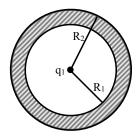
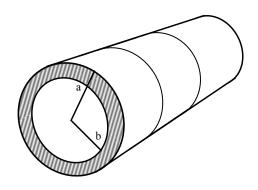
Prova Scritta - appello straordinario


ESERCIZIO 1

Nel centro di un conduttore sferico cavo, di raggio interno R_1 e raggio esterno R_2 , è contenuta una carica puntiforme q_1 positiva. Trovare:

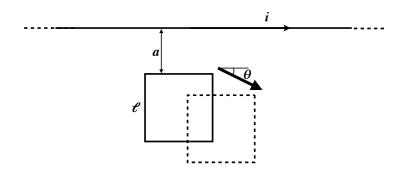
- la configurazione delle cariche del sistema causata dal fenomeno di induzione (3 punti)
- l'espressione del campo elettrico in tutto lo spazio e disegnarne l'andamento in funzione di r (3 punti)
- l'espressione del potenziale (2 punti)

Il conduttore cavo, la cui carica totale era inizialmente nulla, viene caricato con una carica $q_2 = -3q_1$


• ripetere i punti 1 e 2 per la nuova configurazione delle cariche (3 punti)

ESERCIZIO 2

Un conduttore cilindrico cavo di raggio interno $b = 1.5 \,\mathrm{cm}$ e raggio esterno $a = 2 \,\mathrm{cm}$ è percorso da una corrente $I_0 = 100 \,\mathrm{A}$, distribuita uniformemente nella sua sezione. Determinare:


- L'espressione del campo B in funzione della distanza r dall'asse del cilindro e disegnarne l'andamento (6 punti)
- il valore del modulo di B per $r=1.8\,\mathrm{cm}$ (2 punti)
- il valore della forza di Lorentz che subisce un elettrone $(q_e = 1.602 \cdot 10^{-19} \,\mathrm{C})$ che si trova a distanza $r = 1.8 \,\mathrm{cm}$ dall'asse del cilindro e si muove con velocità diretta come \hat{r} e di modulo pari a $v = 1.8 \cdot 10^6 \,\mathrm{m/s}$ (3 punti)

ESERCIZIO 3

Al tempo t=0 un filo indefinito percorso da una corrente i e una spira quadrata di lato $\ell=40\,\mathrm{cm}$ e resistenza $R=11\,\Omega$ sono disposti come in figura. La distanza iniziale tra il filo e il lato più vicino della spira vale $a=15\,\mathrm{cm}$. Calcolare:

- la corrente i' indotta nella spira e il suo verso di percorrenza per $t=320\,\mathrm{ms}$ nel caso in cui la spira resti ferma e la corrente i vari secondo la legge $i=i_0\cos\omega t$ con $i_0=22\,\mathrm{A}$ e $\omega=350\,\mathrm{rad/s}$. (5 punti)
- la corrente i' indotta nella spira e il suo verso di percorrenza per $t = 320 \,\mathrm{ms}$ nel caso in cui la corrente i resti costante al valore i_0 ma la spira si allontani dal filo ad una velocità costante \vec{v} di modulo $1.5 \,\mathrm{m/s}$ e che formi con il filo un angolo $\theta = \pi/6$ (6 punti)

