “dif-

ference system” consisting of several discrete equations. The solutions of this system determine

the lattice and approximate the solution of the differential equation. In the continuous limit the

solutions of the lattice equations reduce to identities (like 0 = 0) and the remaining solutions

go to the appropriate solution of the differential equation. The difference scheme is constructed

out of invariants of the Lie point symmetry group G of the differential equation. The action of

G on the independent and dependent variables is the same as for the continuous case and this

action is assumed to be known. The action of G is not prolonged to derivatives, but to all points

of the lattice (the “discrete jet space”).

This invariant discretization approach has been extensively applied to ordinary differential

equation (ODEs). It has been shown that for first order ODEs an invariant discretization is
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exact [43]. The solution of an invariant difference scheme coincides point by point with the

appropriate solution of the ODE. Moreover it is sufficient if the difference system is invariant

under a one-dimensional subgroup of the symmetry group.

For second and third order ODEs it is often possible to integrate the invariant scheme di-

rectly and thus see explicitly how solutions of the difference scheme converge to those of the

ODE [14–16, 48]. It has been shown on the example of numerous second and third order non-

linear ODEs that the invariant discretizations provide more accurate numerical solutions than

standard methods [6, 7, 42]. This is specially so in the neighborhood of singularities where in-

variant methods, as opposed to standard ones, make it possible to continue solutions beyond

the singularities.

For partial differential equations (PDEs) the first application of Lie group theory to numerical

methods is, to our knowledge, due to Shokin and Yanenko [45,49]. Their approach “Differential

approximation” is quite different from ours (for a comparison see [33]).

Quite a few articles devoted to the symmetry adapted discretization of PDEs have appeared

over the last 20 years (see e.g. [2–5,8–10,17–19,27,28,32,38,40,41,46]). Invariant discretizations

of the Korteweg–de Vries (KdV) equation were presented in [12,13,46].

The purpose of this article is to study invariant discretizations of the KdV equations in

greater depth. Thus we will compare the known invariant discretizations amongst each other

and propose new ones. All of them will be tested as numerical schemes for known exact solutions.

Their accuracy and stability will be evaluated by comparing with known analytic solutions.

The KdV equation is very suitable for such a study. On one hand, it is an integrable equation

so a very large body of analytical solutions is known (due to inverse scattering techniques [1,

22]). On the other hand the KdV equation has an interesting Lie point symmetry group that

includes Galilei invariance. It is a prototype of a Galilei invariant evolution equation that can

be invariantly discretized on a mesh with horizontal time lines, but not on an orthogonal one

(nor any other equally spaced one).

The original invariant discretizations [12, 17] essentially correspond to using the Lagrange

formulation of hydrodynamics in the continuous limit. We suggest an alternative discretization

that is natural in the Eulerian formalism, especially when combined with adaptive computational

schemes.

In Section 2 we review some well known results on the symmetry group of the continuous

KdV equation and on its known analytical solutions. We also present the Lagrangian form of the

KdV equation. The invariant discretizations are presented in Section 3. All numerical results

are concentrated in Section 4. The final Section 5 is devoted to the conclusions.

2 The continuous KdV equation

We shall write the KdV equation in the form

ut + uux + uxxx = 0. (1)

Its Lie point symmetry group is well-known (see e.g. [37]). A basis for its Lie algebra g is given

by the vector fields

D = 3t∂t + x∂x − 2u∂u, B = t∂x + ∂u, P1 = ∂x, P0 = ∂t, (2)

corresponding to dilations, Galilei boosts and space and time translations, respectively.
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The symmetry algebra g has precisely five conjugacy classes of one-dimensional subalgebras.

A representative list of these classes is given by the algebras

{D}, {B}, {B + P0}, {P0}, {P1}. (3)

Conjugacy is considered under the group of inner automorphisms of (1), extended by the simul-

taneous reflections of x and t

Rx = −x, Rt = −t, Ru = u. (4)

Thus, G = R 3G0, where G0 = edDevBet0P0ex0P1 .

The group can be used to get new solutions from known ones. If u(t, x) is a solution of the

KdV equation then so are u(−t,−x) and

ũ(t̃, x̃) = e2du
(
e−3d(t− t0), e−d(x− x0 − v(t− t0))

)
+ e−2dv, d, v, t0, x0 ∈ R, (5)

where d, v, t0 and x0 are group parameters.

2.1 Lagrangian formulation of the KdV equation

The original form of the KdV equation (1) is written in Eulerian variables, i.e. the velocity u is

a function of time and space, u = u(t, x). An alternative to the Eulerian form is the Lagrangian

form. In the Lagrangian description of fluid mechanics the velocity u is a function of time

and of the original position of the fluid particle ξ. Assuming that the fluid particles maintain

their identity (hence ξ is independent of time), one needs to express the KdV equation as an

equation for u = u(τ, x(τ, ξ)), where τ = t. Using the chain rule, the Eulerian form of the KdV

equation (1) is transformed to

uτ + (u− xτ )
uξ
xξ

+
1

xξ

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

= 0. (6)

Up to now, no particular relation between the original physical coordinate x and the new La-

grangian coordinate ξ has been imposed. In the classical Lagrangian framework, this change of

coordinates is specified by setting

xτ (τ, ξ) = u(x(τ, ξ), t). (7)

In other words, the change of variables from the Lagrangian coordinates to the Eulerian coor-

dinates is completed upon integrating the equation for the particle trajectories (7). The KdV

equation in Lagrangian coordinates then reduces to

uτ +
1

xξ

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

= 0.

The change of coordinates from the Eulerian form (1) to the form (6) is more general than

the particular Lagrangian case given through (7). In the more general case, the variables (τ, ξ)

are referred to as the computational coordinates. From the numerical point of view, using the

KdV equation in computational coordinates (6) gives the perspective of defining the relation x =

x(τ, ξ) in such a manner that the evolution of the discretization grid is coupled to the evolution

of the KdV equation itself. This is the main idea of using adaptive numerical schemes [25].
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The importance of such schemes in the framework of invariant discretization will be clarified in

Section 3.

We should like to stress here that even for the more general form (6) of the KdV equation

with yet unspecified relation x = x(τ, ξ) it makes sense to fix the transformation τ = t. This

guarantees that the resulting equation will be of evolutionary type (though it would be sufficient

to put τ = τ(t)).

2.2 Symmetry reduction and exact solutions

One of the reasons why exact analytical solutions of PDEs are useful is that they can be used

to check the accuracy of numerical algorithms, in particular the invariant discretizations to

be presented below. For integrable equations with nontrivial symmetry groups (like the KdV

equation) there exist two main sources of exact solutions. One is symmetry reduction, producing

solutions invariant under some subgroup of the symmetry group. The other is the method of

inverse scattering and its generalizations that lead to multisoliton and periodic and quasiperiodic

solutions.

Let us start with the method of symmetry reduction. In order to reduce the KdV equation to

an ODE we impose that the solution u(t, x) be invariant under a one-dimensional subgroup ofG0

corresponding to a one-dimensional subalgebra of the symmetry algebra g. The classification

of these subalgebras leads to the list (3). Invariance under a subgroup corresponding to the

algebra element X = τ∂t + ζ∂x + φ∂u corresponds to imposing that u(t, x) in addition to (1)

should satisfy the quasilinear first order PDE

τut + ζux = φ. (8)

This equation is solved and the result is put into the KdV equation (1) which reduces to an

ODE.

