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Constants and Variables  
 

Data are constants provided to a program for use in computation (processing).  

Results are constants produced as a result of computation.  

We have seen that all information is represented in the computer in binary form. The type of 
information determines the way in which it is represented and the operations which may be 
performed on it.  

The CHARACTER type 
A constant of type CHARACTER, (often called a string) is a sequence of characters which may be 
upper case alphabetic, numeric, blanks, and the following:  

+ - * / = ( ) , . ' $ :  

When included in a FORTRAN statement, a string must be delimited by single quotes ('). A single 
quote may be included in a string by writing two consecutively. Only one is retained.  

Example: 'WE''RE A'' JOCK TAMSON''S BAIRNS.'  

The INTEGER type 
Constants of type INTEGER are integer numbers. An INTEGER constant is written as a sequence 
of decimal digits, optionally preceded by a sign (unary + or -).  

Examples: 123 +1 0 4356 -4  

INTEGER constants are represented in exact form. Their magnitude has a limit which depends on 
the word length of the computer.  

The REAL type 
Constants of type REAL are numbers which may include a fractional part. A REAL constant is 
written in one of the following forms:  

1. An integer part written as an INTEGER constant defined as above, followed by a decimal 
point, followed by a fractional part written as a sequence of decimal digits. Either the integer 
or the fractional part, but not both, may be omitted.  

2. An INTEGER constant or a REAL constant defined as in (i), followed by a decimal 
exponent written as the letter 'E' followed by an INTEGER constant. The constant is a 
power of 10 by which the preceding part is multiplied.  



Examples:  

+123.4 -123.4 .6E-3 (0.6x10-3) 4.6E3 (4.6x103) 7E-3 2.  

REAL constants are represented in approximate form. Their magnitude has a limit which depends 
on the word length of the computer.  

Variables 
A variable is a unique name which a FORTRAN program applies to a word of memory and uses to 
refer to it. A variable consists of one to six upper case alphabetic characters and decimal digits, 
beginning with an alphabetic character.  

Examples:  

 
 VOL TEMP A2 COLUMN IBM370 

Note:  

Spaces are ignored by FORTRAN, e.g. 'COL UMN' is equivalent to 'COLUMN'  

1. Clarity can be improved by choosing variables which suggest their usage, e.g.  

DEGC MEAN STDDEV  

The value of a variable is the constant stored in the word to which it refers. Each variable has a 
type, which stipulates the type of value it may have. The type of a variable may be specified 
explicitly, or assigned implicitly (by default).  

Explicit typing 

The type of a variable may be assigned explicitly by a type specification statement. This has the 
form:  

type variable_list  

where type is the name of a type  

and variable_list is a single variable or a list of variables, separated by commas.  

The statement assigns the given type to all the variables in the list.  

Examples:  

INTEGER WIDTH  

REAL NUM, K  

Type specification statements are not compiled into executable machine code instructions. Instead 
the compiler records the names and types of the variables and reserves storage for them. Such non-



executable statements must be placed at the beginning of a program, before the first executable 
statement.  

Implicit (or default) typing 

If a variable is used without being included in a type specification, its type is assigned implicitly (by 
default) according to the following rule:  

If the variable begins with a character from I to N, its type is INTEGER. Otherwise, it is REAL.  

Thus TEMP is a REAL variable, while ITEMP is an INTEGER.  

Note: Because a variable can be used without first being declared in a type specification, a 
misspelled variable is not in general detected as an error by the compiler. The program may compile 
and run, but produce incorrect results. Care should therefore be taken to get variable names right, 
and if unexpected results are obtained, variable names are one of the first things to check.  

Assigning a value 

Before a variable can be used in computation, it must be assigned an initial value. This may be done 
by reading a value from input or by using an assignment statement.  

The READ statement 

The READ statement is used to assign values to variables by reading data from input. The simplest 
form of the READ statement is:  

READ *, variable_list  

where variable_list is a single variable or a list of variables separated by commas. (The asterisk will 
be explained later).  

This statement reads constants from the terminal, separated by spaces, commas, or new lines, and 
assigns them in sequence to the variables in the list. Execution of the program pauses until the right 
number of constants has been entered.  

Example:  

READ *, VAR1, VAR2, VAR3  

waits for three constants to be entered and assigns them in sequence to the variables VAR1, VAR2 and 
VAR3.  

The assignment statement 

The simplest form of assignment statement is:  

variable = constant  



This means that the constant is assigned as a value to the variable on the left-hand-side. Note that 
the '=' sign has a different meaning than in algebra. It does not indicate equality, but is an 
assignment operator.  

Examples:  

TEMP = 74.5  

ITEMP = 100  

Type rules 

Whichever method is used to assign a value to a variable, the type of the value must be consistent 
with that of the variable. The rules are:  

1. A CHARACTER value cannot be assigned to a numeric variable or vice versa.  
2. An INTEGER value can be assigned to a REAL variable. The value assigned is the REAL 

equivalent of the integer.  

Example: X = 5 is equivalent to X = 5.0  

1. A REAL value can be assigned to an INTEGER variable. The value assigned is truncated 
by discarding the fractional part.:  

Examples:  

 
              Value           
              Assigned        
 
                              
 
N = 0.9999    0               
 
M = -1.9999   -1              
 
 



 
 

Arrays   
 

All our programs so far have required the storage of only a few values, and could therefore be 
written using only a few variables. For example, the average mark program of Figure 8 on page 18 
required only variables for a mark, the total mark, the count of the marks and the average. When 
large numbers of values have to be stored, it becomes impracticaI or impossible to use different 
variables for them all. If the average mark program were rewritten to compute average marks for 
five subjects, we should require five variables, say MARK1 ... MARK5 for the marks, five 
variables for the totals, and five for the averages. This could be done, but the program would be 
rather repetitive. The situation is even worse if, after computing the averages, the program is 
required to print a list showing, for each student and subject, the student's mark and the difference 
between the mark and the average. This could conceivably be done if the number of students were 
given in advance, but the program would be extremely cumbersome. If, as in the example, the 
number of students is not given but determined by counting, the task is impossible, as there is no 
way of knowing how many variables will be required.  

We need to store all the marks in order in a list or other structure to which we can apply a name, 
and refer to individual marks by a combination of the name and a number or numbers indicating the 
position of a mark in the list or structure.  

In mathematics, an ordered list of items is called a vector of dimension . If the vector is denoted by 
, the items, usually called the components or elements of the vector, are denoted by .  

FORTRAN uses a structure similar to a vector called an array. An array A of dimension N is an 
ordered list of N variables of a given type, called the elements of the array. In FORTRAN, the 
subscript notation used for the components of a vector is not available. Instead the elements are 
denoted by the name of the array followed by an integer expression in parentheses. Thus, the 
elements of A are denoted by A(1), A(2),... A(N). The parenthesised expressions are called 
array subscripts even though not written as such.  

A subscript can be any arithmetic expression which evaluates to an integer. Thus, if A, B, and C are 
arrays, the following are valid ways of writing an array element:  

 
 A(10) 
 B(I+4) 
 C(3*I+K) 

Array declarations 
Since an array is a list of variables, it obviously requires several words or other units of storage. 
Each array must therefore be declared in a statement which tells the compiler how many units to 
reserve for it. This can be done by including the array name in a type specification followed by its 
dimension in parentheses. For example:  



 
 INTEGER AGE(100),NUM(25),DEG 

This reserves 100 words of storage for array AGE, 25 for array NUM, and one word for the variable 
DEG. All three items are of type INTEGER.  

Space can also be reserved for arrays by the DIMENSION statement, which reserves storage using a 
similar syntax, but includes no information about type. Thus, if this method is used, the type is 
either determined by the initial letter of the array or assigned by a separate type specification. 
Therefore, the equivalent to the above using a DIMENSION statement is:  

 
 INTEGER AGE,DEG 
 DIMENSION AGE(100),NUM(25) 

(NUM is typed as INTEGER by default).  

DIMENSION statements, like type specifications, are non-executable and must be placed before the 
first executable statement.  

Since a type specification can stipulate both type and dimension, there is little point in using 
DIMENSION statements.  

When this form of declaration is used in a type or DIMENSION statement the upper and lower 
bounds for the subscript are 1 and the dimension respectively. Thus, AGE in the above example may 
have any subscript from 1 to 100. Arrays can also be declared to have subscripts with a lower bound 
other than 1 by using a second form of declaration in which the lower and upper bounds are given, 
separated by a colon. For example:  

 
 REAL C(0:20) 
 INTEGER ERROR(-10:10) 

reserves 21 words of storage for each of the arrays C and ERROR and stipulates that the subscripts of 
C range from 0 to 20 inclusive, while those of ERROR range from -10 to 10.  

Although the declaration stipulates bounds for the subscript, not all compilers check that a subscript 
actually lies within the bounds. For example, if NUM is declared as above to have a subscript from 1 
to 25, a reference to NUM(30)may not cause an error. The compiler may simply use the 30th word of 
storage starting from the address of NUM(1) even though this is outside the bounds of the array. 
This can cause unpredictable results. Care should therefore be taken to make sure that your 
subscripts are within their bounds.  

Use of arrays and array elements 
Array elements can be used in the same way as variables, their advantage being that different 
elements of an array can be referenced by using a variable as a subscript and altering its value, for 
example by making it the control variable of a DO loop. This is illustrated in the following sections.  

The array name without a subscript refers to the entire array and can be used only in a number of 
specific ways.  



Initialising an array 
Values can be assigned to the elements of an array by assignment statements, e.g.  

 
 NUM(1) = 0 

NUM(2) = 5  

If all the elements are to have equal values, or if their values form a regular sequence, a DO loop 
can be used. Thus, if NUM and DIST are arrays of dimension 5:  

 
 DO 10, I = 1,5 
 NUM(I) = 0 
 10 CONTINUE 

initialises all the elements of NUM to 0, while:  

 
 DO 10, I = 1,5 
 DIST(I) = 1.5*I 
 10 CONTINUE 

assigns the values 1.5, 3.0, 4.5, 6.0 and 7.5 to DIST(1),DIST(2),DIST(3), DIST(4) and DIST(5) 
respectively.  

The DATA statement 

The DATA statement is a non-executable statement used to initialise variables. It is particularly 
useful for initialising arrays. It has the form:  

DATA variable_list/constant_list/ [,variable_list/constant_list/] ...  

(The square brackets and ellipsis have their usual meaning.)  

Each variable_list is a list of variables, and each constant_list a list of constants, separated by 
commas in each case. Each constant_list must contain the same number of items as the preceding 
variable_list and corresponding items in sequence in the two lists must be of the same type.  

The DATA statement assigns to each variable in each variable_list a value equal to the 
corresponding constant in the corresponding constant_list. For example:  

 
 DATA A,B,N/1.0,2.0,17/ 

assigns the values 1.0 and 2.0 respectively to the REAL variables A and B, and 17 to the INTEGER 
variable N.  

A constant may be repeated by preceding it by the number of repetitions required (an integer) and 
an asterisk. Thus:  

 



 DATA N1,N2,N3,N4/4*0/ 

assigns a value of zero to each of the variables N1,N2,N3 and N4.  

Items in a variable_list may be array elements. Thus, if A is an array of dimension 20, the DATA 
statement:  

 
 DATA A(1),A(2),A(3),A(4)/4*0.0/,A(20)/-1.0/ 

assigns a value of zero to the first four elements, -1.0 to the last element, and leaves the remaining 
elements undefined.  

