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Abstract
We present results of molecular dynamics simulations performed on a Lennard-Jones liquid
binary mixture confined in matrices of soft spheres at increasing packing fraction. We study the
dynamical properties of the liquid at a given density upon supercooling. Our aim is to test the
validity of the mode coupling theory in predicting the behaviour of the glass forming liquid
when it is under confinement in a disordered matrix. We use two different methods to build up
the confining environment. We focus in particular on the behaviour of the single particle density
correlators. We find a close agreement with the mode coupling theory at least for all the range
of packing fractions examined. Discrepancies between the theory and the computer simulation
results can be attributed to hopping effects which are more important at increasing confinement.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The dynamical behaviour and the glass transition of super-
cooled liquids are expected to be modified in confinement.
This issue has attracted great attention in the last fifteen years
due to the connection with problems in biology, geophysics
and various technological applications [1–4].

In glass forming liquids the glass transition phenomena
persist in confinement, but experiments and computer
simulations find that the behaviour upon supercooling depends
on the geometry and the type of substrate. Generally speaking,
so far the role of the restricted geometry [5] and the decrease
of the free volume accessible to the liquid in the approach to
the glass transition are not completely understood. From a
fundamental point of view an important achievement has been
that the mode coupling theory (MCT) [6–8], which is able to
predict the evolution of the glassy dynamics for many glass
forming systems, keeps its validity also in various types of
confinement [9–18]. This is particularly relevant since MCT
is able to give a unified description of the phenomena taking
place upon supercooling in spite of the differences in the details
of the systems investigated.

In this framework liquids confined in disordered porous
matrices like silica xerogels are of particular interest. From the
theoretical point of view they can be modelled by confining
the liquid in a system of quenched–annealed (QA) spheres, a
model introduced in the past to study the change in the phase
diagram induced by disorder [19–21]. For these models a
theoretical approach has been developed very recently [22–25]
which combines the replica Ornstein–Zernike (ROZ) method
applied to liquids embedded in QA matrices (ROZ) [20, 26, 27]
with the MCT. Computer simulations of hard or soft spheres in
QA matrices confirmed the predictions of the ROZ–MCT [28].
In these, as in other studies [29], new scenarios appear
characterized by higher order MCT transitions [30, 31] as
found in studies of colloidal systems [32–34].

The Lennard-Jones binary mixture (LJBM), as defined
by Kob and Andersen [35–37], has been considered since
its introduction as a prototype of a realistic glass forming
system. It has been shown that its dynamical behaviour upon
supercooling is in strict agreement with the MCT predictions.

In previous studies of the LJBM confined in a random
matrix of soft spheres [11–14] we showed that the main
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features of the agreement with MCT are maintained in
confinement. We found that the MCT was able to describe the
dynamical behaviour of the confined LJBM with a decrease
of the crossover temperature TC with respect to the bulk.
A reduction of the range of validity of the MCT is found,
however, upon increasing the size of the soft spheres [38], a
signature that the relevance of hopping effects increases as the
disposable volume for liquid decreases. It is worthwhile to
explore in more detail the volume excluded effects on the MCT
behaviour, for this reason in this paper we consider the LJBM
confined in a random matrix of soft spheres and test the MCT
behaviour at very high packing fraction of the soft spheres. We
also compare two different methodologies able to realize QA
matrices.

In section 2 we briefly introduce the predictions of the
MCT which are relevant for the interpretation of the results
of the present study. In section 3 we explain the model and the
methods we adopted in our computer simulations. We report
and discuss the results obtained for the lower packing fractions
in section 4 and for the highest packing fractions in section 5.
Section 6 is devoted to conclusions.

2. Mode coupling relaxation scenario

We refer here to the simplest version of the mode coupling
theory of the evolution of glassy dynamics [6–8]. MCT in its
idealized version predicts that below the melting temperature
an undercooled liquid undergoes a transition from an ergodic
behaviour to a no longer ergodic behaviour at a crossover
temperature TC. The predictions of the theory are valid in
the asymptotic regime very close to TC. In particular here
we consider the density–density correlation functions, but the
predictions of MCT are formulated for any dynamical variable
with an overlap with the fluctuations of the density.