Let us run through the individual subalgbreas listed in (3).

(i) P1 = ∂x. From (8) we obtain u = f(t) and (1) implies that

u(t, x) = A. (9)

Thus, the only solution of the KdV invariant under space translations is a constant.

(ii) B = t∂x + ∂u. From (8) we get the reduction formula

u(t, x) =
x

t
+ f(t).

Substituting into (1) and solving the obtained ODE for f(t) we find f(t) = A
t . Applying the

group transformations (5) we obtain the Galilei (and dilation) invariant solution

u(t, x) =
x− x0
t− t0

. (10)

(ii) B + P0 = t∂x + ∂u + ∂t. The reduction formula following from (8) is

u(t, x) = t+ f(γ), γ = x− 1

2
t2.

The KdV equation reduces to f ′′′ + ff ′ + 1 = 0. Integrating once and putting

f(γ) = −123/5P

[(
1

12

)1/5

(γ) + δ

]
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we find that P (z) satisfies the first Painlevé equation

P ′′ = 6P 2 + z, (11)

see [23,26]. The corresponding solution of the KdV equation is

u(x, t) = t− 123/5PI

[(
1

12

)1/5

(γ) + δ

]
,

where PI is the first Painlevé transcendent and δ is an arbitrary constant. No elementary

solutions of (11) are known.

(iv) D = 3t∂t + x∂x − 2u∂u. The reduction formula (8) in this case yields

u = t−2/3F (γ), γ = xt−1/3,

where F (γ) satisfies

F ′′′ + FF ′ − 1

3
γF ′ − 2

3
F = 0. (12)

The Miura transformation [37] F = w′ − w2/6 and subsequent integration takes (12) into

wγγ =
1

18
w3 +

1

3
γw + k. (13)

Eq. (13) can be reduced to the equation

P ′′ = 2P 3 + zP + α, (14)

where α is an arbitrary constant. This is the equation for the second Painlevé transcendent PII.

Finally, the dilationally invariant solution of the KdV equation is

uα(t, x) = 2(3)1/3t−2/3(P ′′α(γ)− P 2
α(γ)), γ = xt−1/3, (15)

where Pα is a solution of (14). Contrary to PI, the PII equation allows two families of elementary

solutions for special values of the parameter α [23]. For integer values α = ±n these are rational

solutions. For half integer values α = ±(2n+ 1)/2 the solutions are expressed in terms of Airy

functions. In both cases they satisfy Pα = −P−α and are listed in [23] for low values of n. For

the combination Wα = P ′′α−P 2
α we observe an additional relation, namely Wn+1 = −W−n, so for

convenience we restrict to α = 0,−1,−2,−3. We thus obtain the following dilationally invariant

solutions of the KdV equation

u0 = 0, , u−1 = −12

x2
, u−2 = −36x(24t− x3)

(12t+ x3)2
,

u−3 = −72(x9 + 5400x3t2 + 43200t2)x

(720t2 − 60x3t− x6)2
.

(16)

The solution u0 is also invariant under space and time translations, u−1 is also invariant under

time translations.

(v) P0 = ∂t. Solutions invariant under time translations have the form u = f(x). A Galilei

transformations boosts such a solution to a traveling wave u = f(x− λt) + λ.
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Substituting into the KdV equation and integrating twice we get an ODE that can be written

as

(f ′)2 = −1

3
(f − a)(f − b)(f − c), a+ b+ c = 0. (17)

The roots of the polynomial in (17) can all be real. Then we order them to have a ≥ b ≥ c. The

other possibility is a ∈ R, b = c̄ = p+ iq, with q > 0, p, q ∈ R.

We are interested in real solutions only. They may be finite or singular (for x ∈ R), periodic

or localized. Let us run through the individual cases. Solutions are expressed in terms of Jacobi

elliptic functions [11] or degenerate cases thereof.

Cnoidal waves: c < b ≤ f ≤ a, b < a. The solution in this case reads

u(t, x) = b+ (a− b)cn2(ωx, k), k =

√
a− b
2a+ b

, ω =

√
2a+ b

3
, 2a+ b > 0. (18)

We can apply a Galilei boost with v = −b and obtain the more usual form

u(t, x) = (a+ v)cn2(ω(x− vt), k), k =

√
a+ v

2a− v
, ω =

√
2a− v

3
. (19)

Soliton: c = b ≤ f ≤ a, b = −a
2 , k = 1, ω = 1

2

√
a
2 . The associated solution of the KdV

equation is

u(t, x) = −a
2

+
3a

2

1

cosh2 1
2

√
a
2x
, a > 0. (20)

After a boost with a = 2v we have the usual KdV soliton

u(t, x) =
3v

cosh2 1
2

√
v(x− vt)

. (21)

Singular snoidal solution: f ≤ c < b < a. The solution of the KdV equation reads

u(t, x) = a− a− c
sn2(ωx, k)

, ω =
1

2

√
a− c

3
, k =

√
2a+ c

a− c
. (22)

Singular soliton: f ≤ c = b < a. The solution of the KdV equation in this case is

u = −a
2

(
1 +

3

sinh2(ωx)

)
, ω =

1

2

√
a

2
. (23)

Singular trigonometric solution: f ≤ c < b = a. We obtain the solution

u = a− 3a

sin2(ωx)
, ω =

1

2

√
a. (24)

Singular algebraic soliton: a = b = c = 0. The solution of the KdV equation in this case reduces

to

u = −12

x2
, (25)
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which coincides with the solution u−1 listed in (16) which is thus invariant under dilations and

time translations. Galilei transformations take it into

u(t, x) = − 12

(x− vt)2
+ v. (26)

Real solutions corresponding to complex roots: f ≤ a ∈ R, b = −a
2 + iq, c = −a

2 − iq, q > 0.

The corresponding solution of the KdV equation is

u(t, x) = a−A1 + cn(ωx, k)

1− cn(ωx, k)
, A =

√
9a2

4
+ q2, ω =

√
A

3
, k2 =

(A+ 3a
2 )2 + q2

4A2
. (27)

An elementary special case is obtained for k = 1, i.e. a = ±2
3 , A =

√
1 + q2, namely

u(t, x) = ±2

3
−
√

1 + q2 −
√

1 + q2

sinh2 ωx
2

, ω =

√
1 + q2

3
. (28)

Other exact solutions are obtained by the inverse scattering method [1, 22]. Amonst them

the most relevant for this article is the double soliton

u(t, x) = 12
∂2

∂x2
ln(1 +B1e

iQ1 +B2e
iQ2 +AB1B2e

i(Q1+Q2)),

Q1 = a1x− a31t, a2x− a32t, A =

(
a1 − a2
a1 + a2

)2

,

(29)

where a1, a2, B1 and B2 are arbitrary constants. Real solutions are obtained by putting a1 = iα1,

a2 = iα2 with α1, α2, B1, B2 ∈ R.

Many other solutions (n-soliton, multigap quasiperiodic solutions, etc.) are available in the

literature [20,21,23,29,39].