The implied DO list 

When a large number of array elements have to be initialised, we can avoid writing them all 
individually by using an implied DO list.  

An implied DO list is used in a DATA statement or an input/output statement to generate a list of 
array elements. The simplest form of implied DO list is:  

(dlist, int=c1,c2[,c3])  

where dlist is a list of array elements separated by commas. The expresssion: int=c1,c2[,c3] has a 
similar effect to the expression: var=e1,e2,[,e3] in a DO loop, but int must be a variable of type 
INTEGER, and c1,c2 and c3 must be constants or expressions with constant operands. The implied 
DO variable int is defined only in the implied DO list, and is distinct from any variable of the same 
name used elsewhere.  

The implied DO list expands dlist by repeating the list for each value of int generated by the loop, 
evaluating the array subscripts each time. Thus:  

 
 DATA (A(I),I=1,4)/4*0.0/,A(20)/-1.0/ 

has the same effect as the previous example.  

A more complex use of an implied DO list is shown by the example:  

 
 DATA (A(I),A(I+1),I=1,19,3)/14*0.0/,(A(I),I=3,18,3)/6*1.0/ 

which assigns a value of zero to A(1),A(2), A(4),A(5), ... A(19),A(20) and a value of 1.0 to 
every third element A(3),A(6), ... A(18) .  

Finally, an entire array can be initialised by including its name, without a subscript, in variable_list 
in a DATA statement. This is equivalent to a list of all its elements in sequence. Thus, if A has 
dimension 20, all the elements of A are initialised to zero by:  

 
 DATA A/20*0.0/ 



DATA statements can be placed anywhere in a program after any specifications. In the interests of 
clarity, it is probably best to put them immediately before the first executable statement. Wherever 
they may be, they cause initialisation when the program is loaded (before execution begins). 
Therefore they can only be used to initialise variables and not to re-assign values to them 
throughout execution of the program. For this purpose, assignment statements or READ statements 
must be used.  

Input and output of arrays 
Array elements and array names can be used in input/output statements in much the same way as in 
DATA statements. Thus, input and output lists can include:  

• array elements.  
• array names (equivalent to all the elements in sequence).  
• implied DO lists.  

Implied DO lists in input/output statements differ in two respects from those in DATA statements:  

1. In output statements, dlist can include any output list item. For example:  

 
 PRINT *, (A(I),'ABC', K, I=1,4) 

will print the values of A(1)...A(4) followed in each case by 'ABC' and the value of K.  

1. The loop parameters need not be constants or constant expressions, but can include variables 
(INTEGER or REAL) provided that these have been assigned values, e.g.  

 
 N = 5 
 . 
 PRINT *,(A(I),I=1,N) 

In an input statement, the loop parameters can depend on values read before by the same statement, 
e.g.  

 
 READ *, N, (A(I),I=1,N) 

If variables are used in this way, care should be taken to ensure that they lie within the subscript 
bounds of the array, as in the following example:  

 
 REAL A(20) 
 . 
 READ *, N 
 IF (N.GE.1 .AND. N.LE.20) THEN 
 READ *, (A(I),I=1,N) 
 ELSE 
 PRINT *, N, 'EXCEEDS SUBSCRIPT BOUNDS.' 
 END IF 

We can now return to the exam marks problem mentioned at the beginning of the chapter.  



Example 1: 

Write a program to read the marks of a class of students in five papers, and print, for each paper, the 
number of students sitting it and the average mark. The marks are to be read as a list of five marks 
in the same order for each student, with a negative mark if the student did not sit a paper. The end 
of the data is indicated by a dummy mark of 999.  

The outline of the program is:  

1. Initialise the total mark for each of the five papers and a count of the number of students 
sitting it.  

2. Read five marks for the first student.  
3. While the first mark is not 999, repeat:  

1. For each of the five marks repeat:  
1. If the mark is not negative then:  

1. Increment the count of students sitting that paper.  
2. Add the mark to the total for that paper.  

2. Read five marks for the next student.  
4. Repeat for each of five papers:  

1. If the count of students sitting the paper exceeds zero then:  
1. Compute the average mark for the paper.  
2. Print the number of the paper, the number of students sitting it, and the 

average mark.  

Otherwise  

1. Print a message: 'No students sat paper number' paper_number  

We shall use arrays MARK, COUNT and TOTAL to store the five marks for a student, a count of students 
sitting each paper and the total mark for each paper respectively. The program follows.  

 
 PROGRAM EXAM 
 INTEGER MARK(5),TOTAL(5),COUNT(5) 
 DATA COUNT/5*0/,TOTAL/5*0/ 
 READ *,(MARK(I),I=1,5) 
 10 IF (MARK(1).NE.999) THEN 
  DO 20, I=1,5 
  IF (MARK(I).GE.0) THEN 
 COUNT(I) = COUNT(I)+1 
  TOTAL(I) = TOTAL(I)+MARK(I) 
  END IF 
 20 CONTINUE 
 READ *,(MARK(I),I=1,5) 
 GOTO 10 
 END IF 
 DO 30, I=1,5 
 IF (COUNT(I).GT.0) THEN 
 AVMARK = 1.0*TOTAL(I)/COUNT(I) 
C MULTIPLY BY 1.0 TO CONVERT TO REAL AND AVOID TRUNCATION 
 PRINT *,COUNT(I),' STUDENTS SAT PAPER NUMBER',I 
 PRINT *,'THE AVERAGE MARK WAS', AVMARK 
 ELSE 
 PRINT *,'NO STUDENTS SAT PAPER NUMBER',I 
 END IF 
 30 CONTINUE 



 END 

Figure 12: Exam marks program  

One problem with this program is that if the last line of input consists of the single terminating 
value of 999, the statement: READ *,(MARK(I),I=1,5) will wait for another four values to be 
entered. This can be avoided by following 999 by a '/' character, which is a terminator causing the 
READ statement to ignore the rest of the input list.  

Multi-dimensional arrays 
Suppose now that the exam marks program is to be altered to print a list of all the marks in each 
paper, with the differences between each mark and the average for the paper. This requires that all 
the marks should be stored. This could be done by making the dimension of MARK large enough to 
contain all the marks, and reserving the first five elements for the first student's marks, the next five 
for the second student's marks and so on. This would be rather awkward.  

The problem could be dealt with more easily if we could add a second subscript to the MARK array to 
represent the number of each student in sequence. Our array could then be declared either by:  

 
 INTEGER MARK(5,100) 

or by:  

 
 INTEGER MARK(100,5) 

and would reserve enough space to store the marks of up to 100 students in 5 subjects.  

In fact, FORTRAN arrays can have up to seven dimensions, so the above declarations are valid. The 
subscript bounds are specified in the same way as for one-dimensional arrays. For example:  

 
 REAL THREED(5,0:5,-10:10) 

declares a three-dimensional array of type REAL, with subscript bounds of 1...5, 0...5 and -10...10 in 
that order.  

An array element must always be written with the number of subscripts indicated by the declaration.  

When multi-dimensional array elements are used in an implied DO list, multiple subscripts can be 
dealt with by including nested implied DO lists in dlist, for example:  

 
 READ *, (A(J),(MARK(I,J),I=1,5),J=1,100) 

Here, dlist contains two items, A(J) and the implied DO list (MARK(I,J),I=,5) .This inner 
implied DO list is expanded once for each value of J in the outer implied DO list. Thus the above 
READ statement reads values into the elements of A and MARK in the order:  

 



 A(1), MARK(1,1), MARK(2,1),... MARK(5,1) 
 A(2), MARK(1,2), MARK(2,2),... MARK(5,2) 
   . 
 A(100),MARK(1,100),MARK(2,100),...MARK(5,100) 

The unsubscripted name of a multi-dimensional array can be used, like that of a one-dimensional 
array, in input/output and DATA statements to refer to all its elements, but it is essential to know 
their order. The elements are referenced in the order of their positions in the computer's memory. 
For a one-dimensional array, the elements occur, as we might expect, in increasing order of their 
subscripts, but for multi-dimensional arrays, the ordering is less obvious. The rule is that the 
elements are ordered with the first subscript increasing most rapidly, then the next and so on, the 
last subscript increasing most slowly. Thus if MARK is declared as:  

 
 INTEGER MARK(5,100) 

its elements are ordered in memory as shown above, and the statement:  

 
 READ *,MARK 

is equivalent to:  

 
 READ *, ((MARK(I,J),I=1,5),J=1,100) 

Of course, the order could be altered by swapping the control variables in the inner and outer 
implied DO loops thus:  

 
 READ *, ((MARK(I,J),J=1,100),I=1,5) 

We can use a two-dimensional array to solve the problem posed at the beginning of this section.  

Example 2:  

Write a program to read the marks of up to 100 students in five papers, and print, for each paper, the 
number of students sitting it, the average mark, and a list of the marks and their differences from the 
average. The marks are to be read as a list of five marks in the same order for each student, with a 
negative mark if the student did not sit a paper. The end of the data is indicated by a dummy mark 
of 999.  

The outline is:  

1. Initialise the total mark for each of the five papers, a count of the number of students sitting 
it and a count of all the students.  

2. For up to 100 students, repeat:  
1. Read and store five marks  
2. If the first mark is 999, then continue from step 4.  

Otherwise:  

1. Increment the count of all students.  



2. For each of the five marks repeat:  
1. If the mark is not negative then:  

1. Increment the count of students sitting that paper.  
2. Add the mark to the total for that paper.  

1. Read a mark. If it is not 999 then:  
1. Print a message: 'Marks entered for more than 100 students.'  
2. STOP  

2. Repeat for each of five papers:  
1. If the count of students sitting the paper exceeds zero then:  

1. Compute the average mark for the paper.  
2. Print the number of the paper, the number of students sitting it, and the 

average mark.  
3. Print a list of all the marks in that paper and their differences from the 

average for the paper.  

Otherwise  

1. Print a message: 'No students sat paper number' paper_number  

Step 4.1.3 can be further outlined as:  

1. For each student, repeat:  

If his/her mark in the paper is not negative, then:  

1. Print the mark.  
2. Compute and print the difference between the mark and the average for the paper.  

Since the marks are read five subjects at a time for each student, it is convenient to store them in an 
array MARK(5,100). The program follows:  

 
 PROGRAM EXAM2 
 INTEGER MARK(5,100),TOTAL(5),COUNT(5),ALL 
 DATA COUNT/5*0/,TOTAL/5*0/,ALL/0/ 
 DO 20, J=1,100 
 READ *,(MARK(I,J),I=1,5) 
 IF (MARK(1,J).EQ.999) GOTO 30 
 ALL = ALL+1 
  DO 10, I=1,5 
  IF (MARK(I,J).GE.0) THEN 
 COUNT(I) = COUNT(I)+1 
  TOTAL(I) = TOTAL(I)+MARK(I,J) 
  END IF 
 10 CONTINUE 
 20 CONTINUE 
  READ *,LAST 
  IF (LAST.NE.999) THEN 
   PRINT *,'MARKS ENTERED FOR MORE THAN 100 STUDENTS.' 
   STOP 
  END IF 
 30 DO 50, I=1,5 
 IF (COUNT(I).GT.0) THEN 
 AVMARK = 1.0*TOTAL(I)/COUNT(I) 



C MULTIPLY BY 1.0 TO CONVERT TO REAL AND AVOID TRUNCATION 
 PRINT *,COUNT(I),' STUDENTS SAT PAPER NUMBER',I 
 PRINT *,'THE AVERAGE MARK WAS', AVMARK 
 PRINT *,'MARKS AND THEIR DIFFERENCES FROM THE AVERAGE:' 
 DO 40, J=1,ALL 
  IF (MARK(I,J).GE.0)PRINT *,MARK(I,J),MARK(I,J)-AVMARK 
 40 CONTINUE 
 ELSE 
 PRINT *,'NO STUDENTS SAT PAPER NUMBER',I 
 END IF 
 50 CONTINUE 
 END 

Figure 13: Exam marks program (version 2)  



 
 

Functions and subroutines  
 

Very often, a program has to perform a computation several times using different values, producing 
a single value each time. An example is the conversion of an angle in degrees to an equivalent in 
radians in Example 1 of the previous chapter.  

