Raccolta Esami Scritti - Testi con soluzioni

Fisica della Materia Condensata

Dipartimento di Matematica e Fisica Università degli Studi Roma Tre

A.A. 2016/2017

Raccolta Esami Scritti - Testi con soluzioni

Prova Scritta Appello III AA $2015/2016$													
Prova Scritta Appello IV AA $2015/2016$													6
Prova Scritta Appello V AA 2015/2016													12

Prova Scritta Appello III AA 2015/2016

Esercizio 1

Il solido A è un metallo monoatomico e monovalente, con un reticolo cubico a corpo centrato con lato del cubo a, una densità di $\rho=5.4~{\rm g/cm^3}$, una temperatura di Debye $T_D=200~{\rm K}$ e una temperatura di Fermi $T_F=8000~{\rm K}$. Si sa inoltre che quando il cristallo viene irraggiato da un fascio di raggi X monocromatici di lunghezza d'onda $\lambda=1.54~{\rm \AA}$, la posizione del primo picco di Bragg si osserva in corrispondenza dell'angolo $\theta=29.82^{\circ}$. Si chiede di:

- 1. trovare il valore del parametro reticolare a;
- 2. trovare il valore della velocità del suono;
- 3. valutare il contributo degli elettroni di conduzione alla capacità termica per unità di massa a volume costante c_V^{el} a T = 20 K. Assumere che il contributo alla capacità termica a volume costante degli elettroni liberi sia data da:

$$C_V^{el} = \frac{3}{2}n(T)K_B$$

dove n(T) è la frazione di elettroni quantisticamente eccitabili alla temperatura T.

Esercizio 2

Sia dato un cristallo unidimensionale di passo reticolare $a=2\text{\AA}$ composto di atomi monovalenti. Utilizzando l'approssimazione dell'elettrone quasi-libero, calcolare il valore della prima gap che si apre dovuta alla presenza di un potenziale periodico:

$$V(x) = A\cos\left(\frac{2\pi}{a}x\right),\,$$

dove A = 13.6 eV. Porsi nello schema a bande ridotte e disegnare qualitativamente l'andamento delle prime due bande di energia. Calcolare il vettore d'onda di Fermi e l'energia di Fermi del sistema. Questo cristallo è un conduttore o un isolante? Trovare infine l'energia della transizione verticale che avviene a $k = k_F$ tra la prima e la seconda banda.

Esercizio 3

In un semiconduttore a 300 K il rapporto tra le mobilità degli elettroni e delle lacune vale $\mu_n/\mu_p = 20$, l'energia della gap vale $E_G = 1.53$ eV, il coefficiente di Hall è nullo, le densità degli stati in banda di conduzione e valenza sono rispettivamente $N_C = 4 \cdot 10^{23}$ m⁻³ e $N_V = 6 \cdot 10^{24}$ m⁻³.

Determinare:

- 1. se il semiconduttore è intrinseco o meno ed eventualmente se di tipo n o p;
- 2. la concentrazione di elettroni e lacune (in caso di drogaggio considerare tutte le impurezze ionizzate);
- 3. il rapporto tra la conducibilità intrinseca e quella estrinseca $\sigma_{estr}/\sigma_{int}$ del semiconduttore.

Costanti e fattori di conversione

$$\begin{split} e &= 1.6 \cdot 10^{-19} \text{ C} \\ m_e &= 9.1 \cdot 10^{-31} \text{ Kg} \\ K_B &= 1.38 \cdot 10^{-23} \text{ J/K} = 8.62 \cdot 10^{-5} \text{ eV/K} \\ \hbar &= 1.054 \cdot 10^{-34} \text{ J} \cdot \text{s} = 6.58 \cdot 10^{-16} \text{ eV} \cdot \text{s} \\ 1 \text{ eV} &= 11605 \text{ K} \end{split}$$