3 Invariant discretization of the KdV equation

3.1 Invariant discretization on a ten point stencil

The KdV equation is a scalar (1+1)-dimensional evolution equation. In the finite difference

approximation on the t-x-plane, the continuous space of independent variables (t, x) is sampled

by a collection of finite points {Pni } only. Here and in the following, we use the double index

notation (tni , x
n
i ) to denote a discrete point in this t-x-plane, where i ∈ Z is the spatial index and

n ∈ N is the temporal index. Likewise, the dependent functions are defined on the associated

points {Pni } only, i.e. uni = u(tni , x
n
i ).

A partial differential equation L : ∆(x, u(q)) = 0, where u(q) denotes all the derivatives of u

with respect to t and x up to order q, is discretized in a symmetry-preserving manner if it is

expressed by a consistent finite difference approximation that can be written as a function of

the finite difference invariants of the symmetry group of the equation itself. By consistent it is

meant that in the continuous limit (i.e. the distance between the points {Pni } goes to zero) the

finite difference approximation converges to the original differential equation L.

In writing this discretization, it is not only necessary to define a finite difference approxi-

mation of the differential equation L itself but also to specify the lattice of points {Pni } in an

invariant fashion. In other words, the equation L is replaced by a system of finite difference

equations of the form

∆S : Eα(tni , x
n
i , u

n
i ) = 0, α = 1, . . . , N, imin ≤ i ≤ imax, 0 ≤ n ≤ nmax
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where the number of equations N in the system ∆S is at least N = 3.

The general method for finding invariant numerical schemes using difference invariants can be

found e.g. in [13,35]. Here we only present the respective computations for the KdV equation. We

should also like to mention here that there is another method for finding invariant discretization

schemes that rests on invariantization using equivariant moving frames. For more information

on this alternative method, see e.g. [3, 27,38,40].

The minimum number of points in the stencil to discretize the derivatives in the KdV equa-

tion is five as spatial derivatives up to order three and a first order time derivative have to be

approximated. In order to increase the accuracy of the finite difference approximation we intro-

duce an extended ten point stencil. Lower order approximations can be obtained by restricting

oneself to a subset of these 10 stencil points.

The stencils used are depicted in Fig. 3.1. It can be seen that a two-step time integration

is employed allowing for either forward Euler (six point stencil, squares), backward Euler (six

point stencil, crosses) or trapezoidal time integrators (ten point stencil, solid circles). Invariant

numerical schemes using higher order time-stepping are possible as well but will not be presented

here.

(tn, xn
i , u

n
i ) (tn, xn

i+1, u
n
i+1) (tn, xn

i+2, u
n
i+2)(tn, xn

i−2, u
n
i−2)

(tn+1, xn+1
i , un+1

i ) (tn+1, xn+1
i+1 , u

n+1
i+1 ) (tn+1, xn+1

i+2 , u
n+1
i+2 )(tn+1, xn+1

i−2 , u
n+1
i−2 )

(tn, xn
i−1, u

n
i−1)

(tn+1, xn+1
i−1 , u

n+1
i−1 )

Figure 1. Stencils for the discretization of the KdV equation: Ten point stencil (solid circles). Explicit six point

stencil (squares). Implicit six point stencil (crosses).

To simplify the notation, we also introduce the following abbreviations

∆τ = tn+1 − tn, hni = xni+1 − xni , Duni =
uni+1 − uni

hni
,

for the spacings and elementary first order discrete derivatives. Note that the spacing in time

does not carry an index as we use equally spaced, horizontal time layers only. It is readily

checked that variable time-stepping would leave the following numerical scheme invariant as

well, as long as the time-step control is invariant itself. See the similar discussion for the spatial

adaptation strategies presented in Section 3.4.

The prolongation of vector fields of the maximal Lie invariance algebra g to the stencil shown
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in Fig. 3.1 yields

∂tn + ∂tn+1 ,

∂xni + ∂xni+1
+ ∂xni+2

+ ∂xni−1
+ ∂xni−2

+ ∂xn+1
i

+ ∂xn+1
i+1

+ ∂xn+1
i+2

+ ∂xn+1
i−1

+ ∂xn+1
i−2

,

tn(∂xni + ∂xni+1
+ ∂xni+2

+ ∂xni−1
+ ∂xni−2

) + tn+1(∂xn+1
i

+ ∂xn+1
i+1

+ ∂xn+1
i+2

+ ∂xn+1
i−1

+ ∂xn+1
i−2

)

+ ∂uni + ∂uni+1
+ ∂uni+2

+ ∂uni−1
+ ∂uni−2

+ ∂un+1
i

+ ∂un+1
i+1

+ ∂un+1
i+2

+ ∂un+1
i−1

+ ∂un+1
i−2

,

xn+1
i ∂xn+1

i
+ xn+1

i+1 ∂xn+1
i+1

+ xn+1
i+2 ∂xn+1

i+2
+ xn+1

i−1 ∂xn+1
i−1

+ xn+1
i−2 ∂xn+1

i−2

+ 3(tn+1
i ∂tn+1

i
+ tn+1

i+1 ∂tn+1
i+1

+ tn+1
i+2 ∂tn+1

i+2
+ tn+1

i−1 ∂tn+1
i−1

+ tn+1
i−2 ∂tn+1

i−2
)

− 2(un+1
i ∂un+1

i
+ un+1

i+1 ∂un+1
i+1

+ un+1
i+2 ∂un+1

i+2
+ un+1

i−1 ∂un+1
i−1

+ un+1
i−2 ∂un+1

i−2
).

(30)

A complete list of functionally independent finite difference invariants annihilated by the

prolonged infinitesimal generators on the ten point stencil (30) is exhausted by

I1 =
hni−1
hni

, I2 =
hni+1

hni
, I3 =

hni−2
hni

, I4 =
hn+1
i

hni
, I5 =

hn+1
i−1
hni

, I6 =
hn+1
i+1

hni
,

I7 =
hn+1
i−2
hni

, I8 =
(hni )3

∆τ
, I9 =

xn+1
i − xni − τuni

hni
, I10 = (un+1

i − uni )(hni )2,

I11 = ∆τDuni , I12 = ∆τDuni+1, I13 = ∆τDuni−1, I14 = ∆τDuni−2,

I15 = ∆τDun+1
i , I16 = ∆τDun+1

i+1 , I17 = ∆τDun+1
i−1 , I18 = ∆τDun+1

i−2 .

(31)

Building the numerical scheme for the KdV equation and the lattice using these invariants

guarantees that the resulting scheme is invariant under the same maximal Lie invariance group G

as is the KdV equation. We first start with the discretization of (6).