In FORTRAN, such a computation can be defined as a function and referred to by a name followed 
by a list of the values (called arguments) which it uses, in parentheses, i.e.  

name([argument_list])  

where argument_list is an optional list of arguments separated by commas. Note that the 
parentheses must be included even if argument_list is omitted, i.e.  

name()  

Such a function reference can be used in the same way as a variable or array element, except that it 
cannot be the object of an assignment. Like a variable or array element, a function reference is 
evaluated and the value obtained is substituted for it in the expression in which it appears. The type 
of a function is the type of the value so obtained.  

Thus, in the above example, a REAL function DGTORD might be defined to convert an angle in 
degrees to an equivalent in radians. The function would have a single argument, of type INTEGER, 
representing the value of the angle in degrees, and would be evaluated to obtain the equivalent in 
radians. The function might be used in an assignment statement like:  

 
 RADIAN = DGTORD(DEGREE) 

The definition of a function must include a definition of its type and the number and types of its 
arguments. In a function reference the number and type of the arguments must be as defined. Thus, 
for example:  

 
 RADIAN = DGTORD(DEGREE,X) 

would be an error.  

As the above example illustrates, a function reference has an identical form to an array element, and 
may be used in a similar context. FORTRAN distinguishes between the two by checking whether 
the name has been declared as an array, and assuming that it is a function if it has not. Thus, for 
example, if DGTORD were declared as:  

REAL DGTORD(100)  

then DGTORD(DEGREE) would be interpreted as an array element and not a function reference.  



Intrinsic functions 
FORTRAN provides a wide range of intrinsic functions, which are defined as part of the language. 
Many of them have an argument, or list of arguments, which may be of different types in different 
references. Most, though not all, of these return a value of the same type as that of their arguments 
in any reference. For example, the function ABS returns the absolute value of its argument, which 
may be REAL or INTEGER. Thus  

 
 ABS(X) 

returns the absolute value of the REAL variable X as a REAL value, while  

 
 ABS(N) 

returns the absolute value of the INTEGER variable N as an INTEGER value.  

A function of this kind is called a generic function. Its name really refers to a group of functions, 
the appropriate one being selected in each reference according to the type of the arguments.  

Figure 18 is a list of some of the more frequently used intrinsic functions. I and R indicate 
INTEGER and REAL arguments respectively. Where an argument represents an angle, it must be in 
radians.  

 
Name               Type       Definition                                   
 
ABS(IR)            Generic    Absolute value: IR                           
 
ACOS(R)            REAL       arccos(R)                                    
 
AINT(R)            REAL       Truncation: REAL(INT(R))                     
 
ANINT(R)           REAL       Nearest whole number: REAL(INT(R+0.5)) if    
                              R0                                           
                               REAL(INT(R0.5)) if R0                       
 
ASIN(R)            REAL       arcsin(R)                                    
 
ATAN(R)            REAL       arctan(R)                                    
 
COS(R)             REAL       cos(R)                                       
 
COSH(R)            REAL       cosh(R)                                      
 
DIM(IR1,IR2)       Generic    Positive difference: MAX(IR1-IR2,0)          
 
EXP(R)             REAL                                                    
 
INT(R)             INTEGER    INTEGER portion of R                         
 
LOG(R)             REAL       Natural logarithm: logeR                     
 
LOG10(R)           REAL       Common logarithm: log10R                     
 
MAX(IR1,IR2,...)   Generic    Largest of IR1,IR2,...                       



 
MIN(IR1,IR2,...)   Generic    Smallest of IR1,IR2,...                      
 
MOD(IR1,IR2)       Generic    Remainder: IR1-INT(IR1/IR2)*IR2              
 
NINT(R)            INTEGER    Nearest integer: INT(ANINT(R))               
 
REAL(I)            REAL       Real equivalent of I                         
 
SIGN(IR1,IR2)      Generic    Transfer of sign: IR1 if IR20                
                               IR1 if IR2<0                                
 
SIN(R)             REAL       sin(R)                                       
 
SINH(R)            REAL       sinh(R)                                      
 
SQRT(R)            REAL       R                                            
 
TAN(R)             REAL       tan(R)                                       
 
TANH(R)            REAL       tanh(R)                                      
 
 

Figure 18: Some common intrinsic functions  

External functions 
As well as using the intrinsic functions provided by the language, a programmer may create and use 
his/her own external functions. These functions may be included in the same source file as a 
program which uses them and compiled along with it, or may be written and compiled separately to 
obtain separate object files which are then linked to the object version of the program to obtain an 
executable program, in the same way as the library subprograms shown in Figure 3 on page 2. In 
either case, the program and functions are entirely independent program units.  

A FORTRAN source file consists of one or more program units in any order. One of these may be a 
main program unit, which begins with an optional PROGRAM statement and ends with an END 
statement. The others are subprograms, which may be external functions or subroutines. 
(Subroutines are explained later in the chapter.)  

An external function program unit begins with a FUNCTION statement and ends with an END 
statement.  

Figure 19 illustrates a FORTRAN source file containing three program units, a main program 
MAIN and two functions FUN1 and FUN2. The order of the program units is immaterial.  

 
PROGRAM MAIN 
 . 
 . 
END 
FUNCTION FUN1(arg1,...) 
 . 
 . 
END 
FUNCTION FUN2(arg1,...) 
 . 



 . 
END 

Figure 19: A FORTRAN source file containing two functions  

Provided that the program MAIN includes no references to any other external functions, the file 
could be compiled, and the resulting object file linked with the library subprograms to obtain an 
executable program.  

The functions might also be placed in one or two separate files and compiled separately from the 
main program. The object file or files thus obtained could then be linked with the library 
subprograms and the object version of the program MAIN or any other program containing 
references to them. In this way a programmer can create his/her own subprogram libraries for use 
by any program.  

The FUNCTION statement 

As shown above, an external function must begin with a FUNCTION statement. This has the form:  

 
 [type] FUNCTION name([argument_list]) 

As before, square brackets indicate that an item is optional.  

Type  

Each function has a type corresponding to the type of value returned by a reference to it. As for 
variables, the type of a function may be specified explicitly or assigned implicitly according to the 
first letter of the function name. For example, the function:  

 
 FUNCTION FUN1(arg1,...) 

returns a value of type REAL, but  

 
 INTEGER FUNCTION FUN1(arg1,...) 

returns a value of type INTEGER.  

If the type of a function differs from that implied by the first letter of its name, it must be declared 
in a type specification in any program which refers to it. Thus any program using the second version 
of FUN1 above would include the name FUN1 in an INTEGER type specification statement, e.g.  

 
 INTEGER FUN1 

The argument list 

argument_list is an optional list of dummy arguments, separated by commas. Each dummy 
argument is a name similar to a variable or array name, which represents a corresponding actual 
argument used in a function reference. Dummy arguments, and variables used in a function, are 



defined only within it. They may therefore be identical to variable or array names used in any other 
program unit.  

If a dummy argument represents an array, it must appear in a type specification or DIMENSION 
statement in the function. If it represents a variable, it may appear in a type specification, or may be 
typed by default.  

Example:  

 
 FUNCTION FUN1(A,B,N) 
 REAL A(100) 
 INTEGER B 

Here, A represents a REAL array of dimension 100, and B and N represent INTEGER variables.  

A function may have no arguments, e.g.  

 
 FUNCTION NOARGS() 

The function reference 

As we have seen, a function reference has the form:  

name(argument_list)  

argument_list is a list of actual arguments, which must match the list of dummy arguments in the 
FUNCTION statement with respect to the number of arguments and the type of each argument. For 
example:  

 
 REAL X(100) 
  . 
 RESULT = FUN1(X,J,10) 

would be a valid reference to the function FUN1(A,B,N) shown above.  

If a dummy argument is a variable name, the corresponding actual argument may be any expression 
of the same type, i.e. a constant, variable, array element or more complex arithmetic expression.  

If a dummy argument is an array name, the actual argument may be an array or array element. The 
dimensions of the dummy array may be variable if they are also dummy arguments.  

Example:  

 
 REAL X(5,10) 
  ... 
 Y = FUN(X,5,10) 
  ... 
 END 
 FUNCTION FUN(A,M,N) 
 REAL A(M,N) 



  ... 

Actual and dummy arguments 

The dummy arguments and corresponding actual arguments provide a means of exchanging 
information between a program unit and a function.  

Each actual argument refers to a word or other unit of storage. However, no storage is reserved for a 
dummy argument; it is simply a name. When a function reference is evaluated, the address of each 
actual argument is passed to the function, and the corresponding dummy argument is set to refer to 
it. The dummy argument may therefore be used in the function as a variable or array referring to the 
same unit of storage as the actual argument.  

Thus if a dummy argument represents a variable, its value on entry to the function is that of the 
corresponding actual argument when the function is referenced. If its value is changed in the 
function by an assignment or READ statement, the actual argument will be correspondingly 
changed after the function reference has been evaluated.  

Arrays as arguments 

If a dummy argument is an array, the corresponding actual argument may be an array or array 
element. In the former case, the elements of the dummy array correspond to the elements of the 
actual array in the order of their storage in memory. This, however, does not imply that the 
subscripts are identical, or even that the two arrays have the same number of subscripts. For 
example, suppose that the function:  

 
 FUNCTION FUN(A) 
 REAL A(9,6) 
  . 
 END 

is referenced by program MAIN as follows:  

 
 PROGRAM MAIN 
 REAL X(100),Y(0:5,-10,10) 
  . 
 F1 = FUN(X) 
 F2 = FUN(Y) 
  . 
 END 

Then the correspondence between some elements of the dummy array A and the actual arrays X and 
Y in the two function references is as shown below:  

 
A(1,1)   X(1)     Y(0,-10)     
 
A(6,1)   X(6)     Y(5,-10)     
 
A(7,1)   X(7)     Y(0,-9)      
 
A(1,2)   X(10)    Y(3,-9)      
 
A(5,4)   X(32)    Y(1,-5)      



 
A(9,6)   X(54)    Y(5,-2)      
 
 

If the actual argument is an array element, the first element of the dummy array corresponds to that 
element. Thus, if the function references:  

 
 F3 = FUN(X(15)) 
 F4 = FUN(Y(3,0)) 

were included in the program above, the following items would correspond in the two references:  

 
A(1,1)   X(15)    Y(3,0)     
 
A(4,1)   X(18)    Y(0,1)     
 
A(9,1)   X(23)    Y(5,1)     
 
A(1,2)   X(24)    Y(0,2)     
 
A(5,4)   X(46)    Y(4,5)     
 
A(9,6)   X(68)    Y(2,9)     
 
 

Such complicated relationships between actual and dummy arguments can sometimes be useful, but 
are in general best avoided for reasons of clarity.  