Soluzione Esercizio 1

1. Il reticolo bcc ha reticolo reciproco di simmetria fcc. Il primo picco diffrattivo è associato al più corto vettore del reticolo reciproco. Nell'fcc è il vettore che dato un vertice della cella cubica, punta al centro di una delle tre facce adiacenti tale vertice. Nella terna xyz si scrive come: $\vec{G}_1 = \frac{4\pi}{a} \left(\frac{\hat{x}}{2} + \frac{\hat{y}}{2} \right)$ con modulo pari a : $G_1 = \frac{2\pi}{a} \sqrt{2}$

La legge di Bragg mette in relazione il modulo di questo vettore con il modulo del vettore \vec{k} scambiato dalla sonda:

$$G_1 = 2k\sin(\theta_1/2) = \frac{4\pi}{\lambda}\sin(\theta_1/2)$$

Uguagliando si trova il valore del parametro reticolare:

$$a = \frac{\lambda}{\sqrt{2}\sin(\theta_1/2)} = \frac{1.54 \text{ Å}}{\sqrt{2}\sin(29.82^{\circ}/2)} = 4.23\text{Å}$$

2. La velocità del suono nel modello di Debye, supponendo che le tre branche siano degeneri in quanto non viene specificato, si può ricavare dalla relazione: $K_BT_D=\hbar v_sK_D$. In 3D, il vettore d'onda di Debye è dato da:

$$k_D = \sqrt[3]{6\pi^2 n_{at}} = 1.16 \cdot 10^{10} \text{ m}^{-1}$$

dove $n_{at} = \frac{2}{a^3} = 2.64 \cdot 10^{22}$ atomi/cm³ è la densità atomica del cristallo bcc con base monoatomica. La velocità del suono risulta dunque:

$$v_s = \frac{K_B T_D}{\hbar k_D} = \frac{1.38 \cdot 10^{-23} \text{ J/K} \cdot 200 \text{K}}{1.054 \cdot 10^{-34} \text{ Js} \cdot 1.16 \cdot 10^{10} \text{ m}^{-1}} = 2257 \text{ m/s}$$

3. La frazione di elettroni eccitabili a temperatura T sono quelli che distano meno di K_BT dalla superficie di Fermi. Dunque:

$$n(T) \approx N \frac{T}{T_F}$$

dove N è il numero di elettroni nel cristallo. Poichè il metallo è monovalente $(n_{el} = n_{at})$ si ha:

$$c_V^{el}(T) = \frac{C_V^{el}}{M} \approx \frac{3}{2} \frac{N}{M} \frac{T}{T_F} K_B = \frac{3}{2} \frac{N}{V} \frac{1}{\rho} \frac{T}{T_F} K_B = \frac{3}{2} \frac{n_{at}}{\rho} \frac{T}{T_F} K_B$$

A T = 20 K, si ottiene:

$$c_V^{el}(20K) = \frac{3}{2} \frac{2.64 \cdot 10^{22}}{5.4} \frac{20}{8000} 1.38 \cdot 10^{-16} \text{ erg/g·K} = 2.53 \cdot 10^3 \text{ erg/g·K}$$

2

Soluzione Esercizio 2

Nel modello dell'elettrone quasi-libero, la prima gap si apre ai bordi della prima zona di Brillouin con ampiezza determinata dalla trasformata di Fourier del potenziale periodico perturbativo fatta rispetto al vettore di reticolo reciproco \vec{G} ($G = \frac{2\pi}{a}$) che connette i bordi di tale zona. Scriviamo il potenziale evidenziando la dipendenza da questo vettore:

$$V(x) = A \frac{e^{i2\pi x/a} + e^{-i2\pi x/a}}{2} = V_G e^{iGx} + V_{-G} e^{-iGx}$$

da cui si ricavano i coefficienti di Fourier:

$$V_G = V_{-G} = A/2 = 6.8 \text{ eV}$$

L'energia della gap a bordo della prima zona è data da : $E_G = 2|V_G| = 13.6$ eV.

Ogni banda può contenere 2N elettroni, e dunque l'ultima banda è semipiena essendo il solido costituito da atomi monovalenti. Il cristallo è dunque un metallo.