It turns out that the straightforward discretization of the KdV equation in terms of the com-

putational coordinates (τ, ξ) given by (6) is already invariant under the maximal Lie invariance

group G. We demonstrate this first for the explicit six point stencil scheme here. Indeed, the

invariant finite difference expression,

I10 − I8I9
I11 + I13

2
+

1

2

[
2
I12 − I11

1 + I2
− 2

I11 − I13
1 + I1

+
1

I1

(
2
I11 − I13

1 + I1
− 2

I13 − I14
I1 + I3

)]
= 0,

reads explicitly

un+1
i − uni

∆τ
+ (uni − ẋi)

Duni +Duni−1
2

+
1

2hni

[
2
(
Duni+1 −Duni

)
hni+1 + hni

−
2
(
Duni −Duni−1

)
hni + hni−1

]
+

1

2hni−1

[
2
(
Duni −Duni−1

)
hni + hni−1

−
2
(
Duni−1 −Duni−2

)
hni−1 + hni−2

]
= 0,

(32)

after some re-arrangements, where

ẋi =
xn+1
i − xni

∆τ
,

denotes the grid velocity. Correspondingly, this discretization preserves the four-dimensional

maximal Lie invariance group of the KdV equation. In order to use the scheme (32) it is

necessary to specify an invariant equation for the grid velocity. This will be pursued in the

following subsections.
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The continuous limit of scheme (32) is taken by parameterizing the spacings hni as a function

of computational coordinates ξ. This implies that

hni = xξ∆ξ

and a Taylor series expansion of (32) gives that

uτ + (u− xτ )
uξ
xξ

+
1

xξ

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

= O(∆τ,∆ξ2).

Thus, as expected, the scheme (32) is of first order in time and second order in space. From the

numerical point of view the scheme (32) is not advantageous as the forward in time discretization

is unconditionally unstable.

A more appropriate numerical scheme can be realized on the entire ten point lattice and is

given by

I10 − I8I9
I11 + I13 + I15 + I17

4
+

1

4

[(
2
I16 − I15
I4 + I6

− 2
I15 − I17
I4 + I5

)
+

1

I5

(
2
I15 − I17
I4 + I5

− 2
I17 − I18
I5 + I7

)
+

(
2
I12 − I11

1 + I2
− 2

I11 − I13
1 + I1

)
+

1

I1

(
2
I11 − I13

1 + I1
− 2

I13 − I14
I1 + I3

)]
= 0,

which reads in expanded form as

û− u
∆τ

+ (uni − ẋi)
Duni +Duni−1 +Dun+1

i +Dun+1
i−1

4

+
1

4hn+1
i

[
2
(
Dun+1

i+1 −Du
n+1
i

)
hn+1
i+1 + hn+1

i

−
2
(
Dun+1

i −Dun+1
i−1
)

hn+1
i + hn+1

i−1

]

+
1

4hn+1
i−1

[
2
(
Dun+1

i −Dun+1
i−1
)

hn+1
i + hn+1

i−1
−

2
(
Dun+1

i−1 −Du
n+1
i−2
)

hn+1
i−1 + hn+1

i−2

]

+
1

4hni

[
2
(
Duni+1 −Duni

)
hni+1 + hni

−
2
(
Duni −Duni−1

)
hni + hni−1

]

+
1

4hni−1

[
2
(
Duni −Duni−1

)
hni + hni−1

−
2
(
Duni−1 −Duni−2

)
hni−1 + hni−2

]
= 0.

(33)

In the continuous limit, this scheme becomes

uτ + (u− xτ )
uξ
xξ

+
1

xξ

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

= O(∆τ,∆ξ2).

which is still of first order in time due to the particular way the grid velocity has been discretized.

Due to the use of the trapezoidal rule, the resulting scheme is conditionally stable now. The

implicit six point stencil scheme is constructed in a similar fashion.

For the sake of reference we also present the standard forward in time, centered in space

scheme on an orthogonal and stationary six point lattice for the KdV equation expressed in

Eulerian form (1) here:

hni = h = const, ∆τ = ∆t,

10



un+1
i − uni

∆t
+ uni

uni+1 − uni−1
2h

+
uni+2 − 2uni+1 + 2uni−1 − uni−2

2h3
= 0,

It is readily checked that this discretization scheme breaks the Galilean invariance of the KdV

equation while preserving invariance under both shifts and dilations. The standard, non-

invariant implicit schemes on the six and ten point stencils are defined in a similar manner

but not given here.

3.2 Invariant Lagrangian discretization schemes

In order to complete the numerical scheme (32) and (33) it is necessary to formulate an equa-

tion for the grid velocity. In the purely Lagrangian scheme one uses the discretization of the

relation (7), which is

xn+1
i − xni

∆τ
= uni . (34)

That is, the grid velocity coincides with the physical velocity. It is well known that a purely

Lagrangian scheme can perform poorly as there is no built-in mechanism preventing the clus-

tering of grid points as the numerical integration proceeds [25]. In the higher-dimensional case,

usually mesh tangling occurs when using Lagrangian schemes.

An alternative to using (34) to obtain the position of the grid points on the next time level

is to use adaptive moving mesh methods. These will be shortly introduced in Section 3.4.

3.3 Invariant evolution–projection discretization

A possibility to make invariant Lagrangian schemes numerically competitive is to invoke them

in an evolution–projection strategy [36, 44]. The main idea is to use the invariant Lagrangian

scheme introduced in the previous subsection only for a single time step and then project the

solution defined on the new grid points {xn+1
i } back to the original grid {xni }. This way, mesh

movement can be effectively avoided. The projection step is in general accomplished through

interpolation and the invariance of the whole solution procedure is guaranteed if the interpolation

method used is invariant under the same symmetry group that has been used to construct the

numerical scheme itself. This strategy has been successfully adapted for the linear heat equation

and the viscous Burgers equation [3, 4].

We show here that polynomial interpolation of any order is invariant under the maximal Lie

invariance group of the KdV equation and hence can be used in an invariant evolution–projection

scheme for this equation. In the numerical results below we then choose quadratic interpolation

as using it in conjunction with a second order invariant numerical scheme guarantees that

the whole evolution–projection procedure is second order accurate. However, standard higher

order interpolation could be used as well in invariant evolution–projection schemes for the KdV

equation.

As our goal is to interpolate the solution un+1
i defined at time tn+1 back to the grid as given

on time level tn the appropriate form of the mth order polynomial interpolation formula is

un+1(x) =

m∑
i=0

Li(x)un+1
i , (35)

where

Li(x) =
∏

06j6m
j 6=i

x− xn+1
j

xn+1
i − xn+1

j

11



are the Lagrange polynomials and x ∈ [xn+1
0 , xn+1

m ] is the point where the solution un+1(x)

should be interpolated. It is readily seen that the interpolation formula (35) is invariant under

space and time translations as well as under the scale symmetry of the KdV equation. Galilean

invariance (t̃n, x̃ni , ũ
n
i ) = (tn, xni + εtn, uni + ε) is respected by (35) too, as

ũn+1(x) = un+1(x) + ε =
m∑
i=0

L̃i(x)ũn+1
i =

m∑
i=0

Li(x)(un+1
i + ε) =

(
m∑
i=0

Li(x)un+1
i

)
+ ε

thus leading back to (35). Note that we have used here the property of the Lagrange polynomials

that

m∑
i=0

Li(x) = 1.

Specifying the general polynomial interpolation (35) to quadratic interpolation for the KdV

equation on the ten point stencil can be done e.g. by setting (xn+1
0 , un+1

0 ) = (xn+1
i−2 , u

n+1
i−2 ),

(xn+1
1 , un+1

1 ) = (xn+1
i , un+1

i ) and (xn+1
2 , un+1

2 ) = (xn+1
i+2 , u

n+1
i+2 ). In practice, the projection step is

completed by choosing the interpolating point x ∈ {xni }, i.e. by evaluating the solution un+1(x)

at the location of the old grid points.