Evaluation of a function 

Once the dummy arguments have been initialised as described above, the statements comprising the 
body of the function are executed. Any statement other than a reference to the function itself may be 
used. At least one statement must assign a value to the function name, either by assignment, or less 
commonly, by a READ statement. Execution of the function is stopped, and control returned to the 
program unit containing the function reference, by a RETURN statement, written simply as:  

 
 RETURN 

The value of the function name when RETURN is executed is returned as the function value to the 
program unit containing the function reference.  

Examples  

We can now write the function DGTORD suggested at the beginning of the chapter, to convert an 
INTEGER value representing an angle in degrees, to a REAL value representing the equivalent in 
radians. Our function uses the intrinsic function ATAN to compute the conversion factor.  

 
 FUNCTION DGTORD(DEG) 
 INTEGER DEG 
 CONFAC = ATAN(1.0)/45.0 



 DGTORD = DEG*CONFAC 
 RETURN 
 END 

As a second example, the following function returns the mean of an array of N real numbers.  

 
 REAL FUNCTION MEAN(A,N) 
 REAL A(N) 
 SUM = 0.0 
 DO 10, I=1,N 
 10 SUM = SUM+A(I) 
 MEAN = SUM/N 
 RETURN 
 END 

Note that, since the type of this function differs from that implied by the first letter of its name, any 
program referring to it must declare the name in a type specification, e.g.  

 
 REAL MEAN 

Statement functions 
If a function involves only a computation which can be written as a single statement, it may be 
declared as a statement function in any program unit which refers to it. The declaration has the 
form:  

name(argument_list) = expression  

where:  

 
name          is the name of the statement function.                      
 
argument_list is a list of dummy arguments.                               
                                                                          
 
expression    is an expression which may include constants, variables     
              and array elements defined in the same program unit, and    
              function references.                                        
 
 

The declaration must be placed after all type specifications, but before the first executable 
statement.  

Thus the function DGTORD might be declared as a statement function in the program ANGLES:  

 
 DGTORD(DEGREE) = DEGREE*ATAN(1.0)/45.0 

Rules  



The name of a statement function must be different from that of any variable or array in the same 
program unit.  

The type of a statement function may be specified explicitly in a separate type specification or 
determined implicitly by the first letter of its name.  

A dummy argument may have the same name as a variable or array in the same program unit. If so, 
it has the same type as the variable or array but is otherwise distinct from it and shares none of its 
attributes. For example, in the program ANGLES, the dummy argument DEGREE of the statement 
function DGTORD has the same name as the variable DEGREE declared in the program, and 
therefore has the correct (INTEGER) type, but is a different entity. If the program included the 
declaration:  

 
 INTEGER DEGREE(100) 

the dummy argument DEGREE would be an INTEGER variable, not an array.  

If a dummy argument does not have the same name as a variable or array in the same program unit, 
it is typed implicitly according to its first letter, e.g.  

 
 DGTORD(IDEG) = IDEG*ATAN(1.0)/45.0 

expression may include references to functions, including statement functions. Any statement 
function must have been previously defined in the same program unit.  

Subroutines 
A subroutine is a subprogram similar in most respects to a function. Like a function, a subroutine 
has a list of dummy arguments used to exchange information between the subroutine and a program 
unit referring to it. Unlike a function, a subroutine does not return a value via its name (and 
therefore has no type), but it may return one or more values via its arguments.  

A subroutine subprogram begins with a SUBROUTINE statement and ends with END. The SUBROUTINE 
statement has the form:  

 
 SUBROUTINE name[(argument_list)] 

where name and argument_list have the same meanings as in the FUNCTION statement. The square 
brackets indicate that the item (argument_list) is optional, i.e. a subroutine may have no arguments, 
in which case the SUBROUTINE statement is simply:  

 
 SUBROUTINE name 

As for a function, a subroutine must include at least one RETURN statement to return control to the 
program unit referring to it.  

A subroutine is referenced by a CALL statement, which has the form:  



 
 CALL name[(argument_list)] 

where argument_list is a list of actual arguments corresponding to the dummy arguments in the 
SUBROUTINE statement. The rules governing the relationship between actual and dummy arguments 
are the same as for functions.  

Functions (intrinsic and external) and subroutines are often called procedures.  

In Example 1 of Chapter 8, the steps required to print a page header and column headers at the top 
of each page might be written as a subroutine. The steps are:  

1. Increment the page number.  
2. Print a page header, page number and column headers, followed by a blank line.  

The subroutine therefore has two dummy arguments, one representing the page number and the 
other representing the output device, and includes the WRITE statement and FORMAT statements 
required to print the page and column headers. The subroutine follows:  

 
 SUBROUTINE HEADER(PAGENO,OUTPUT) 
C PRINT PAGE HEADER, NUMBER AND COLUMN HEADERS 
 INTEGER PAGENO,OUTPUT 
 PAGENO = PAGENO+1 
 WRITE(OUTPUT,100)PAGENO 
 100 FORMAT(1H1//1X,'DEGREES TO RADIANS CONVERSION TABLE', 
 * T74,'PAGE',I2//1X,'DEGREES  RADIANS'/) 
 RETURN 
 END 

Note that the argument OUTPUT is used to receive a value from the calling program, while PAGENO 
both receives and returns a value.  

The degrees to radians conversion program can now be rewritten using the subroutine HEADER and 
function DGTORD as follows:  

 
 PROGRAM ANGLES 
 INTEGER DEGREE,PAGENO,OUT 
 DATA OUT/6/ 
C UNIT NUMBER FOR OUTPUT. A DIFFERENT DEVICE COULD BE USED BY 
C CHANGING THIS VALUE 
 DATA PAGENO/0/ 
 DO 10, DEGREE = 1,360 
 N = DEGREE-1 
 IF (N/40*40 .EQ. N) THEN 
 CALL HEADER(PAGENO,OUT) 
 ELSE IF (N/10*10 .EQ.N) THEN 
  WRITE(OUT,110) 
 END IF 
 10 WRITE(OUT,120)DEGREE,DGTORD(DEGREE) 
 110 FORMAT(1X) 
 120 FORMAT(1X,I5,T10,F7.5) 
 END 

Figure 20: Degrees to radians conversion program (version 4)  



Procedures as arguments 
A program unit can pass the names of procedures as arguments to a function or subroutine. The 
calling program unit must declare these names in an EXTERNAL statement for external procedures 
(functions or subroutines), or INTRINSIC statement for intrinsic functions. The statements have the 
form:  

EXTERNAL list  

and INTRINSIC list  

respectively, where list is a list of external procedures, or intrinsic functions respectively.  

If an actual argument is a procedure name, the corresponding dummy argument may be:  

1. used as a procedure in a CALL statement or function reference, or:  
2. passed as an actual argument to another procedure. In this case, it must be listed in an 

EXTERNAL statement.  

In this way, a procedure name can be passed from one procedure to another for as many levels as 
required.  

Example 1  

In Figure 21, the program MAIN passes the names of the subroutine ANALYS and the intrinsic 
function SQRT as actual arguments to the subroutine SUB1, corresponding to its dummy arguments 
SUB and FUN respectively. In SUB1, SUB appears in a CALL statement in which it is replaced in this 
instance by a call of ANALYS, while FUN appears in an EXTERNAL statement and is passed as an actual 
argument to SUB2, corresponding to its dummy argument F. In SUB2, F appears followed by a left 
parenthesis. Because F is not declared as an array, this is interpreted as a function reference, and is 
replaced by a reference to SQRT.  

Note that although SQRT is an intrinsic function and is declared as such in program MAIN, FUN, the 
corresponding dummy argument of subroutine SUB1, is declared in SUB1 as EXTERNAL because FUN 
is a dummy procedure name corresponding to a function defined externally to SUB1.  

 
 PROGRAM MAIN 
 EXTERNAL ANALYS 
 INTRINSIC SQRT 
  . 
 CALL SUB1(ANALYS,SQRT,A,B) 
  . 
 END 
 SUBROUTINE SUB1(SUB,FUN,X,Y) 
 EXTERNAL FUN 
  . 
 CALL SUB(...) 
  . 
 CALL SUB2(FUN,X,Y) 
  . 
 END 
 SUBROUTINE SUB2(F,P,Q) 



  . 
 Q = F(P) 
  . 
 END 

Figure 21: Procedures as arguments  

Example 2  

In Figure 22, the subroutine TRIG has three dummy arguments, X representing an angle in radians, F 
representing a trigonometric function, and Y representing that function of X. The main program 
includes four calls to TRIG, using the intrinsic functions SIN, COS and TAN and the external function 
COT, which computes the cotangent.  

 
 PROGRAM MAIN 
 EXTERNAL COT 
 INTRINSIC SIN,COS,TAN 
  . 
 CALL TRIG(ANGLE,SIN,SINE) 
  . 
 CALL TRIG(ANGLE,COS,COSINE) 
  . 
 CALL TRIG(ANGLE,TAN,TANGT) 
  . 
 CALL TRIG(ANGLE,COT,COTAN) 
  . 
 END 
 SUBROUTINE TRIG(X,F,Y) 
 Y = F(X) 
 RETURN 
 END 
 FUNCTION COT(X) 
 COT = 1.0/TAN(X) 
 RETURN 
 END 

Figure 22: Subroutine to compute any trigonometric function.  

Local variables 
The variables used in a subprogram, other than its arguments, are local variables, defined only 
within it, and therefore distinct from any identically named variables used elsewhere. When a 
RETURN statement is executed, they become undefined, and their addresses may be used by other 
program units. Therefore, if a subprogram is executed several times, the values of its local variables 
are not preserved from one execution to the next.  

The values of local variables can be preserved by a SAVE statement, which has the form:  

 
 SAVE [variable_list] 

where variable_list is a list of local variables, separated by commas. The statement causes the 
values of all variables in variable_list to be saved. If variable_list is omitted, the values of 
all local variables are saved.  



SAVE is a non-executable statement and must be placed before the first executable statement or 
DATA statement.  

Example:  

Each time the following function is executed, it prints a message indicating how many times it has 
been referenced.  

 
 FUNCTION AVE(X,Y) 
 INTEGER COUNT 
 SAVE COUNT 
 DATA COUNT/0/ 
 COUNT = COUNT+1 
 WRITE(6,10)COUNT 
  ... 
 10 FORMAT(1X,'FUNCTION AVE REFERENCED',I3,' TIMES.') 
   ... 
 END 



 

Control Structures - Iteration  
 

The last chapter showed how a sequence of instructions can be executed once, if a condition is true. 
The need also frequently arises to execute a sequence of instructions repeatedly, while a condition 
is true, or until a condition becomes true. Such repetitive execution is called iteration.  

: 

Write a program to read the marks of a class of students in an exam, print the number of marks and 
compute and print the average mark. The marks are to be read one at a time, with a 'dummy' mark 
of 999 marking the end.  

The outline of the program is:  

1. Initialise the total mark to zero.  
2. Initialise a count of the number of marks to zero.  
3. Read the first mark.  
4. While the current mark is not 999, repeat:  

1. Increment the count.  
2. Add the mark to the total.  
3. Read the next mark.  

5. If the count exceeds zero then  
1. Print the count.  
2. Compute and print the average mark.  

Otherwise:  

1. Print message: 'No marks read.'  

Unlike more modern programming languages, FORTRAN lacks a while structure as such, but the 
effect can be obtained using an IF structure and a new statement, the GOTO.  