Gli stati a più alta energia occupati corrispondono a quelli con $k = k_F$. Determiniamo il momento di Fermi contando gli stati:

$$N = 2\frac{2k_F}{\frac{2\pi}{L}} = \frac{2k_F Na}{\pi} \qquad \to \qquad k_F = \frac{\pi}{2a}$$

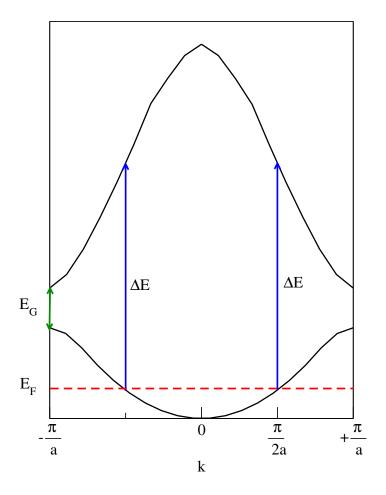
con energia:

$$E_F = \frac{\hbar^2 k_F^2}{2m_e} = \frac{\hbar^2 \pi^2}{8m_e a^2} = \frac{1.054 \cdot 10^{-34} \cdot 6.58 \cdot 10^{-16} \cdot \pi^2}{8 * 9.1 \cdot 10^{-31} \cdot 4 \cdot 10^{-20}} \text{ eV} = 2.35 \text{ eV}$$

L'andamento qualitativo delle bande è mostrato in figura.

Sono possibili due transizioni verticali tra le due bande in corrispondenza due valori $k=\pm k_F$ degeneri in energia. Studiamo quella per $k=k_F$. L'energia dell'elettrone nei due stati (prima e seconda banda) si ottiene valutando l'energia dell'elettrone libero perchè le correzioni alla legge di dispersione $E(k)=\frac{\hbar^2 k^2}{2m_e}$ sono forti solo a bordo zona. Lo stato di partenza ha vettore d'onda k_F , lo stato d'arrivo, corrispondente alla seconda banda $k=k_f-G=\frac{\pi}{2a}-\frac{2\pi}{a}=-\frac{3\pi}{2a}$. L'energia della transizione risulta quindi:

$$\Delta E = \frac{\hbar^2}{2m_e} \left[\left(-\frac{3\pi}{2a} \right)^2 - \left(\frac{\pi}{2a} \right)^2 \right] = \frac{\hbar^2}{m_e} \; \frac{\pi^2}{a^2} = 8 \; E_F = 18.8 \; \mathrm{eV}$$



Soluzione Esercizio 3

1. Dalla costante di Hall, nulla a 300 K, si ricava:

$$R_H = -\frac{1}{qc} \frac{n\mu_n^2 - p\mu_p^2}{(n\mu_n + p\mu_p)^2} = 0 \qquad \to \qquad n\mu_n^2 - p\mu_p^2 = 0$$

$$\frac{p}{n} = \left(\frac{\mu_n}{\mu_p}\right)^2 = 400 \qquad \to \qquad p = 400n$$

p>n,il semiconduttore è drogato e di tipo p.

2. Per la legge d'azione di massa si ha:

$$np = n_i^2 = N_C N_V \exp\left(-\frac{E_G}{K_B T}\right) = 4 \cdot 10^{23} 6 \cdot 10^{24} \exp\left(-\frac{1.53 \cdot 11605}{300}\right) \text{ m}^{-6} = 4.75 \cdot 10^{22} \text{ m}^{-6}$$

inoltre dal punto 1 : p = 400n, dunque:

$$n = \left(\frac{4.75 \cdot 10^{22} \text{ m}^{-6}}{400}\right)^{1/2} = 1.1 \cdot 10^{10} \text{ m}^{-3}$$
$$p = 4.4 \cdot 10^{12} \text{ m}^{-3}$$

3. La conducibilità intrinseca e quella estrinseca sono date da:

$$\sigma_{intr} = en_i(\mu_n + \mu_p) = en_i\mu_p(20 + 1) = 21en_i\mu_p$$

$$\sigma_{estr} = e(n\mu_n + p\mu_p) = en\mu_n(1 + \frac{p}{n}\frac{\mu_p}{\mu_n}) = en\mu_n(1 + 400/20) = 21en\mu_n$$

