Fisica della Materia Condensata. Prof. Paola Gallo. Esonero - 11 Novembre 2022

1 Esercizio 1

Si abbia un cristallo con struttura ortorombica e base monoatomica. Siano $a=1.7 \text{Å},\,b=2.5 \text{Å}$ e c=3.3 Å i parametri reticolari.

- 1. Determinare i vettori primitivi di traslazione del reticolo reciproco. (3)
- 2. Studiare il fattore di struttura e le riflessioni permesse con relative intensità. (3)
- 3. Determinare l'angolo a cui si osserva il primo picco di diffrazione per raggi X di lunghezza d'onda $\lambda=0.20$ nm. (3)
- 4. Calcolare il fattore di impacchettamento. (3)
- 5. Come cambia il fattore di struttura se il cristallo ha base biatomica e il secondo atomo si trova in $d_2=1/2(b,a,c)$. (3)

2 Esercizio 2

Un solido ha una struttura cubica semplice, con lato del cubo $a=2\,\text{Å}$ e una base di 2 atomi per cella di masse M_1 e M_2 . La massa dell'atomo più pesante è $M_1=5~10^{-23}$ g. Supponiamo che sia i modi ottici che quelli acustici siano triplamente degeneri e che il modo ottico sia abbia frequenza circa costante di $180~\text{cm}^{-1}$, e che un esperimento fornisca i seguenti dati per il modo acustico triplamente degenere:

ω (rad/s)	2,4×10 ⁸	3,6×10 ⁸	5×10 ⁸
k (cm ⁻¹)	1200	1800	2500

- 1. Determinare la velocità del suono nel solido. (3 punti)
- 2. Utilizzando le leggi di dispersione per una catena lineare biatomica, e data la costante elastica pari a $C=3240~\rm dyne/cm$, determinare il valore della frequenza acustica a bordo zona e la massa dell'atomo più leggero. (4 punti)
- 3. Determinare la temperatura di Debye del solido e la sua capacità termica per unità di massa a 100 K. (4 punti)
- 4. Determinare la capacità termica per unità di massa a 1000 K. (4 punti)

$$K_B = 8.6167 \cdot 10^{-5} \,\text{eV}\,\text{K}^{-1}$$
, $h = 4.136 \cdot 10^{-15} \,\text{eV}$ s, 1 dyne = 10^{-5} N.