The GOTO statement 
The GOTO statement has the form:  

GOTO label  

where label is the label of an executable statement, with certain restrictions which will be 
considered later.  

A GOTO statement causes the flow of execution to 'jump' to the labelled statement and resume 
from there.  

We can use a GOTO to complete the program of Example 1:  



 
 PROGRAM AVMARK 
 INTEGER TOTAL,COUNT 
 TOTAL = 0 
 COUNT = 0 
 READ *, MARK 
 10 IF (MARK.NE.999) THEN 
 COUNT = COUNT+1 
 TOTAL = TOTAL+MARK 
 READ *, MARK 
 GOTO 10 
 END IF 
 IF (COUNT.GT.0) THEN 
 AVER = 1.0*TOTAL/COUNT 
C MULTIPLY BY 1.0 TO CONVERT TO REAL AND AVOID TRUNCATION 
 PRINT *, COUNT, 'MARKS WERE READ.' 
 PRINT *, 'AVERAGE MARK IS', AVER 
 ELSE 
 PRINT *, 'NO MARKS WERE READ.' 
 END IF 
 END 

Figure 8: Average mark program  

Exercise:  

The average mark program provides for the possibility that the data consists only of the terminator 
999, but does no other checking. If the range of valid marks is 0 to 100, alter the program to check 
the validity of each mark, printing a suitable message if it is invalid, and print a count of any invalid 
marks with the results.  

Count controlled loops 
Any iterative structure is usually called a loop. As in Example 1, a loop of any kind can be 
constructed using an IF structure and one or more GOTO's.  

Often a loop is controlled by a variable which is incremented or decremented on each iteration until 
a limiting value is reached, so that the number of iterations is predetermined. Such a loop is shown 
in Example 2.  

Example 2:  

Write a program to print a table of angles in degrees and their equivalents in radians, from 0 to 360 
degrees, in steps of 10 degrees.  

The program outline is:  

1. Initialise the angle in degrees to 0.  
2. While the angle does not exceed 360 degrees, repeat:  

1. Compute the equivalent in radians.  
2. Print the angle in degrees and radians.  
3. Increment the angle by 10 degrees.  

and the program is:  



 
 PROGRAM CONVRT 
 INTEGER DEGREE 
 CONFAC = 3.141593/180.0 
C CONVERSION FACTOR FROM DEGREES TO RADIANS 
 DEGREE = 0 
 10 IF (DEGREE .LE. 360) THEN 
 RADIAN = DEGREE*CONFAC 
 PRINT *, DEGREE,RADIAN 
 DEGREE = DEGREE + 10 
 GOTO 10 
 END IF 
 END 

Figure 9: Degrees to radians conversion program (version 1)  

Loops of this kind occur frequently. Their essential features are:  

• A loop control variable (DEGREE in the above example) is assigned an initial value before 
the first iteration.  

• On each iteration, the control variable is incremented or decremented by a constant.  

• Iteration stops when the value of the control variable passes a predefined limit.  

FORTRAN provides for such loops with a structure called a DO loop, which is more concise and 
readable than a construction using IF and GOTO.  

The Do-loop 
A DO loop is a sequence of statements beginning with a DO statement. This has the form:  

DO label, var = e1, e2, [,e3]  

the square brackets indicating that ',e3' may be omitted.  

label is the label of an executable statement sequentially following the DO statement called the 
terminal statement of the DO loop.  

var is an INTEGER or REAL variable called the loop control variable.  

e1, e2 and e3 are arithmetic expressions (i.e. INTEGER or REAL constants, variables or more 
complex expressions).  

The sequence of statements beginning with the statement immediately following the DO statement 
and ending with the terminal statement is called the range of the DO loop.  

Execution 

A DO loop is executed as follows:  

1. The expressions e1, e2 and e3 are evaluated and if necessary converted to the type of var. If 
e3 is omitted, a value of 1 is used. The resulting values are called the parameters of the 
loop. We shall call them initial, limit and increment respectively.  



1. initial is assigned as a value to var.  
1. var is compared with limit, the test depending on the value of increment as follows:  

Condition tested  

increment > 0 var limit  

increment < 0 var limit  

If the condition tested is TRUE, then:  

1. The range of the DO loop is executed.  
2. var is incremented by increment.  
3. Control returns to step 3.  

Otherwise:  

1. Iteration stops and execution continues with the statement following the terminal statement.  

Examples:  

 
 DO 10, I = 1,5 

causes the range of statements beginning with the next and ending with the statement labelled 10 to 
be executed 5 times.  

 
 DO 10, I = 0,100,5 

causes the range to be executed 21 times for values of I of 0,5,10...100.  

 
 DO 10, I = 100,0,-5 

causes the range to be executed 21 times for values of I of 100,95...0.  

 
 DO 10, I = 0,100,-5 

In this case, the range is not executed at all, as the test in step 3 fails for the initial value of I.  

 
 DO 10, J = I,4*N**2-1,K 

Here, e1, e2 and e3 are more complex expressions.  

We can now rewrite the program of Example 2 using a DO loop. The outline becomes:  

1. Repeat for angles in degrees from 0 to 360 in steps of 10:  
1. Compute the equivalent in radians.  
2. Print the angle in degrees and radians.  



and the program follows:  

 
 PROGRAM CONVRT 
 INTEGER DEGREE 
 CONFAC = 3.141593/180.0 
C CONVERSION FACTOR FROM DEGREES TO RADIANS 
 DO 10, DEGREE = 0,360,10 
 RADIAN = DEGREE*CONFAC 
 10 PRINT *, DEGREE,RADIAN 
 END 

Figure 10: Degrees to radians conversion program (version 2)  

This is clearer and more concise than version 1. Note the use of indentation to clarify the loop 
structure.  

Restrictions and other notes 

To protect the integrity of the loop structure, there are various restrictions affecting DO loops.  

Increment must not be zero.  

The terminal statement must be one which is self-contained and allows execution to continue at the 
next statement. This rules out STOP, END and another DO statement. It is often convenient to end a 
DO loop with a CONTINUE statement, which has no effect whatever, serving only to mark the end 
of the loop.  

The range of a DO loop can be entered only via the initial DO statement. Thus a GOTO cannot 
cause a jump into the range of a DO loop. However, GOTOs can be included in the range to jump to 
statements either inside or outside it. In the latter case, this can cause iteration to stop before the 
control variable reaches the limiting value.  

Examples:  

 
 GOTO 10 
  . 
 DO 20, I = 1,5 
  . 
 10  . 
  . 
 20 CONTINUE 

is wrong, but  

 
 DO 20, I = 1,5 
  . 
 10  . 
   . 
 IF (...) GOTO 10 
  . 
 IF (...) GOTO 30 
  . 
 20 CONTINUE 



  . 
 30  . 

is all right.  

The control variable can be freely used in expressions in the range of the loop (as in Figure 10) but 
it cannot be assigned a value.  

The loop parameters are the values of the expressions e1, e2 and e3 on entry to the loop. The 
expressions themselves are not used. Therefore if any of e1, e2 and e3 are variables, they can be 
assigned values within the loop without disrupting its execution.  

The control variable 

As explained under 'Execution' the control variable is incremented and tested at the end of each 
iteration. Thus, unless iteration is interrupted by a GOTO, the value of the control variable after 
execution of the loop will be the value which it was assigned at the end of the final iteration. For 
example, in a loop controlled by the statement:  

 
 DO 10, I = 0,100,5 

the control variable I is incremented to exactly 100 at the end of the 20th iteration. This does not 
exceed limit, so another iteration is performed. I is then incremented to 105 and iteration stops, with 
I retaining this value.  

If the control variable is REAL, inconsistent results may be obtained unless allowance is made for 
approximation. For example, in a loop controlled by:  

 
 DO 10, C = 0,100,5 

the control variable C is incremented at the end of the 20th iteration to a value of approximately 
100. If it is less, execution continues for a further iteration, but if it is greater, iteration stops.  

To avoid such effects, a higher value of limit should be used, e.g.  

 
 DO 10, C = 0,101,5 

Nested DO loops 

DO loops, like IF structures, can be nested, provided that there is no overlapping. (i.e. that the range 
of each nested loop is entirely within the range of any loop in which it is nested).  

Example:  

 
Valid            Invalid           
 
DO 20 ...        DO 20 ...         
 
.                .                 



 
 DO 10 ...        DO 10 ...        
 
.                .                 
 
 10 CONTINUE      20 CONTINUE      
 
.                .                 
 
20 CONTINUE      10 CONTINUE       
 
 

The following provides a simple, if not very useful example of a nested loop structure.  

Example 3:  

Write a program to print a set of multiplication tables from 2 times up to 12 times.  

The outline is:  

1. Repeat for I increasing from 2 to 12:  
1. Print table heading.  
2. Repeat for J increasing from 1 to 12:  

1. Print I 'times' J 'is' I*J  

and the program is:  

 
 PROGRAM TABLES 
 DO 20, I = 2,12 
 PRINT *,I,' TIMES TABLE' 
 DO 10, J = 1,12 
 10 PRINT *,I,' TIMES',J,' IS',I*J 
 20 CONTINUE 
 END 

Figure 11: Multiplication tables program  

There is no logical need for the CONTINUE statement in this program as nested loops can share a 
common terminal statement. Thus the program could be rewritten as:  

 
 PROGRAM TABLES 
 DO 10, I = 2,12 
 PRINT *,I,' TIMES TABLE' 
 DO 10, J = 1,12 
 10 PRINT *,I,' TIMES',J,' IS',I*J 
 END 

However, to clarify the structure, it is better to use separate terminal statements and indentation as 
in the first version.  



 
 

Control Structures - Conditional Execution 
The FORTRAN statements covered so far are enough to allow us to read information, evaluate 
arithmetic expressions and print results. It is hardly necessary to write a program to perform such 
tasks, which can usually be more easily done using a calculator.  

The main advantages of a computer are its ability to:  

• execute alternative sequences of instructions depending on a condition (conditional 
execution).  

• execute a sequence of instructions repeatedly while or until a condition is satisfied 
(iteration).  

This chapter deals with conditional execution while iteration is covered in Chapter 6.  

The need for conditional execution is illustrated by the following problem:  

Example 1: 

Write a program to read the coefficients of a quadratic equation and print its roots.  

Solution: The roots of the quadratic equation  

 

are given by the formula  

 

The outline of the program is:  

1. Read the coefficients.  
2. Evaluate .  
3. If exceeds zero then  

1. Compute and print two distinct real roots.  

Otherwise, if is equal to zero then  

1. Compute and print two coincident real roots.  

Otherwise  

1. Print message: 'No real roots.'  



In step 3, the program must test conditions such as '  exceeds zero'. To express such 
conditions, FORTRAN uses another type, the LOGICAL type.  

The LOGICAL type 
There are two LOGICAL constants, defined as .TRUE. and .FALSE..  

A LOGICAL variable can be assigned either of these values. It may not be assigned a value of any 
other type. Each LOGICAL variable must be declared in a LOGICAL type specification statement, 
which must occur, like all other type specifications, before the first executable statement.  

Example:  

The LOGICAL variable ERROR could be declared and initialised by the statements:  

 
 LOGICAL ERROR 
 ERROR = .FALSE. 