Da cui il rapporto che veniva richiesto:

$$\frac{\sigma_{estr}}{\sigma_{intr}} = \frac{n_i}{n} \frac{\mu_p}{\mu_n} = \frac{20n}{n} \ \frac{1}{20} = 1$$

Prova Scritta Appello IV AA 2015/2016

Esercizio 1

Un cristallo ha reticolo cubico semplice con base biatomica. Il lato della cella cubica vale a=4 Å . All'interno della cella primitiva l'atomo 1 (fattore di forma f_1) è individuato dal vettore $d_1=a(0,0,0)$, l'atomo 2 (fattore di forma $f_2=2f_1$) è individuato dal vettore $d_2=\frac{a}{2}(1,1,1)$.

Le leggi di dispersione di fononi acustici (AC) e di fononi ottici (OT) sono date da:

$$\hbar\omega_{AC} = A\sin\left(\frac{qa}{2}\right)$$

$$\hbar\omega_{OT} = B$$

dove $A = 1 \cdot 10^{-2} \text{ eV}$ e $B = 9 \cdot 10^{-2} \text{ eV}$.

- 1. Calcolare il fattore di struttura del reticolo e studiarne le riflessioni. Calcolare l'intensità e l'angolo al quale si osserva il primo anello di diffrazione quando viene usata una lunghezza d'onda $\lambda=2$ Å.
- 2. Determinare la velocità del suono v_s .
- 3. La temperatura di Einstein Θ_E del cristallo.
- 4. Trovare il calore specifico ad alta temperatura $(T >> \Theta_E)$ sapendo che il campione è costituito da 10^{40} celle cubiche.

Esercizio 2

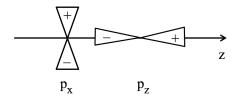
In un reticolo lineare monoatomico di passo reticolare a disposto lungo l'asse z, la banda di più bassa energia deriva da orbitali di tipo p_z e quella a più alta energia da orbitali di tipo p_x mostrati in figura. Gli atomi hanno valenza 2.

1. Utilizzando il modello del legame forte (tight binding):

$$\epsilon_i(q) = E_i - \gamma_i \sum_r e^{iqr}$$

e limitando l'interazione ai primi vicini, scrivere l'espressione delle due bande e disegnare qualitativamente il loro andamento nella prima zona di Brillouin, sapendo che $|\gamma_{p_z}|=0.3$ eV, $|\gamma_{p_x}|=0.5$ eV, $E_{p_z}=1$ eV e che l'energia della gap vale $E_G=0.46$ eV.

- 2. Calcolare l'energia di Fermi del sistema E_F . Questo cristallo è un metallo o un isolante?
- 3. Trovare la massima differenza di energia tra la seconda e la prima banda.
- 4. Scrivere l'espressione della banda derivante da orbitali p_x nell'approssimazione a secondi vicini. L' integrale di sovrapposizione tra secondi vicini vale $\gamma_{p_x,2} = +0.25$ eV. Le proprietà del cristallo cambiano?



Esercizio 3

Un semiconduttore viene drogato con atomi donori in concentrazione $N_D = 0.5 N_{\rm Mott}$, dove $N_{\rm Mott} = 3.74 \cdot 10^{24} \text{ m}^3$ è la concentrazione a cui avviene la transizione di Mott. Il semiconduttore ha una costante dielettrica relativa $\epsilon_r = 12$. La massa efficace degli elettroni è $m_e^* = 0.6 m_0$ e si assume costante in temperatura.

- 1. Determinare il numero quantico n dei livelli delle impurezze;
- 2. Determinare la concentrazione di elettroni a T = 20 K, sapendo che a questa temperatura il semiconduttore si trova nel regime di basse temperature.
- 3. Calcolare la costante di Hall nel regime di temperature intermedie e a $T=20~\mathrm{K}$.