The MCT description of the dynamical behaviour of a
supercooled liquid is based on the idea that above TC the
particle is trapped in the cage of its nearest neighbours (cage
effect). After a certain time the cage relaxes and the Brownian
diffusion regime is restored. So the dynamical behaviour is
characterized by a two step relaxation. In this paper we report
calculations of the self-intermediate scattering function (SISF)
FS(Q · t), the Fourier transform of the self-density correlation
function, and the mean square displacement (MSD) 〈r 2(t)〉.
For the SISF reported as a function of time MCT predicts
that after an initial fast decay corresponding to the ballistic
regime the function shows a plateau related to the cage effect.
After the plateau the SISF decays at long time with a stretched
exponential (α-relaxation) and it is well approximated by the
Kohlrausch–Williams–Watts (KWW) function

FS(Q, t → ∞) ≈ fQ(T ) exp[−(t/τ )β] (1)

where fQ(T ) is the Lamb–Mössbauer factor and is related to
the height of the plateau, β is the Kohlrausch exponent with
the condition 0 < β < 1 and τ is the relaxation time. MCT
predicts that as T decreases and approaches TC the relaxation
time diverges with a power law

τ = C(q)(T − TC)−γ (2)

Table 1. Interaction parameters between A and B (Lennard-Jones
potential) particles in LJ units.

Atom pair ε σ

A–A 1.0 1.0
B–B 0.88 0.5
A–B 0.80 1.5

where the exponent γ must be γ > 1.766.
Also the behaviour of the MSD of a supercooled liquid is

determined by the cage effect. After the ballistic regime the
MSD shows a plateau related to the rattling of the particle in
the cage. After the plateau the Brownian regime is recovered
and the diffusion coefficient D can be extracted according to
the Einstein relation 〈r 2(t)〉 = 6Dt . Since D ∝ τ−1 MCT
predicts that

D ∝ (T − TC)γ . (3)

This scenario is predicted by the simplest version of the
MCT. In this framework the theory neglects completely the
hopping effects. In real liquids the dynamical singularities are
avoided since close to TC hopping effects restore ergodicity.
Nevertheless the agreement with MCT can be tested by
extrapolating to the asymptotic limit the different dynamical
quantities calculated or measured above TC at decreasing
temperature. Discrepancies between the MCT predictions and
the computer simulation or experimental results can mainly
be attributed to the presence of hopping. It is interesting to
explore how relevant the hopping effects are in confinement in
comparison with bulk.

We note moreover that hopping effects could induce a
change of behaviour of τ (or D) at decreasing temperature.
A crossover could take place from the MCT power law (2)
at high T > TC to an exponential Arrhenius behaviour τ ∼
exp(A/T ) at low T . So due to hopping the supercooled liquid
could show a crossover transition from a fragile to a strong
behaviour [39–42].

3. Models and methods

The liquid we consider in our molecular dynamics (MD)
calculations is a binary mixture of particles A and B with
composition 80% of particles A and 20% of particles B
interacting with a Lennard-Jones (LJ) potential [35–37]

Vαβ = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]

. (4)

The parameters are reported in table 1. In the following we
will use the LJ units; length will be in units of σAA, energy in
units of εAA, the temperature in units of εAA/kB. The time is
measured in units of (mσ 2

AA/(48εAA))1/2.
Our calculations were performed with 800 A particles and

200 B particles.
We add to the liquid a soft sphere system of particles m

interacting with a potential

Vm = 4εm

(σm

r

)12
. (5)
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Figure 1. SISF of A particles as a function of time for different
temperatures and packing fractions φm = 0.074 (top frame),
φm = 0.25 (bottom frame). The broken lines represent the fits to the
KWW law (see text). The time is in LJ units (see text).

We assume εm = 0.1, while the size σ will be chosen
as explained later. For the interactions between the liquid
particles and the matrix spheres we assume the Lorenz–
Berthelot rules:

σmα = 1
2 (σm + σα) (6)

εmα = √
εmεα. (7)

The confinement of the liquid can be realized with
different methods. The important parameters in the
confinement are the density of the liquid ρ f = (NA + NB)/V
and the packing fraction of the spheres, given by

φm = π

6
Nm

V
σ 3

m . (8)

In the first calculations with packing fractions from φm =
0.01 to 0.25 we used the so called inflation method. We
added a number of A particles corresponding to the number
of soft spheres we want to assume for the confining matrix
N ′

A = NA + Nm . Then the system is equilibrated in a box
with a volume which fixes the density of the liquid. After
equilibration Nm of A particles randomly chosen are frozen
and their potential is gradually switched to the soft spheres.
This corresponds to an increase of the size of the Nm particles,
a change in the repulsion and a switching off of the attraction.
The procedure can be repeated to produce different realizations
of the confining matrix, starting from the same equilibrated
configuration.

Due to the difficulties encountered for higher packing
fractions we used another method to build the starting
configurations. It consists of equilibrating a three component
system, where the third component is soft spheres with fixed
diameter σm , while the value Nm is determined from the chosen
φm . We will explain this procedure in more detail in section 5.

In all the cases the calculations of the dynamical quantities
have been performed in the microcanonical ensemble after

Figure 2. Relaxation time τ for A particles as a function of T − TC
and for different φm . The broken lines are the fits to the power
law (2).

equilibration runs longer than the estimated relaxation time of
the system.