Logical expressions 
A logical expresssion is one which evaluates to one of the LOGICAL constants .TRUE. or 
.FALSE.. Thus the simplest logical expressions are the LOGICAL constants themselves, and 
LOGICAL variables.  

Relational expressions 

A relational expression is a logical expression which states a relationship between two 
expressions, evaluating to .TRUE. if the relationship applies or .FALSE. otherwise. For the present, 
we shall consider only relationships between arithmetic expressions. (As we shall see later, 
FORTRAN can also deal with relationships between CHARACTER expressions.)  

A relational expression has the form:  

arithmetic_expression relational_operator arithmetic_expression  

The relational operators are:  

 
       Meaning                
 
.LT.   Less than              
 
.LE.   Less than or equal     
       to                     
 
.EQ.   Equal to               
 
.NE.   Not equal to           
 
.GE.   Greater than or        
       equal to               
 



.GT.   Greater than           
 
 

Thus examples of relational expressions are:  

 
 N.GE.0 
 X.LT.Y 
 B**2 - 4*A*C .GT. 0. 

Notes:  

1. Relational operators have lower precedence than arithmetic operators. Therefore, in 
evaluating a relational expression, the arithmetic expressions are evaluated before the 
comparison indicated by the relational operator is made.  

2. The two arithmetic expressions may be of different type (i.e. one INTEGER and one 
REAL). In this case, the INTEGER expression is converted to REAL form before the 
comparison is made.  

Composite logical expressions 

It is often necessary to express a condition which combines two or more logical expressions. For 
example, to check that the value of a variable lies within a given range, we should have to check 
that it is greater than the lower limit AND less than the upper limit. Such conditions are expressed 
in FORTRAN by composite logical expressions, which have the form:  

L1 logical_operator L2  

where L1 and L2 are logical expressions (relational or composite). The logical operators and their 
meanings are shown below. The second column indicates the conditions under which a composite 
logical expression as above evaluates to .TRUE..  

 
         Meaning                                               
 
.AND.    Both L1 and L2 are .TRUE.                             
 
.OR.     Either L1 or L2 or both are .TRUE.                    
 
.EQV.    Both L1 and L2 have the same value (.TRUE. or         
         .FALSE.)                                              
 
.NEQV.   L1 and L2 have different values (one .TRUE. and one   
         .FALSE.)                                              
 
 

Thus the following composite logical expression would evaluate to .TRUE if the value of the 
variable X lay within a range with non-inclusive limits MIN and MAX.:  

 
 X.GT.MIN .AND. X.LT.MAX 



There is one further logical operator .NOT., which unlike the others, takes only one operand, which 
it precedes. The expression .NOT.L is .TRUE. if the logical expression L is .FALSE. and vice 
versa.  

As with arithmetic operators, precedence rules are required to define the interpretation of 
expressions like:  

.NOT. L1 .OR. L2  

which could evaluate to .TRUE. under either of the following conditions, depending on the order of 
evaluation:  

1. L1 is .FALSE. or L2 is .TRUE.  
2. L1 and L2 are both .FALSE.  

The precedence order is shown by the following list, in which precedence decreases downwards.  

arithmetic operators  

relational operators  

.NOT.  

.AND.  

.OR.  

.EQV. and .NEQV.  

Thus (i) is the correct interpretation of the above expression.  

As in arithmetic expressions, parentheses can be used to group partial logical expressions and 
change the order of evaluation. Thus  

.NOT.(L1.OR.L2)  

would be evaluated according to interpretation (ii).  

Parentheses can also be used to improve clarity, even when not logically required, e.g.  

(A.LT.B) .OR. (C.LT.D)  

Logical assignment 
The value of a logical expression can be assigned to a variable of type LOGICAL, e.g.  

 
 LOGICAL VALID 
  ... 
 VALID = X.GT.MIN .AND. X.LT.MAX 



Logical expressions are more commonly used in logical IF statements and structures.  

The logical IF statement 
The logical IF statement is used to execute an instruction conditionally. It has the form:  

IF (logical_expression) executable_statement  

where executable_statement is an executable FORTRAN statement other than another IF statement 
or a DO statement (see Chapter 6).  

The statement is executed by evaluating logical_expression and executing executable_statement if 
it evaluates to .TRUE..  

Example: IF (A.LT.B) SUM = SUM + A  

The block IF structure 
The logical IF statement is of limited usefulness, as it permits only the execution of a single 
instruction depending on a single condition. The block IF structure is more powerful, permitting 
the conditional execution of one of a number of alternative sequences of instructions. It may be 
described informally as:  

• an IF block, followed by:  

• one or more optional ELSE IF blocks, followed by:  
• an optional ELSE block, followed by:  

o END IF  

More formally, the structure is:  

IF () THEN  

ELSE IF () THEN  

...  

ELSE  

END IF  

where:  

• and are logical expressions.  
• , and are sequences of FORTRAN statements.  
• The square brackets ( [] ) indicate that an item is optional and the ellipsis (...) that it may be 

repeated indefinitely.  

The structure is executed as follows:  



is evaluated. If it evaluates to .TRUE., the sequence is executed and execution continues with the 
statement following END IF.  

Otherwise:  

1. If there are any ELSE IF clauses, each is evaluated, until either:  
1. An evaluates to .TRUE.. The sequence is executed and execution continues with the 

statement following END IF.  

or:  

1. The last evaluates to .FALSE.. Execution continues with step 2.  

1. If there is an ELSE clause, the sequence is executed.  
2. Execution continues with the statement following END IF.  

Thus, a simple block IF structure is:  

 
 IF (A.LT.B) THEN 
 SUM = SUM + A 
 PRINT *, SUM 
 END IF 

which is equivalent to the IF statement shown earlier.  

A more realistic example is the following:  

Example:  

An employee is paid at the standard rate for the first 40 hours of work, at time and a half for the 
next 10, and at double time for any hours in excess of 50. If the variable HRS represents the hours 
worked and RATE the standard rate then the employee's salary is computed by the block IF 
structure:  

 
 IF (HRS.LE.40) THEN 
  SALARY = HRS*RATE 
 ELSE IF (HRS.LE.50) THEN 
  SALARY = 40.0*RATE + (HRS-40.0)*RATE*1.5 
 ELSE 
  SALARY = 40.0*RATE + 10.0*RATE*1.5 + (HRS-50.0)*RATE*2.0 
 END IF 

Note the use of indentation to clarify the structure.  

We are now in a position to complete the quadratic roots program of Example 1, but first the outline 
should be altered as follows:  

1. Because REAL values are approximations, exact comparisons involving them are unreliable. 
The relational expressions in our program should therefore be reformulated using a variable 
(for error) to which a small positive value has previously been assigned. The expression ' 
exceeds zero' in step 3 should be replaced by:  



>  

Similarly, the expression ' is equal to zero' in step 3 should be replaced by:  

However, the expression is evaluated only if > has previously been evaluated as false, which of 
course implies . Therefore, all that is required is:  

Comparisons involving REAL values should always be expressed in this way.  

1. The expression for the roots includes a divisor of . Therefore if has a value of zero, the 
evaluation of this expression will cause the program to fail with an arithmetic error. The 
program should prevent this by testing and printing a suitable message if it is zero. Again, 
the test should be expressed using the error variable .  

In general, programs should be designed to be robust, i.e. they should take account of any 
exceptional data values which may cause the program to fail, and take steps to prevent this.  

The program outline now becomes:  

1. Assign a small positive value to .  

1. Read the coefficients.  
2. If then  

1. Print message: 'First coefficient must be non-zero'.  

Otherwise:  

1. Evaluate  
2. If > then  

1. Compute and print two distinct real roots.  

Otherwise, if then  

1. Compute and print two coincident real roots.  

Otherwise  

1. Print message: 'No real roots.'  

Now that the outline is complete, the program can be easily written:  

 
 PROGRAM QUAD 
 E = 1E-9 
 READ *, A,B,C 
 IF (A.GE. -E .AND. A.LE.E) THEN 
 PRINT *, 'FIRST COEFFICIENT MUST BE NON-ZERO.' 
 ELSE 
 S = B**2 - 4*A*C 
 IF (S.GT.E) THEN 
 D = S**0.5 
 X1 = (-B+D)/(2*A) 
 X2 = (-B-D)/(2*A) 



 PRINT *, 'TWO DISTINCT ROOTS:' X1 'AND' X2 
 ELSE IF (S.GT. -E) THEN 
 X = -B/(2*A) 
 PRINT *, 'TWO COINCIDENT ROOTS',X 
 ELSE 
 PRINT *, 'NO REAL ROOTS.' 
 END IF 
 END IF 
 END 

Figure 7: Quadratic roots program  

Note that most of the program consists of a block IF structure, with a second block IF included in 
its ELSE clause. The embedding of one structure within another in this way is called nesting.  

Once again, indentation has been used to clarify the structure.  



 
 

Input and output 
 

This chapter introduces input, output and format statements which give us greater flexibility than 
the simple READ and PRINT statements used so far.  

A statement which reads information must:  

1. Scan a stream of information from an input device or file.  
2. Split the stream of information into separate items.  
3. Convert each item from its external form in the input to its internal (binary) representation.  
4. Store each item in a variable.  

A statement which outputs information must:  

1. Retrieve each item from a variable or specify it directly as a constant.  
2. Convert each item from its internal form to an external form suitable for output to a given 

device or file.  
3. Combine the items with information required to control horizontal and vertical spacing.  
4. Send the information to the appropriate device or file.  

The simple READ statement:  

READ *, variable_list  

reads a line (or record ) of information from the standard input (defined as the keyboard for 
programs run from a terminal) and stores it in the variables in variable_list. The asterisk refers to a 
list-directed format used to split the information into separate items using spaces and/or commas 
as separators and convert each item to the appropriate internal representation, which is determined 
by the type of the corresponding variable in variable_list.  

Similarly, the simple PRINT statement:  

PRINT *, output_list  

uses a list-directed format to convert each constant, and the value of each variable, in output_list to 
a suitable form for output on standard output (defined for a program run from a terminal as the 
screen) and prints the list as a line of output, with spaces between the items.  

The FORMAT statement 
We can obtain greater control over the conversion and formatting of input/output items by replacing 
the asterisk in a READ or PRINT statement by the label of a FORMAT statement, for example:  

 
 READ 10,A,B,C 



  . 
 10 FORMAT(...) 

The FORMAT statement describes the layout of each item to be read or printed, and how it is to be 
converted from external to internal form or vice versa. It also describes the movements of an 
imaginary cursor which can be envisaged as scanning the input list. Its general form is:  

label FORMAT (specification_list)  

label is a statement label. A FORMAT statement must always be labelled to provide a reference for 
use in input/output statements.  

specification_list is a list of format descriptors (sometimes called edit descriptors), separated by 
commas. These describe the layout of each input or output item, and specify how it is to be 
converted (or edited) from external to internal form or vice versa.  

FORMAT statements can be placed anywhere in a program. It is often convenient to place them all 
at the end (immediately before END), especially if some of them are used by more than one 
input/output statement.  

Formatted input 
The format descriptors used for input are summarised in Figure 14 and described in the following 
sections.  

 
Descriptor Meaning                                                        
                                                                          
 
Iw         Convert the next w characters to an INTEGER value.             
 