3.4 Invariant adaptive discretization schemes

Before we give the form of an invariant adaptive scheme for the KdV equation we introduce some

basic background material related to adaptive numerical schemes in general. More information

can be found, e.g. in the textbook [25].

3.4.1 Adaptive discretization schemes

The main idea behind moving mesh methods is to link the evolution of a mesh to the numerical

solution of the discretized PDE itself. In the case of a Lagrangian scheme the new location of

the grid points is determined by the solution u itself only. A better criterion is usually to link

the evolution of the grid points to the derivatives of u. This can be accomplished through the

computation of equidistributing meshes.

Definition 1. Let ρ(x) be a strictly positive continuous function on the interval [a, b]. Let

a = x1 < x2 < · · · < xN−1 < xN = b be a partition (i.e. a mesh) of this interval. The mesh is

said to be equidistributing for ρ on [a, b] if∫ x2

x1

ρ(x)dx =

∫ x3

x2

ρ(x)dx = · · · =
∫ xN

xN−1

ρ(x)dx (36)

holds.

The function ρ is called mesh density function or monitor function. For the practical imple-

mentation it is advantageous to convert the relation (36) into a differential equation. This is

done by first using the equivalent expression∫ xj

a
ρ(x)dx =

(j − 1)

N − 1

∫ b

a
ρ(x)dx = ξj

∫ b

a
ρ(x)dx,

where ξj , j = 1, . . . , N , is the discrete computational coordinate. By definition, ξj ∈ [0, 1].

12



Regarding x as a function of the computational coordinate, i.e. xj = x(ξj), in the continuous

limit the above integral equation becomes∫ x(ξ)

a
ρ(x)dx = ξ

∫ b

a
ρ(x)dx,

which holds for all ξ ∈ [0, 1]. Differentiating this equation twice with respect to ξ leads to

(ρ(x)xξ)ξ = 0, (37)

which is the differential form of the equidistribution principle when subjected to the boundary

conditions x(0) = a and x(1) = b.

So as to complete the description of a numerical scheme upon using the equidistribution

principle in its differential form (37) one needs to specify the mesh density function ρ. A

classical choice is the arc-length type function

ρ =
√

1 + αu2x,

where α ∈ R is a constant parameter governing the strength of the adaptation. Other monitor

functions, such as built around the curvature of u are used as well.

3.4.2 Invariant adaptive scheme for the KdV equation

In order to complete the invariant numerical scheme for the KdV equation one has to discretize

the differential form of the equidistribution principle (37) in an invariant way. As the missing

ingredient in the grid velocity ẋi is xn+1
i , we discretize (37) on the time layer tn+1. This

is done upon composing a discretization of (37) out of the difference invariants for the KdV

equation (31). A possible discretization using the arc-length type mesh density function is:

ρni+1 + ρni
2

I11 −
ρni + ρni−1

2

I13
I1

= 0,

where

ρi+1 =
√

1 + αI211, ρi =
√

1 + αI212, ρi−1 =
√

1 + αI213,

or, explicitly,

ρni+1 + ρni
2

(xn+1
i+1 − x

n+1
i )−

ρni + ρni−1
2

(xn+1
i − xn+1

i−1 ) = 0, (38)

where

ρni =

√
1 + α

(
∆τ

uni+1 − uni
xni+1 − xni

)2

. (39)

3.5 Momentum preserving invariant discretization

It is well-known that the KdV equation admits infinitely many conservation laws, see e.g. [37]

for a discussion. Numerically preserving conservation laws of partial differential equations is

generally a nontrivial problem that belongs to the realm of geometric numerical integration.

More information on this field can be found in the books [24,30]. The problem of finding finite

difference discretizations for the KdV equation that preserve sub-sets of the infinite span of
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conservation laws is a complicated problem that will not be investigated here. We are only

concerned with finding invariant discretization schemes that also preserve linear momentum

M =

∫
udx.

This conservation law is associated with expressing the KdV equation itself in conserved form

Dtu+ Dx

(
1

2
u2 + uxx

)
= 0.

It is possible to preserve the above conserved form also on a moving mesh, which as we have

seen above is a basic requirement for preserving Galilean invariance. In particular, the following

discretization is invariant under the maximal Lie invariance group of the KdV equation and

momentum-preserving:

(hn+1
i + hn+1

i−1 )un+1
i − (hni + hni−1)u

n
i

∆τ
−

(
xn+1
i+1 − xni+1

∆τ
uni+1 −

xn+1
i−1 − xni−1

∆τ
uni−1

)

+
1

2
((uni+1)

2 − (uni−1)
2) +

[
2(Duni+1 −Duni )

hni+1 + hni
−

2(Duni−1 −Duni−2)
hni−1 + hni−2

]
= 0.

(40)

The associated continuous expression to this discretization is

(xξu)τ +

1

2
u2 +

(
1

xξ

(
uξ
xξ

)
ξ

)
ξ

− uxτ


ξ

= 0,

which is of conserved form in the computational coordinates. It thus discretely conserves mo-

mentum M.

Let us now show that (40) also preserves all the Lie symmetries as admitted by the KdV

equation. One way of showing this would be to express (40) in terms of the difference invari-

ants (31). However, due to the particular form of (40) a direct expression in terms of difference

invariants would be cumbersome. It is much easier to verify invariance directly by transforming

the scheme (40) under the action of the symmetry group of the KdV equation.

It is obvious that the discretization (40) is invariant under shifts in space and time as well as

under scale transformations. It thus only remains to show invariance under Galilean transfor-

mations (tn, xni , u
n
i ) 7→ (tn, xni + εtn, uni + ε). We proceed term by term:

(h̃n+1
i + h̃n+1

i−1 )ũn+1
i − (h̃ni + h̃ni−1)ũ

n
i

∆̃τ
=

(hn+1
i + hn+1

i−1 )un+1
i − (hni + hni−1)u

n
i

∆τ

+ ε

(
xn+1
i+1 − xni+1

∆τ
−
xn+1
i−1 − xni−1

∆τ

)
, x̃n+1

i+1 − x̃ni+1

∆̃τ
ũni+1 −

x̃n+1
i−1 − x̃ni−1

∆̃τ
ũni−1

 =

(
xn+1
i+1 − xni+1

∆τ
uni+1 −

xn+1
i−1 − xni−1

∆τ
uni−1

)

+ ε(uni+1 − uni−1) + ε

(
xn+1
i+1 − xni+1

∆τ
−
xn+1
i−1 − xni−1

∆τ

)
,

1

2
((ũni+1)

2 − (ũni−1)
2) =

1

2
((uni+1)

2 − (uni−1)
2) + ε(uni+1 − uni−1),2(D̃uni+1 − D̃uni )

h̃ni+1 + h̃ni
−

2(D̃uni−1 − D̃uni−2)
h̃ni−1 + h̃ni−2

 =
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[
2(Duni+1 −Duni )

hni+1 + hni
−

2(Duni−1 −Duni−2)
hni−1 + hni−2

]
Substituting into the transformed form of equation (40) proves Galilean invariance.