Costanti e fattori di conversione

$$\begin{split} e &= 1.6 \cdot 10^{-19} \text{ C} \\ m_0 &= 9.1 \cdot 10^{-31} \text{ Kg} \\ K_B &= 1.38 \cdot 10^{-23} \text{ J/K} = 8.62 \cdot 10^{-5} \text{ eV/K} \\ \hbar &= 1.054 \cdot 10^{-34} \text{ J} \cdot \text{s} = 6.58 \cdot 10^{-16} \text{ eV} \cdot \text{s} \\ 1 \text{ eV} &= 11605 \text{ K} \\ 1 R_{\text{y}} &= 13.6 \text{ eV} \\ a_{\text{B}} &= 0.5 \text{ Å} \end{split}$$

Soluzioni

Soluzione Esercizio 1

1. Il reticolo cubico (sc) ha reticolo reciproco cubico. Indicando con $\{g_1, g_2, g_3\}$ i vettori di base del reticolo reciproco e con $\vec{G} = h\vec{g}_1 + k\vec{g}_2 + l\hat{g}_3$ il generico vettore di questo reticolo, il fattore di struttura del cristallo si scrive come:

$$F(\vec{G}) = N \sum_{i} f_{i} e^{-i\vec{G} \cdot \vec{d}_{i}} = N \left(f_{1} + f_{2} e^{-i\vec{G} \cdot \vec{d}_{2}} \right) = N f_{1} \left(1 + 2e^{-i\pi(h+k+l)} \right)$$

Esso risulta sempre differente da zero, dunque sono permesse tutte le riflessioni.

Il primo picco diffrattivo è associato al più corto vettore del reticolo reciproco. Nel reticolo sc esso coincide con uno qualsiasi dei lati della cella cubica. Nella terna xyz possiamo scriverlo come $\vec{G}_1 = \vec{g}_1 = \frac{2\pi}{a} \, (100)$ con modulo pari a : $G_1 = \frac{2\pi}{a}$

La legge di Bragg mette in relazione il modulo di questo vettore con il modulo del vettore \vec{k} scambiato dalla sonda:

$$G_1 = 2k\sin(\theta_1/2) = \frac{4\pi}{\lambda}\sin(\theta_1/2)$$

Uguagliando le espressioni di G_1 si trova il valore dell'angolo richiesto:

$$\theta_1 = 2 \arcsin\left(\frac{\lambda}{2a}\right) = 2 \arcsin(0.5) = 60^{\circ}$$

L'intesità della riflessione è:

$$I_1 \sim |F(G_1)|^2 \sim |Nf_1(1 + 2e^{-i\pi})|^2 \sim (Nf_1)^2$$

2. La velocità del suono si ricava dalla frequenza acustica nel limite di piccoli q:

$$v_s = \left(\frac{\partial \omega_{AC}}{\partial q}\right)_{q=0} = \frac{A}{\hbar} \frac{a}{2} = \frac{1 \cdot 10^{-2} \cdot 2 \cdot 10^{-10}}{6.58 \cdot 10^{-16} \cdot 2} \text{ m/s} = 1520 \text{ m/s}$$

3. La temperatura di Einstein si ricava dalla relazione: $K_B\Theta_E = \hbar\omega_E$. La frequenza di Debye si può stimare dalla frequenza del modo ottico: $\omega_E = \omega_{OTT}$. La temperatura di Einstein è dunque:

$$\Theta_E = \frac{\hbar \omega_E}{K_B} = \frac{9 \cdot 10^{-2}}{8.62 \cdot 10^{-5}} \text{ K} = 1044 \text{ K}$$

4. Nel limite di alte temperature $(T >> \Theta_E)$ il calore specifico si trova con la legge di Dulong-Petit. Il cristallo possiede N modi acusti ed N ottici per cui:

$$c_V = 6NK_B = 6 \cdot 10^{40} \cdot 1.38 \cdot 10^{-23} \text{ J/K} = 8.28 \cdot 10^{17} \text{ J/K}$$

Soluzione Esercizio 2

1. Nella catena lineare i primi vicini si trovano in $R = \pm a$. Quindi l'espressione della banda originata da orbitali di tipo $i = p_z, p_x$ è:

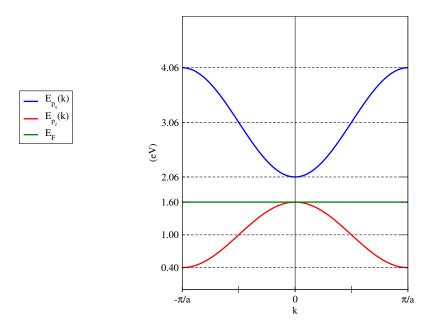
$$\epsilon_i(q) = E_i - \gamma_i \left(e^{iqa} + e^{-iqa} \right) = E_i - 2\gamma_i \cos(qa) \tag{1}$$

L'integrale di sovrapposizione fra gli orbitali p_z è negativo $(\gamma_{p_z} < 0)$ mentre quello tra orbitali p_x è positivo $(\gamma_{p_x} > 0)$, dunque le due bande sono:

$$\epsilon_{p_z}(q) = E_{p_z} + 2|\gamma_{p_z}| \cos(qa) \tag{2}$$

$$\epsilon_{p_x}(q) = E_{p_x} - 2|\gamma_{p_x}| \cos(qa) \tag{3}$$

Le due bande sono mostrate in figura.



2. Gli atomi del cristallo sono bivalenti, percui dobbiamo posizionare 2N elettroni nelle bande. Poichè le bande sono separate da una gap, i 2N elettroni occuperanno tutta la banda più bassa in energia (ϵ_{p_z}) mentre la banda ϵ_{p_x} risulterà completamente vuota. Segue che l'energia di Fermi è pari a quella dello stato occupato in banda p_z di massima energia. Ciò avviene in q=0: $E_F=\epsilon_{p_z}(0)=1.60$ eV.

Dato che l'ultimo stato occupato è separato dal primo stato libero da una gap finita il cristallo è un isolante.

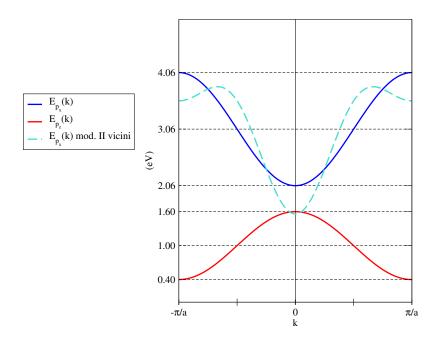
- 3. La gap massima di energia si trova a bordo zona e vale 3.66 eV.
- 4. Nella catena lineare i secondi vicini si trovano in $R=\pm 2a$. La banda p_x nell'approssimazione a secondi vicini diventa:

$$\epsilon_{p_x}(q) = E_{p_x} - \gamma_{p_x} \left(e^{iqa} + e^{-iqa} \right) - \gamma_{p_x,2} \left(e^{i2qa} + e^{-2iqa} \right)$$
(4)

$$=E_{p_x}-2\gamma_{p_x}\cos(qa)-2\gamma_{p_x,2}\cos(2qa) \tag{5}$$

$$= E_{p_x} - 2|\gamma_{p_x}|\cos(qa) - 2|\gamma_{p_x,2}|\cos(2qa)$$
 (6)

Le nuova banda è mostrata in figura.



In questa nuova configurazione c'è sovrapposizione di banda, duque il cristallo si comporta come un metallo.

Soluzione Esercizio 3

1.

$$N_{\text{Mott}} = \left(\frac{4}{3}\pi a_n^2\right)^{-1} \rightarrow a_n = \left(\frac{4}{3}\pi N_{\text{Mott}}\right)^{-1/3} = 4 \text{ nm}$$

$$n^2 = \frac{m_e^*}{m_0} \frac{a_n}{a_B} \frac{1}{\epsilon_r} = 0.6 \cdot \frac{40}{0.5} \cdot \frac{1}{12} = 4$$

Il numero quantico è dunque n=2.