Fw.d       Convert the next w characters to a REAL value. If no decimal   
           point is included, the final d digits are the fractional       
           part.                                                          
 
Ew.d       Convert the next w characters to a REAL value, interpreting    
           them as a number in exponential notation.                      
 
nX         Skip the next n characters.                                    
 
Tc         Skip to character position c.                                  
 
TLn        Skip to the character n characters to the left of the          
           current character.                                             
 
TRn        Skip to the character n  characters to the right of the        
           current character.                                             
 
 

Figure 14: Some format descriptors for input  

The I format descriptor 



This is used to read a value into an INTEGER variable. Its form is Iw, where w is an unsigned 
integer indicating the number of characters to be read (the width of the field). These characters must 
consist of decimal digits and/or spaces, which are interpreted as zeroes, with an optional + or - sign 
anywhere before the first digit. Any other characters will cause an input error.  

Example:  

FORTRAN: READ 10,MEAN,INC  

 
 10 FORMAT(I4,I4) 

Input: b123b-5b  

(b represents a blank). This assigns a value of 123 to MEAN and -50 to INC.  

The F format descriptor 

This is used to read a value into a REAL variable. It has the form Fw.d, where w is an unsigned 
integer representing the width of the field and d is an unsigned integer representing the number of 
digits in the fractional part.  

The corresponding input item must consist of decimal digits and/or spaces, with an optional sign 
anywhere before the first digit and an optional decimal point. As with the I format descriptor, 
spaces are interpreted as zeroes. If there is no decimal point in the item, the number of fractional 
digits is indicated by d. If the item includes a decimal point, d is ignored, and the number of 
fractional digits is as indicated.  

Example:  

FORTRAN: READ 10,X,A,B,C,D  

 
 10 FORMAT(F4.5,F4.1,F2.2,F3.5,F3.0) 

Input: b1.5b123456789bb  

Results: X: 1.5 A: 12.3 B: 0.45 C: 0.00678 D: 900.0  

The E format descriptor 

This is used to read a value into a REAL variable. It has a similar form to the F format descriptor, 
but is more versatile, as it can be used to read input in exponential notation.  

We saw in Chapter Two that a REAL constant can be written in exponential notation as a REAL or 
INTEGER constant followed by an exponent in the form of the letter 'E' followed by the power of 
10 by which the number is to be multiplied. For input, the exponent can also be a signed integer 
without the letter 'E'.  

Example:  



With a format descriptor of E9.2, all the following will be read as 1.26  

0.126Eb01  

1.26bEb00  

1.26bbbbb  

12.60E-01  

bbb.126E1  

bbbbbb126  

126bbbbbb  

bbb12.6-1  

Repeat count 

The I, F and E format descriptors may be repeated by preceding them by a number indicating the 
number of repetitions. For example:  

 
 10 FORMAT(3I4) 

is equivalent to:  

 
 10 FORMAT(I4,I4,I4) 

The X format descriptor 

This is used with an unsigned integer prefix n to skip n characters.  

Example:  

FORTRAN: READ 10,I,J  

 
 10 FORMAT(I4,3X,I3) 

Input: 123456789b  

Results: I: 1234 J: 890  

The T format descriptors 

The T (for tab), TL and TR format descriptors are used to move the cursor to a given position. This 
is defined absolutely by the T format descriptor or relative to the current position by the TL and TR 
descriptors.  



Example:  

FORTRAN: READ 10,I,J,K  

 
 10 FORMAT(T4,I2,TR2,I2,TL5,I3) 

Input: 123456789b  

Results: I: 45 J: 89 K: 567  

Notes:  

1. TRn is equivalent to nX.  
2. As illustrated by the example, tabs can be used not only to skip over parts of the input, but to 

go back and re-read parts of it.  
3. If TLn defines a position before the start of the record, the cursor is positioned at the first 

character. TL with a large value of n can therefore be used to return the cursor to the 
beginning of the record (as can T1).  

Formatted output 
Output statements use the same format descriptors as for input and another, the literal format 
descriptor, which is a string of characters for output. The descriptors are summarised in Figure 15 
and described further in the following sections.  

 
Descriptor Meaning                                                        
                                                                          
 
Iw         Output an INTEGER value in the next w character positions      
 
Fw.d       Output a REAL value in the next w character positions, with    
           d digits in the fractional part.                               
 
Ew.d       Output a REAL value in exponential notation in the next w      
           character positions, with d digits in the fractional part.     
 
nX         Skip the next n character positions.                           
 
Tc         Skip to character position c.                                  
 
TLn        Skip to the character n characters to the left of the          
           current character.                                             
 
TRn        Skip to the character n characters to the right of the         
           current character.                                             
 
'c1c2...cn Output the string of n characters c1c2...cn starting at the    
'          next character position.                                       
 
nHc1c2...c Output the string of n characters c1c2...cn starting at the    
n          next character position.                                       
 
 



Figure 15: Some format descriptors for output  

Vertical spacing 

As well as defining the layout of a line of output via an associated FORMAT statement, an output 
statement must define the vertical placement of the line on the screen or page of printed output. The 
method of doing this is described before the use of the format descriptors of Figure 15.  

The computer uses the output list and the corresponding format specification list to build each line 
of output in a storage unit called an output buffer before displaying or printing it. When the 
contents of the buffer are displayed on the screen or printed on paper, the first character is not 
shown, but is interpreted as a control character, defining the vertical placement of the line. Four 
control characters are recognised, as shown in Figure 16.  

 
Character  Vertical spacing before output              
 
Space      One line                                    
 
0 (zero)   Two lines                                   
 
1          New page                                    
 
+          No vertical spacing (i.e. Current line is   
           overprinted).                               
 
 

Figure 16: Control characters for vertical spacing  

The effect of any other character is not defined, but is usually the same as a space, i.e. output is on 
the next line.  

Incorrect output may be obtained if the control character is not taken into account. It is therefore 
best to use the format specification to insert a control character as the first character in a line, rather 
than to provide it via the output list. For example:  

 
 N = 15 
 PRINT 10,N 
 10 FORMAT(1X,I2) 

Buffer contents: b15  

Output: 15  

The initial blank in the buffer is interpreted as a control character, and '15' is printed on the next 
line. However, if the FORMAT statement were:  

 
 10 FORMAT(I2) 

the buffer contents would be '15'. On printing, the initial '1' would be interpreted as a control 
character, and '5' would be printed at the start of the next page.  



The following sections describe in more detail the effect of the format descriptors in output 
statements.  

The I format descriptor 

The format descriptor Iw is used to print an INTEGER value right-justified in a field of width w 
character positions, filling unused positions on the left with blanks and beginning with a '-' sign if 
the value is negative. If the value cannot be printed in a field of width w, the field is filled with 
asterisks and an output error is reported.  

Example:  

 
 I = 15 
 J = 709 
 K = -12 
 PRINT 10,I,J,K, 
 10 FORMAT(1X,I4,I4,I4) 

Output: bb15b709b-12  

Notes:  

1. The first format descriptor 1X provides a space as a control character to begin output on a 
new line. The next descriptor I4 then prints the value 15 in a field of width 4. The same 
effect could be obtained by using I5 as the first descriptor, but it is clearer to use a separate 
descriptor for the control character.  

2. The I, F and E format descriptors may be preceded by a repetition count r, where r is an 
unsigned integer. Thus rIw repeats the format descriptor Iw for r repetitions. For example, 
the above FORMAT statement could be replaced by:  

 
 10 FORMAT(1X,3I4) 

The F format descriptor 

The format descriptor Fw.d (F for floating point) is used to print a REAL value right-justified in a 
field of width w, with the fractional part rounded (not truncated) to d places of decimals. The field 
is filled on the left with blanks and the first non-blank character is '-' if the value is negative. If the 
value cannot be printed according to the descriptor, the field is filled with asterisks and an error is 
reported.  

Example:  

 
 X = 3.14159 
 Y = -275.3024 
 Z = 12.9999 
 PRINT 10,X,Y,Z, 
 10 FORMAT(1X,3F10.3) 

Output: bbbbb3.142bb-275.302bbbb13.000  



The value of X is rounded up, that of Y is rounded down, and that of Z is rounded up, the 3 decimal 
places being filled with zeroes.  

The E format descriptor 

The format descriptor Ew.d is used to print a REAL value in exponential notation right-justified in a 
field of width w, with the fractional part rounded to d places of decimals. Thus the layout for a 
format descriptor of E10.3 is:  

S0.XXXESXX  

<d>  

<-----w------>  

S indicates a position for a sign. The initial sign is printed only if negative, but the sign of the 
exponent is always printed.  

X indicates a digit.  

Example:  

The value 0.0000231436 is printed as shown with the various format descriptors:  

E10.4 0.2314E-04  

E12.3 bbb0.231E-04  

E12.5 b0.23144E-04  

The literal format descriptors 

The literal format descriptors 'c1c2...cn' and nHc1c2...cn place the string of n characters c1c2...cn 
directly into the buffer. Thus a PRINT statement using either of the following FORMAT statements 
will print the header: 'RESULTS' at the top of a new page:  

 
 10 FORMAT('1','RESULTS') 
 10 FORMAT(1H1,7HRESULTS) 

The quoted form is generally easier to use, but the 'H' form is convenient for providing control 
characters.  

A repetition count may be used with a literal format descriptor if the descriptor is enclosed in 
parentheses, e.g.  

 
 10 FORMAT(1X,3('RESULTS')) 

More general input/output statements 



A record is a sequence of values or characters.  

A file is a sequence of records.  

An external file is one contained on an external medium (e.g. a magnetic disk).  

Each FORTRAN input/output statement reads information from, or writes it to, a file. The file must 
be connected to an external unit, i.e. a physical device such as the keyboard or screen, or a 
magnetic disk. An external unit is referred to by a unit identifier, which may be:  

• a non-negative integer expression, or:  
• an asterisk ('*'), which normally refers to the keyboard for input, or the screen for output.  

The READ and PRINT statements we have considered so far read from the file 'standard input', 
normally connected to the keyboard, and print on the file 'standard output', normally connected to 
the screen. To use different files and devices and to obtain various other options, we require a more 
general form of the READ statement for input, and a new statement, the WRITE statement for 
output. These statements have the form:  

READ (cilist) input_list  

and WRITE (cilist) output_list  

where cilist is a list of input-output specifiers, separated by commas. Each specifier takes the 
form:  

keyword = value  

The specifiers may be in any order. In special cases noted below, only the value is required. Some 
of the keywords are:  

UNIT  

FMT  

ERR  

END  

The unit specifier must always be included. Its value must be a unit identifier, as defined above.  

If the unit specifier is the first item in cilist, it may be denoted by its value only (without 'UNIT=').  

Unit identifiers 5 and 6 are preconnected to the files 'standard input' and 'standard output' 
respectively.  

The value of the format specifier FMT is the label of a FORMAT statement to be used for 
input/output conversion, or an asterisk to indicate list-directed formatting. A format specifier may 
be denoted by its value only (without 'FMT=') if it is the second item in cilist and follows a unit 
specifier also denoted by its value only.  



Examples:  

If unit identifier 5 corresponds to standard input, the following are all equivalent:  

 
 READ(UNIT=5,FMT=100) X,Y,Z 
 READ(FMT=100,UNIT=5) X,Y,Z 
 READ(5,FMT=100) X,Y,Z 
 READ(5,100) X,Y,Z 
 READ(*,100) X,Y,Z 

Also, the statements:  

 
 READ(*,*) A,B,C 
and READ(5,*) A,B,C 

are both equivalent to the list-directed input statement:  

 
 READ *, A,B,C 

The last two specifiers deal with special conditions. If an error occurs in input or output execution 
normally stops, but if an error specifier of the form:  

ERR = label  

is included in cilist, execution continues from the statement labelled label. This makes it possible to 
include statements in the program to take special actions to deal with such errors.  