As it stands, the momentum preserving invariant scheme (40) still needs to be completed by

adapting an appropriate strategy to obtain the new mesh {xn+1
i }. Here, the same strategies

as proposed above for the case of the non-conservative invariant scheme (33) can be applied.

These strategies lead to invariant momentum-preserving Lagrangian, evolution–projection and

adaptive schemes, respectively.

3.6 Exact discretization

An interesting question on the behavior of numerical schemes is whether they are able to repro-

duce exact solutions of the original differential equation exact, i.e. without numerical error.

Among all the exact solutions given in Section 2.2, the only solutions that are exact for all

schemes reported in Section 3 is the constant solution (9). In addition, the Galilean invariant

solution (10) is an exact solution for the invariant Lagrangian schemes (32) and (33) using (34)

which is readily verified directly. Below we verify numerically that this solution is also exact for

the invariant evolution–projection scheme and the invariant momentum preserving scheme.

4 Numerical results

In this section we collect the numerical results obtained using the various schemes proposed in

the previous section. Our purpose is not to do a technical optimization of every scheme but to

rather demonstrate the feasibility of implementing invariant discretization schemes as well as

the resulting physical implications.

For the invariant adaptive scheme, we use the discretization (38) of the equidistribution prin-

ciple with the invariant mesh density function (39). To compare the invariant adaptive scheme

against a non-invariant adaptive one we also use the mesh density function ρ =
√

1 + αu2xx,

discretized by

ρni non-inv =

√√√√√1 + α

∆τ
2
uni+2−uni
xni+2−xni

− 2
uni+1−uni−1

xni+1−xni−1

xni+2 − xni + xni+1 − xni−2

2

. (41)

in conjunction with (38). Similar mesh density functions are also used in adaptive numerical

schemes, see e.g. [25]. In the present case, using (41) breaks the scale invariance in the discretiza-

tion of the KdV equation. The resulting scheme therefore serves as reference for a non-invariant

adaptive scheme.

Note that for the sake of brevity we abbreviate the standard notation a · 10n in the tables

and figure legends below by aen.

4.1 Decaying cosine evolution

Before we use the exact solutions computed in Section 2.2 as benchmark tests, we reproduce the

classical results obtained by Zabusky and Kruskal in 1965 [50] of a wave decaying into solitons.

For this experiment, Zabusky and Kruskal used the following form of the KdV equation

ut + uux + δ2uxxx = 0,
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where δ = 0.022. The initial condition used was u = cos(πx) on a periodic domain of length

L = 2. Zabusky and Kruskal observed the formation of eight solitons at time t = 3.6/π.

A main problem reproducing this result with the invariant Lagrangian schemes (32) and (33)

using (34) is that mesh tangling occurs before the final integration time t = 3.6/π. In turn, using

the invariant Lagrangian scheme only in the framework of the invariant evolution–projection

method allows us to arrive at a solution at the final integration time.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

2.5

x

u

High resolution

Standard
M-conservative standard
Evolution−projection

M-conservative evolution−projection

Adaptive ρ(α, ux) with α = 1e4

M-conservative adaptive ρ(α, ux) with α = 1e4

Adaptive ρ(α, uxx) with α = 1e2

M-conservative adaptive ρ(α, uxx) with α = 1e2

Figure 2. Numerical solution of the Zabusky–Kruskal decaying into soliton problem. The following schemes were

tested on the ten point stencil, using N = 512 mesh points except for the high resolution reference run (solid line)

for which N = 2048 points were used: Non-invariant standard finite differences (crosses), non-invariant momen-

tum conservative (dots), invariant evolution–projection (open circles), invariant evolution–projection momentum

conservative (stars), invariant adaptive with monitor function ρ =
√

1 + 104u2
x (upward pointing triangles), in-

variant adaptive momentum-preserving with monitor function ρ =
√

1 + 104u2
x (downward pointing triangles),

non-invariant adaptive with monitor function ρ =
√

1 + 102u2
xx (rightward pointing triangles), non-invariant adap-

tive momentum-preserving with monitor function ρ =
√

1 + 102u2
xx (leftward pointing triangles). See Table 1 for

a quantification of these numerical experiments that are visually practically indistinguishable.

All the other schemes presented above are able to compute this test problem. The results

of these integrations are shown in Fig. 2. From this figure it can be seen that all schemes are

capable of capturing the decay into solitons as originally presented in [50]. It can also be seen

that the two evolution–projection schemes show a slight lag for the first four solitons when

compared to the high resolution solution. The other schemes lie visually very close to this high

resolution solution.

To quantify these findings, in Table 1 we present the root-mean-square error (RMSE) for

the various schemes tested, using the high resolution finite difference solution as reference. The
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RMSE is defined by

RMSE =

√√√√ N∑
i=1

(unumi − uexacti)2
N

.

where in place of the exact solution, uexact, the high resolution numerical solution is used.

It can be seen from this table that the evolution–projection schemes have indeed errors larger

by a factor of ten than the other schemes tested, which all give quite comparable errors. A

possible explanation for this increase of error is that the interpolation used does not accurately

take into account the rapid change in the first derivatives of the numerical solution. Using higher

order interpolation incorporating derivative information, such as Hermite interpolation, could

help reduce this phase error in the evolution–projection scheme, see also [36,44].

Scheme RMSE

Non-invariant standard 0.0138

Non-invariant standard M-cons 0.0139

Invariant evolution–projection 0.189

Invariant evolution–projection M-cons 0.202

Invariant adaptive (ρ(α, ux) with α = 1e4) 0.0142

Invariant adaptive M-cons (ρ(α, ux) with α = 1e4) 0.0139

Non-invariant adaptive (ρ(α, uxx) with α = 1e2) 0.0144

Non-invariant adaptive M-cons (ρ(α, uxx) with α = 1e2) 0.0138

Table 1. Numerical errors for the Zabusky–Kruskal problem. The RMSE is based on a high resolution integration

using N = 2048 mesh points and a time step ∆t = 3.125 · 10−7 in the non-invariant standard numerical scheme

for the KdV equation. All other schemes use N = 512 mesh points with time step ∆t = 5 · 10−6.

4.2 Exact algebraic solution

As was discussed in Section 3.6, the invariant Lagrangian schemes (32) and (33) using (34) are

exact for the Galilean invariant solution (10). We verify this by numerically computing this

solution and calculating the l∞-norm and the RMSE. The l∞-norm is the maximum absolute

difference between the numerical solution unum and the exact analytical solution uexact calculated

at the discrete mesh points.

The results as seen in Table 2 show that we achieve machine precision (i.e. the errors come

only from rounding) with the different invariant schemes introduced in Section 3 but do not get

comparable accuracy with the standard schemes. Table 2 also highlights that the evolution–

projection method (both invariant and invariant momentum conserving) reproduces the exact

solution up to machine precision as well.