4. Results from the inflation method

We studied the confined LJBM at a density of ρ f = 1.1 and
for temperatures in the range from T = 5 to 0.30. The sizes of
the soft spheres were varied to obtain three packing fractions
φm = 0.01, 0.074 and 0.25. The case φm = 0.0 corresponds
to the bulk LJBM and is reported for comparison. The lowest
temperature for which the system can be investigated increases
with φm as T = 0.30 for the bulk (φm = 0.0), T = 0.35
for φm = 0.01, T = 0.50 for φm = 0.074 and T = 1.0 for
φm = 0.25.

Upon supercooling for each system we calculated the
mean square displacement (MSD) and the self-intermediate
scattering function (SISF).

Examples of the SISF obtained in our simulations for the
A particles are reported in figure 1, plotted for Q = Qmax,
the position of the highest peak of the structure factor, where
the cage effect is best detected. Here the curves are shown
for the two highest packing fractions φm = 0.074 and 0.25.
The onset of a plateau in the functions is seen to take place
at decreasing temperatures. As explained above this plateau is
the signature of the onset of the cage effect. Approaching the
lowest temperatures, T = 0.5 for φm = 0.074 and T = 1.0 for
φm = 0.25, the two step relaxation phenomenon predicted by
the MCT is evident. After the plateau the α-decay at long time
can be fitted with the KWW equation (1) and the parameters
for A and B particles can be obtained.

In particular, from the complete analysis of the SISF it
is possible to extract the α-relaxation time τ as a function of
the temperature for the different cases. For each φm the power
law (2) predicted by MCT is found as an asymptotic limit in
approaching the ideal crossover temperature TC.

In figure 2 we show the fits to (2) for the A particles on a
log–log plot, where τ is reported as a function of T − TC. We
get similar results for B particles.

As the packing of the soft spheres increases there is a
slowing down of the dynamics. The relaxation time in figure 2

3
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Figure 3. MSD of A particles as a function of time for T = 2.0
(bottom panel) and T = 1.0 (top panel) for the different packing
fractions φm . The time is in LJ units (see text).

Figure 4. Diffusion coefficient of A particles for different φm as a
function of T − TC. The broken lines are the fit to the power law (3).

increases up to four orders of magnitude with the packing at
the lowest temperature.

As further evidence of the effect of increasing confinement
in figure 3 we report as a representative example the MSD
for A particles for two temperatures and the different packing
fractions. The onset of a caging effect for increasing φm is
evident. At T = 1 the φm = 0.25 case shows the typical
behaviour of a liquid approaching the glass transition. After the
ballistic regime at short time, the plateau indicates the rattling
of the particle in the cage of nearest neighbours. At the end
of the plateau the normal Brownian regime is recovered and
the diffusion coefficient D can be estimated from the slope
of the MSD, according to the Einstein relation. From our
analysis the behaviour of D as a function of T close to TC

is in agreement with the predictions of MCT, equation (3).
Figure 4 is equivalent to figure 2. Here we extract from the
fits of D versus T − TC values for the crossover temperature

Figure 5. Left panel: exponent γ as obtained from the power law fits
of τ and D for A and B particles. Right panel: MCT crossover
temperature as obtained from D and τ .

Figure 6. Relaxation time τ for A particles as a function of 1/T and
for different φm . The bold lines are the fits to the power law (2).

and the exponent γ which are different from the previous ones
obtained for τ .

The γ exponents extracted from the fits of equations (2)
and (3) are shown in the left panel of figure 5 reported as
functions of the packing fraction. For A and B particles
we obtain very similar values in agreement with MCT but
the exponents obtained from D are below the lowest limit
predicted in MCT. The panel on the right, where TC is reported
as a function of φm , shows that the supercooled liquid phase
region is restricted for the effect of increasing packing of the
soft spheres.

The discrepancies between the values for γ and TC

extracted from τ and D can be attributed to the presence
of hopping which affects more markedly the diffusion
coefficient [38], as was found in simulations of the bulk
LJBM [35–37]. It is clear that since the differences between
the values obtained for TC and γ from τ and from D increase
with φm a higher packing enhances the hopping effects. Above
or close to TC hopping which is closely related to dynamical
heterogeneities [43] becomes more relevant in confinement or
in mixtures with large size asymmetry [44–47].

A further confirmation of the relevance of hopping
effects in confinement comes from the plots of τ and D as

4
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Figure 7. Inverse diffusion coefficient of A particles for different φm
as a function of inverse temperature. The bold lines are fits to the
power law (3).

Figure 8. SISF for different temperatures and packing fraction
φm = 0.463. The broken lines represent the fits to the KWW law (see
text). The time is in LJ units (see text).

functions of the inverse temperature. In figure 6 τ follows at
low temperatures the power law also for φm > 0, while from
figure 7 it is evident that the behaviour of D deviates from the
power law already at small φm . In the latter case it is possible
to hypothesize a transition to an Arrhenius behaviour driven by
hopping effects.