If a READ statement tries to read more data than is available, an input error normally occurs. 
However, if a file ends with a special end-of-file record, a specifier of the form:  

END = label  

will cause execution to continue from the statement labelled label.  

The OPEN statement 
As noted above, the files 'standard input' and 'standard output' are preconnected to unit identifiers 5 
and 6, and normally refer to the keyboard and screen, respectively. If other files, e.g. files on disk, 
are to be used, or if 'standard input' and 'standard output' are to be redefined, each file must be 
connected to an external unit by an OPEN statement, which has the form:  

 
 OPEN(openlist) 

where openlist is a list of specifiers of the form:  

keyword = value  

Specifiers may occur in any order. Two of the more important keywords are:  



UNIT  

FILE  

The unit specifier must be included. Its value must be a unit identifier.  

If the unit specifier is the first item in openlist, it may be denoted by its value only (without 
'UNIT=').  

The value of the file specifier is a character expression naming a file to be opened, i.e. connected to 
the external unit specified by the unit specifier. If the file does not exist, a new file is created.  

Example:  

 
 OPEN(8, FILE='MYFILE.DAT') 

connects the file MYFILE.DAT to unit 8. If the file does not exist, it is created. READ and WRITE 
statements referring to this unit identifier will then read from or write to this file.  

Repetition of format specifications 
If the number of items in an input or output list exceeds the number of format descriptors in the 
corresponding FORMAT statement, a new record is taken (a new line for terminal input/output) and 
the format specification list is re-used. This happens as often as required to deal with the complete 
list.  

Example:  

 
 READ(5,10) A,B,C,P,Q,R,X,Y,Z 
 10 FORMAT(3F12.3) 

This reads three values from the first line of input into the variables A,B and C, from the second line 
into P,Q and R, and from the third line into X,Y and Z. Similarly:  

 
 WRITE(6,10) A,B,C,P,Q,R,X,Y,Z 
 10 FORMAT(1X,3F12.3) 

prints the values of the variables three to a line on consecutive lines.  

The format specification list may also be re-used partially if it includes nested parentheses. The 
rules are:  

• If there are no nested parentheses, the specification list is re-used from the beginning.  
• If the list includes nested parentheses, the list is re-used from the left parenthesis 

corresponding to the last nested right parenthesis.  
• If the left parenthesis so defined is preceded by a repeat count the list is re-used from 

immediately before the repeat count.  



This is illustrated by the following examples, in which an arrow indicates the point from which 
repetition, if required, begins:  

 
 10 FORMAT(I6,10X,I5,3F10.2) 
   
 20 FORMAT(I6,10X,I5,(3F10.2)) 
     
 30 FORMAT(I6,(10X,I5),3F10.2) 
    
 40 FORMAT(F6.2,(2F4.1,2X,I4,4(I7,F7.2))) 
    
 50 FORMAT(F6.2,2(2F4.1,2X,I4),4(I7,F7.2)) 
     
 60 FORMAT(F6.2,(2(2F4.1,2X,I4),4(I7,F7.2))) 
    

Multi-record specifications 
Repetitions can be used as in the last section to read in or print out a sequence of values on 
consecutive lines using the same format specification list. It is also useful to be able to specify the 
format of several consecutive lines (or records) in a single format specification. This can be done 
using the / format descriptor, which marks the end of a record. Unlike other format descriptors, / 
need not be preceded or followed by a comma.  

On input, / causes the rest of the current record to be skipped, and the next value to be read from the 
first item on the next record. For example:  

 
 READ(5,100) A,B,C,I,J,K 
 100 FORMAT(2F10.2,F12.3/I6,2I10) 

reads three REAL values into A,B and C from a line, ignores anything more on that line, and reads 
three INTEGER values into I,J and K from the next line.  

Consecutive slashes cause records to be skipped. Thus if the FORMAT statement in the above 
example were changed to:  

 
 100 FORMAT(2F10.2,F12.3//I6,2I10) 

a complete line would be skipped before the values were read into I,J and K.  

On output, a / marks the end of a record, and starts a new one. Consecutive slashes cause blank 
records to be output. For example:  

 
 WRITE(6,200) A,B,A+B,A*B 
 200  FORMAT(1H1////T10,'MULTIPLE LINES EXAMPLE'/// 
  * 1X,'THE SUM OF',F5.2,' AND',F5.2,' IS',F5.2/ 
 * 1X,'AND THEIR PRODUCT IS',F8.2////) 

prints four blank lines and a header at the top of a new page, followed by two blank lines, then the 
sum and product on consecutive lines followed by four blank lines.  



The following example illustrates the use of formatting to produce output in tabular form with 
headers and regular spacing.  

Example 1:  

Rewrite the degrees to radians conversion program (Chapter 6, Example 2) to print angles from 1 to 
360 degrees in 1 degree intervals and their equivalents in radians. The results should be printed 40 
lines to a page, with the values suitably formatted, blank lines separating groups of 10 consecutive 
lines, headers for the 'Degrees' and 'Radians' columns, and a header and page number at the start of 
each page.  

The outline is:  

1. Compute the conversion factor.  
2. Initialise the page number to zero.  
3. Repeat for angles in degrees from 1 to 360 in steps of 1:  

1. If the angle in degrees is one more than a multiple of 40 then:  
1. Increment the page number.  
2. Print a page header, page number and column headers, followed by a blank 

line.  

Otherwise, if the angle in degrees is one more than a multiple of 10, then:  

1. Print a blank line.  

1. Compute the angle in radians.  
2. Print the angle in degrees and radians.  

and the program follows:  

 
 PROGRAM ANGLES 
 INTEGER DEGREE,PAGENO,OUT 
 DATA OUT/6/ 
C UNIT NUMBER FOR OUTPUT. A DIFFERENT DEVICE COULD BE USED BY 
C CHANGING THIS VALUE 
 DATA PAGENO/0/ 
 CONFAC = 3.141593/180.0 
C CONVERSION FACTOR FROM DEGREES TO RADIANS 
 DO 10, DEGREE = 1,360 
 N = DEGREE-1 
 IF (N/40*40 .EQ. N) THEN 
C PRINT PAGE HEADER, NUMBER AND COLUMN HEADERS 
  PAGENO = PAGENO+1 
  WRITE(OUT,100)PAGENO 
 ELSE IF (N/10*10 .EQ.N) THEN 
  WRITE(OUT,110) 
 END IF 
 RADIAN = DEGREE*CONFAC 
 10 WRITE(OUT,120)DEGREE,RADIAN 
 100 FORMAT(1H1//1X,'DEGREES TO RADIANS CONVERSION TABLE', 
 * T74,'PAGE',I2//1X,'DEGREES  RADIANS'/) 
 110 FORMAT(1X) 
 120 FORMAT(1X,I5,T10,F7.5) 
 END 



Figure 17: Degrees to radians conversion program (version 3)  



 
 

A Simple Program 
 

We are now ready to write a simple FORTRAN program. All that is required is some information 
on printing output, program layout and a few simple statements.  

The PRINT statement 
Output can be printed using the PRINT statement, which is very similar to the READ statement 
shown on page 4:  

PRINT *, output_list  

where output_list is a single constant, variable or expression or a list of such items, separated by 
commas.  

Example: PRINT *,'THE RESULTS ARE', X ,'AND',Y  

The PRINT statement prints the output list on the terminal screen in a standard format. Later, we 
shall consider more flexible output statements which give us greater control over the appearance of 
the output and the device where it is printed.  

The PROGRAM statement 
A program can optionally be given a name by beginning it with a single PROGRAM statement. 
This has the form:  

PROGRAM program_name  

where program_name is a name conforming to the rules for FORTRAN variables. (see 'Variables' 
on page 3).  

END and STOP 
Each program must conclude with the statement END, which marks the end of the program. There 
must be no previous END statement.  

The statement STOP stops execution of the program. In FORTRAN 77, but not in previous 
versions, END also has this effect. Therefore, if execution is simply to stop at the end of the 
program, STOP is optional. However, one or more STOP statements may be written earlier, to stop 
execution conditionally at points other than the end.  

Program layout 



When FORTRAN was introduced, punched cards were a common input medium. FORTRAN was 
designed to make use of the cards' 80-column layout by ignoring spaces and reserving different 
fields of the card for different purposes. Although cards are no longer used, FORTRAN still uses 
this column-based layout.  

All FORTRAN statements must be written in columns 7 to 72. A statement ends with the last 
character on the line, unless the next line has any character other than 0 in column 6. Any such 
character indicates that columns 7 to 72 are a continuation of the previous line.  

Columns 73 to 80 are ignored by the compiler. Originally, these columns were used to print 
sequence numbers on the cards, but now they are normally unused.  

Columns 1 to 5 are reserved for statement labels. These are optional unique unsigned non-zero 
integers used to provide a reference to statements.  

The layout rules are summarised in Figure 5.  

 
Columns   Usage                        
 
   1-5    Statement labels             
 
      6   Continuation character or    
          blank                        
 
  7-72    FORTRAN statements           
 
73-80     Unused                       
 
 

Figure 5: FORTRAN layout  

Comments  
The letter 'C' or an asterisk in column one causes the compiler to ignore the rest of the line, which 
may therefore be used as a comment to provide information for anyone reading the program.  

A simple program 
The following example uses the FORTRAN statements introduced so far to solve a simple problem.  

Example 1: 

A driver fills his tank with petrol before setting out on a journey. Each time he stops for petrol he 
puts in 40 litres. At his destination, he fills the tank again and notes the distance he has travelled in 
kilometres. Write a program which reads the distance travelled, the number of stops and the amount 
of petrol put in at the end of the journey, and prints the average petrol consumption in kilometres 
per litre, rounded to the nearest litre.  

 
 PROGRAM PETROL 
 INTEGER STOPS, FILLUP 



C 
C THESE VARIABLES WOULD OTHERWISE BE TYPED REAL BY DEFAULT  
C ANY TYPE SPECIFICATIONS MUST PRECEDE THE FIRST EXECUTABLE STATEMENT 
C 
 READ *, KM,STOPS,FILLUP 
 USED = 40*STOPS + FILLUP 
C COMPUTES THE PETROL USED AND CONVERTS IT TO REAL 
 KPL = KM/USED + 0.5 
C 0.5 IS ADDED TO ENSURE THAT THE RESULT IS ROUNDED 
 PRINT *, 'AVERAGE KPL WAS',KPL 

END  

Figure 6: Petrol consumption program  

This program illustrates some of the points about type conversion made in the previous chapter. In 
line 8, the number of litres of petrol used is computed. The computed value is of type INTEGER, 
but is converted to REAL when assigned to the REAL variable USED. In line 10, the expression 
KM/USED is evaluated as REAL, but would be truncated, not rounded, when assigned to the 
INTEGER variable KPL. Adding 0.5 before truncating has the effect of rounding up or down. This 
is a useful rounding method. It is illustrated further below.  

 
KM/USED    KM/USED + 0.5   KPL     
 
12.0       12.5            12      
 
12.4       12.9            12      
 
12.5       13.0            13      
 
12.9       13.4            13      
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