This solution, being monotonously increasing, is one of the few where the Lagrangian moving

mesh points cause no instability over a longer period of time. No interpolation or adaptation

is therefore needed to get an exact solution at any time. We should also stress that for this

simple solution the adaptive schemes would coincide with the standard scheme as ux = 1/t and

uxx = 0 thus reducing the discretized equidistribution principle (38) for both the invariant and

non-invariant mesh density functions (39) and (41) to xn+1
i+1 − x

n+1
i = xn+1

i − xn+1
i−1 .
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Scheme l∞-norm RMSE

Non-invariant standard 6.76e-6 2.39e-6

Non-invariant standard M-cons 7.77e-6 3.30e-6

Invariant Lagrangian 4.73e-13 2.02e-13

Invariant evolution–projection 2.13e-14 7.93e-15

Invariant Lagrangian M-cons 9.73e-13 4.02e-14

Invariant evolution–projection M-cons 5.15e-14 1.31e-14

Table 2. Comparison of errors for the various ten point schemes to reproduce the exact solution (10) evaluated

at t = 2. All schemes use N = 35 mesh points on the domain [0, 20] and time steps of ∆τ = 0.001. The starting

time of the integrations is t0 = 1.

While integrating such a simple function is trivial, this example shows the compatibility of

preserving symmetries and obtaining exact discrete solutions.

4.3 Cnoidal wave and soliton solution

For any numerical scheme, one important test is to verify consistency and the order of conver-

gence. To verify the order of the numerical schemes proposed in this paper, we take cnoidal

wave periodical solution of the form

u = (a− b)cn2(ω(x+ bt), k) (42)

where a = 3.332, b = −0.784, c = −2.548, k =
√

a−b
a−c =

√
0.7 and ω =

√
a−c
12 = 0.7

We then vary the total number of mesh points n ∈ {16, 24, 32, 38} and measure for each asso-

ciated numerical experiment the error characterized by the l∞-norm of the difference between the

numerical and the discrete analytical solutions. A linear regression of log(n) vs. log(error) gives

a slope corresponding to the order of convergence in O(np). All our ten point schemes should

theoretically converge as O(n−2) and we notice in Table 3 that this is numerically effectively

the case.

To assess not only the order of the numerical schemes but also the absolute approximation

errors in Table 4 we present the RMSE comparing the numerical solution against the exact

cnoidal wave solution as given in (42). As a second example, we also compare against the

soliton solution

u =
3ν

cosh2 (12
√
ν(x− νt))

(43)

with ν = 7. In addition to the approximation error we also monitor the change in momen-

tum ∆M over the integration period.

By computing the RMSE of the different invariant and non-invariant schemes, in Table 4 we

are able to affirm that invariant and non-invariant schemes give roughly the same approximation

errors. The invariant adaptive and non-invariant adaptive scheme give comparable accuracy

while the standard scheme is slightly better than the Lagrangian scheme. We confirm that the

invariant ten point scheme gives better accuracy than the invariant explicit scheme on the five

point lattice as expected. The basic projection method using parabolic interpolation helps to

reduce the error and allows using longer integration times. Optimizing the adaptation parameter
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Scheme p in O(Np)

Non-invariant standard -2.00

Non-invariant standard M-cons -2.05

Invariant Lagrangian -2.13

Invariant Lagrangian M-cons -2.11

Invariant evolution–projection -1.91

Invariant evolution–projection M-cons -2.04

Invariant adaptive (ρ(α, ux) with α = 5e6) -2.05

Invariant adaptive M-cons (ρ(α, ux) with α = 5e6) -2.05

Non-invariant adaptive (ρ(α, uxx) with α = 1e6) -2.00

Non-invariant adaptive M-cons (ρ(α, uxx) with α = 1e6) -2.02

Table 3. Convergence tests are done for the cnoidal solution over one spatial period at time t = 0.2 with time step

∆t = 10−4. All schemes use the ten point lattice. The integrations are done using N = {16, 24, 32, 48} points.

We confirm that all schemes converge as O(N−2) in the l∞-norm and are therefore consistent.

α is possible as well (see [25]) and could lead to error improvements. This will however not be

pursued here.

4.4 Double soliton solution and Galilean invariance

The above numerical experiments show that in terms of accuracy the invariant and the non-

invariant schemes are mostly comparable (except for the exact solution (10)). Still, from the

physical point of view, the additional advantage of the invariant schemes over the standard

ones is the preservation of Galilean invariance. In particular, Galilean invariance in a numerical

scheme implies that applying a boost to any solution does not change the discrete numerical

solution. Hence, the numerical solutions can be obtained in any constantly moving reference

frame. This can be an important property in practical applications, see e.g. [4] and references

therein for applications of this property to hydrodynamics.

To numerically verify Galilean invariance in the proposed invariant schemes, we integrate the

double soliton solution over a short period of time and apply a boost to the invariant and the

non-invariant schemes. The following form of the double soliton solution is used:

ũ(t, x̃) = 12
∂2

∂x2
ln(1 +B1e

iQ1 +B2e
iQ2 +AB1B2e

i(Q1+Q2)) + c,

Q1 = a1x̃− a31t, a2x̃− a32t, A =

(
a1 − a2
a1 + a2

)2

where a1 = −2i, a2 = −i, B1 = 10000, B2 = 1, {ũ, x̃ = x − ct} belong to the moving reference

frame and c is the speed of the moving reference frame.

Two sets of numerical experiments are carried out for each scheme. One in a resting reference

frame, i.e. c = 0 and one in a constantly moving reference frame, c 6= 0. After the end of each

integration both solutions are compared to each other. Galilean invariance implies that both

solutions must coincide up to machine precision.

By increasing the strength of the boost and by computing the RMSE, we observe an increase

in the error for the non-invariant momentum-conserving scheme while the invariant adaptive
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Cnoidal wave Soliton

Scheme RMSE ∆M RMSE ∆M

Non-inv standard 3.98e-3 1.96e-14 9.56e-2 3.20e-14

Non-inv standard M-cons 1.52e-3 2.66e-14 3.38e-2 7.11e-14

Inv 5 point explicit Lagrangian 4.59e-2 8.07e-3 0.439 0.367

Inv Lagrangian 7.69e-3 1.26e-3 0.346 0.166

Inv Lagrangian M-cons 9.91e-3 2.31e-14 0.436 3.91e-14

Inv evolution–projection 4.93e-3 8.19e-4 0.288 7.78e-2

Inv evolution–projection M-cons 5.58e-3 7.59e-4 0.327 4.08e-2

Non-inv adaptive (ρ(α, uxx), α = 1e6) 3.92e-3 2.71e-6 — —

Non-inv adaptive M-cons (ρ(α, uxx), α = 1e6) 1.57e-3 2.31e-14 — —

Inv adaptive (ρ(α, ux), α = 5e6) 3.99e-3 1.54e-5 — —

Inv adaptive M-cons (ρ(α, ux), α = 5e6) 1.48e-3 3.38e-14 — —

Non-inv adaptive (ρ(α, uxx), α = 1e4) — — 9.49e-2 9.12e-4

Non-inv adaptive M-cons (ρ(α, uxx), α = 1e4) — — 2.94e-2 4.97e-14

Inv adaptive (ρ(α, ux), α = 1e4) — — 9.28e-2 5.74e-4

Inv adaptive M-cons (ρ(α, ux), α = 1e4) — — 0.682 3.55e-14

Table 4. Errors of different schemes for the cnoidal wave and soliton solutions. All schemes use the ten point

lattice unless otherwise stated. Time steps are always ∆t = 10−4. The cnoidal wave is integrated over one period

up to t = 0.2 while the soliton is computed up to t = 0.05 on the domain [−4, 4]. The short integration time

is to allow using the purely Lagrangian method. For both integration N = 48 total mesh points are used. The

projection method is parabolic interpolation. The suitable adaptation parameter depends on both the form of

the monitor function and the initial conditions.

and momentum-conserving scheme is largely unaffected, see Table 5 for quantification. The

Galilean boosted solution for the invariant scheme in Fig. 3 is identical to its equivalent in the

resting reference frame and visually confirms the Galilean invariance of this scheme, a major

physical property lost when using standard non-invariant schemes. For the other invariant and

non-invariant schemes the results are essentially the same and are hence not presented here.