5. Higher packing confinement

The relevance of hopping effects at increasing confinement
motivates simulations at even higher packing fractions. The
simulations of the dynamical properties become computation-
ally more demanding because of the slowing down of the dy-
namics. Due to the increase in the density of the soft spheres
it is in fact more difficult to equilibrate the system if the infla-
tion method is used. For this reason we decided to follow a
different procedure in order to prepare our simulation cell.

Now we fix the σ of the soft sphere to the value σm = 3.0.
Then for a given density of the liquid, in our case ρ f = 1.1,
we change the number of soft spheres Nm in order to obtain
different values of φm . In this way the initial system is a three
component mixture with LJ particles A, B and soft spheres M.
The mixture must be equilibrated at high enough temperature.

Figure 9. SISF as function of time for different temperatures and
packing fraction φm = 0.546. The broken lines represent the fits to
the KWW law (see text). The time is in LJ units (see text).

During the equilibration runs there is a possibility that the
system undergoes a demixing transition with an aggregation of
the M particles in the same region of the simulation cell. This
would represent a very specific type of configuration which is
not appropriate to represent a liquid embedded in a QA matrix.
Since the phase diagram of the system is unknown the only
way to avoid this problem is to check the configurations and
the thermodynamical parameters during the equilibration.

Once the mixture is equilibrated the M particles are fixed
in their positions and equilibration runs of the confined LJBM
are performed. With further runs of the equilibrated mixture
it is possible to produce new configurations and produce other
realizations of the simulation cell.

With this new procedure we started to perform MD of the
confined LJBM at φm > 0.25. We present here the first results
obtained for φm = 0.364, 0.463 and 0.546. The SISF obtained
for φm = 0.463 and φm = 0.546 are shown in figures 8 and 9
respectively.

We observe a further decrease of the range of temperatures
where the system is in a supercooled state with respect to the
previous cases. Nonetheless in spite of the larger packing the α

decay of the SISF can still be fitted with the KWW functions.
Only for the lowest temperatures where it was possible to
investigate the liquid is the fit more difficult to perform due
to the fact that the SISF decay very slowly, showing that
the system is approaching the glassy state. This is the main
difference with respect to the SISF calculated for lower φm

where there is not any signature of a dynamical arrest even at
the lowest temperatures, as can be observed in figure 1.

From the fits of the SISF the relaxation times can be
extracted; they follow the predictions of the MCT and are
reported in figure 10 where for comparison we show also the
case φm = 0.25 already shown in figure 6.

The results for the B particles, not shown here, are
equivalent to the ones for the A particles.

We observe that, at variance with the previous cases (see
figure 6), now the points for the lowest temperatures for each
of the three new φm investigated show the tendency to deviate
from the power law of MCT. This is a clear indication that the
hopping effects appear also in the behaviour of the relaxation

5
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Figure 10. Relaxation time τ for A particles as a function of 1/T
and for different φm . The bold lines are the fits to the power law (2).

Figure 11. MCT crossover temperatures, obtained by power law fits
to the relaxation time, as a function of increasing packing fraction.

time at a temperature that increases with the packing fraction.
As a consequence the confinement could progressively mask
the fragile behaviour of the glass forming liquid with a fragile
to strong transition taking place at a temperature much higher
than the bulk TC.

In figure 11 we show the crossover temperature of MCT as
a function of the packing fraction. The last three points in the
plot are obtained with the new method. We note that the trend
is linear in spite of the very strong confinement experienced by
the mixture for the highest packing fractions.

6. Conclusions

In this paper we presented the results obtained from molecular
dynamics simulations of an LJBM confined in matrices of
randomly distributed soft spheres quenched in equilibrated
configurations. We studied the systems upon supercooling to
explore the dynamical single particle behaviour. Two methods
have been used to build different realizations of the confining
systems. The inflation method consists in changing a given
number of LJ particles in soft spheres that are quenched
after equilibration. This method was used to simulate the
system for lower packing fractions. For higher confinement we
equilibrated a three component system, where the soft spheres

are the third component. After equilibration the soft spheres
were quenched at their positions.

We found as a general trend that MCT is able to describe
the dynamics of the LJBM at increasing confinement but
hopping effects appear to be more relevant as the excluded
volume due to the presence of the soft spheres increases. As a
consequence the range of validity of the MCT decreases. The
hopping seems to affect more the behaviour of the diffusion
while the relaxation time seems to start to deviate from the
MCT only for the highest packing fraction studied in this paper.

The increase of TC as function of the increasing packing
fraction seems to follow a linear trend.
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