5 Conclusions

In this paper we have constructed invariant numerical schemes for the Korteweg–de Vries equa-

tion. While some invariant numerical schemes have already been constructed for this equation

in the past [12, 17], to the best of our knowledge this is the first time that actual numerical

experiments have been carried out for the KdV equation using such schemes. We found that

these existing schemes, all Lagrangian in nature, can develop tangling meshes and hence may not

allow integration beyond some fixed time limit. A remedy for these schemes is provided through

invoking them in an evolution–projection framework. As shown for several test cases, these

evolution–projection schemes can produce numerical solutions for the KdV equation without

being restricted by the development of mesh problems.

In addition, we have proposed several Eulerian numerical schemes most notably by using ideas
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RMSE compared to c=0 solution

c/∆x Non-inv standard M-cons Inv adaptive M-cons (ρ(α, ux), α = 1e4)

-10 2.14e-1 1.82e-12

-1 2.29e-2 1.07e-12

0 0 0

1 2.19e-2 8.76e-13

5 0.103 3.15e-12

10 0.202 1.86e-12

30 0.564 1.03e-12

Table 5. RMSE comparing the resting reference solution (c = 0) to a constantly moving solution (c 6= 0) for

the non-invariant momentum-preserving scheme (left) and the invariant adaptive momentum-preserving scheme

(right). Integrations were done up to t = 1 using the time step ∆t = 10−3 and N = 128 points. It can be seen

that varying the speed c of the reference frame leads to significantly different solutions for the standard scheme

as measured through the RMSE while for the invariant scheme the RMSE stays approximately constant and is

due to rounding only.
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M-cons inv adapt, ρ(α, ux), α = 1e4, c=0

M-cons inv adapt, ρ(α, ux), α = 1e4, c=30∆ x

Analytical solution for adaptive scheme

M-cons standard, c=0

M-cons standard, c=30∆ x

Analytical solution for standard scheme

Figure 3. Double soliton solution at time t = 0.1 computed using the non-invariant and invariant adaptive

momentum-conservative schemes. Time step used is ∆t = 10−4 with N = 128 grid points. The non-invariant

solutions are shifted with respect to the invariant solutions for the sake of comparison. While the non-invariant

scheme in a resting reference frame (open squares) approximates closely the exact solution (dashed line), using

this scheme in a constantly moving reference frame (triangles) leads to large deviations from the true solution. For

the invariant scheme, both the solution in the resting reference frame (open circles) and in a constantly moving

reference frame (crosses) are in good accordance with the exact solution (solid line).
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of adaptive moving mesh methods. These schemes are attractive in that they link the required

moving meshes (to preserve Galilean invariance) to the development of pronounced features of

the numerical solution. Hence, such schemes are capable of tracking developing shots, blow-ups

etc. Furthermore, we have shown that it is possible to develop invariant numerical schemes that

also preserve momentum.

In terms of accuracy, we have found that the invariant and non-invariant schemes are compa-

rable. This is in striking contrast to symmetry-preserving integrators for ODES, where invariant

schemes can perform significantly better than their non-invariant counterparts, especially for

solutions with singularities [6, 7, 42]. For the KdV equation, one possible explanation for this

discrepancy is that the maximal Lie invariance group is of rather simple structure, with three of

the four admitted one-parameter symmetry transformations (shifts in space and time as well as

dilations) already preserved by standard numerical schemes for this equation. Hence, the only

difference between the non-invariant and invariant schemes for the KdV equation is whether

Galilean invariance is admitted or not.

One manifestation of this difference is the achieved accuracy for the Galilean invariant so-

lution (10). While for the invariant schemes this solution is also exact, this is not the case for

the standard schemes. This explains the significantly better accuracy of the invariant schemes

compared to the non-invariant ones.

While getting better numerical schemes is a main motivation for research in numerical anal-

ysis, it is also important to develop schemes that accurately capture the essential properties of a

physical model. The KdV equation, like most other classical equations of classical hydrodynam-

ics is invariant under the Galilean group. It is hence of primary importance to devise schemes

that are able of preserving the Galilean group numerically. As was shown in the original work

by Dorodnitsyn [13] this is only possible on moving discretization meshes. With Lagrangian

schemes not being a numerically competitive option, the here proposed discretizations in com-

putational coordinates and combination with proven adaptation methods are a viable route to

numerically preserve this important Lie group.
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[13] Dorodnitsyn V., Applications of Lie Groups to Difference Equations, vol. 8 of Differential and integral equa-

tions and their applications, Chapman & Hall/CRC, Boca Raton, FL, 2011.

[14] Dorodnitsyn V., Kaptsov E., Kozlov R. and Winternitz P., First integrals of ordinary difference equations

beyond Lagrangian methods, ArXiv:1311.1597, 2013.

[15] Dorodnitsyn V., Kozlov R. and Winternitz P., Lie group classification of second-order ordinary difference

equations, J. Math. Phys. 41 (2000), 480–504.

[16] Dorodnitsyn V., Kozlov R. and Winternitz P., Continuous symmetries of Lagrangians and exact solutions of

discrete equations, J. Math. Phys. 45 (2004), 336–359.

[17] Dorodnitsyn V.A., Transformation groups in mesh spaces, J. Sov. Math. 55 (1991), 1490–1517.

[18] Dorodnitsyn V.A. and Kozlov R., A heat transfer with a source: the complete set of invariant difference

schemes, J. Nonlin. Math. Phys. 10 (2003), 16–50.

[19] Dorodnitsyn V.A. and Winternitz P., Lie point symmetry preserving discretizations for variable coefficient

Korteweg–de Vries equations, Nonlin. Dyn. 22 (2000), 49–59.

[20] Dubrovin B.A., Matveev V.B. and Novikov S.P., Non-linear equations of Korteweg-de Vries type, finite-zone

linear operators, and Abelian varieties, Russ. Math. Surveys 31 (1976), 59.

[21] Dubrovin B.A. and Novikov S.P., Periodic and conditionally periodic analogs of the many-soliton solutions

of the Korteweg-de Vries equation, Sov. Phys. JETP 40 (1975), 1058–1063.

[22] Gardner C.S., Greene J.M., Kruskal M.D. and Miura R.M., Method for solving the Korteweg–de Vries

equation, Phys. Rev. Lett. 19 (1967), 1095–1097.
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