2. Nel regime di basse temperature la densità degli elettroni è :

$$n(T) = \sqrt{\frac{N_C(T)N_D}{2}} e^{-\frac{\epsilon_D}{2K_BT}} \qquad \text{con } N_C(T) = 2.354 \left(\frac{m_e^*}{m_0} \frac{T}{300 \text{ K}}\right)^{3/2} \cdot 10^{25} \text{ m}^{-3}$$
 (7)

Troviamo l'energia di legame ϵ_D e la densità di stati in banda di conduzione a 20 K:

$$\epsilon_D = \frac{R_{\rm y} \, a_{\rm B}}{\epsilon_r \, a_n} = \frac{13.6 \cdot 0.5}{12 \cdot 40} = 14.5 \text{ meV}$$

$$N_C(20) = 2.354 \left(0.6 \frac{20}{300}\right)^{3/2} \cdot 10^{25} \text{ m}^{-3} = 18.8 \cdot 10^{22} \text{ m}^{-3}$$

La densità degli elettroni risulta dunque:

$$n(20) = \sqrt{\frac{18.8 \cdot 1.87}{2}} e^{-\frac{0.0145}{40 \cdot 8.62 \cdot 10^{-5}} \cdot 10^{23} \text{ m}^{-3}} = 6.25 \cdot 10^{21} \text{ m}^{-3}$$

3. La costante di Hall in presenza di due portatori (p lacune e n elettroni) nel sistema SI si scrive:

$$R_H = \frac{1}{q} \frac{p\mu_p^2 - n\mu_n^2}{p\mu_p + n\mu_n}$$

Nel regime intermedio i portatori maggioritari sono gli elettroni con concentrazione pari al drogaggio $n = N_D$. Nel regime a basse temperature i portatori maggioritari sono sempre gli elettroni ma la loro concentrazione è data dalla formula 7. In entrambi i regimi si possono trascurare le lacune minoritarie per cui:

Regime intermedio:
$$R_H = -\frac{1}{qN_D} = -\frac{1}{1.6\cdot 10^{-19}\cdot 1.87\cdot 10^{24}} \text{ C}^{-1}\text{m}^3 = -3.34\cdot 10^{-6} \text{ C}^{-1}\text{m}^3$$

Regime basse temperature T = 20 K:
$$R_H = -\frac{1}{qn(20)} = -\frac{1}{1.6 \cdot 10^{-19} \cdot 6.25 \cdot 10^{21}} \text{ C}^{-1} \text{m}^3 = -1000 \text{ C}^{-1} \text{m}^3$$

Prova Scritta Appello V AA 2015/2016

Esercizio 1

Si abbia un campione di Oro di volume $V=2~{\rm cm}^3$ alla temperatura di 10 K. Il peso atomico dell'Oro è 197 uma. L'Oro ha reticolo FCC e la distanza fra due atomi primi vicini vale $d_{nn}=2.882~{\rm \AA}$.

- 1. Trovare la capacità termica per unità di massa in approssimazione di Debye, sapendo che la velocità del suono nel cristallo vale $v_s = 3.2 \cdot 10^5$ cm/s.
- 2. Sapendo che la posizione del primo anello di diffrazione è $\theta_1 = 42.2^{\circ}$, calcolare il valore della lunghezza d'onda λ con cui si esegue l'esperimento e il rapporto fra le intensità del primo e del secondo ordine di diffrazione che si osservano.

Esercizio 2

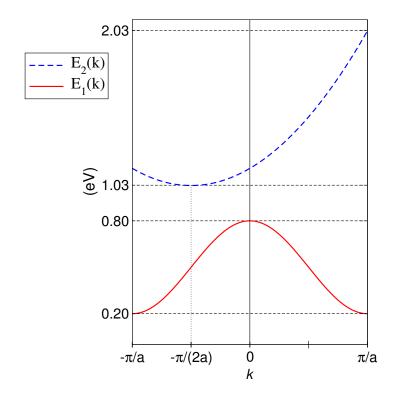
Si abbia un semiconduttore drogato. Esclusivamente tra $T_1 = 300 \text{ K}$ e $T_2 = 150 \text{ K}$ la costante di Hall del campione risulta costante e vale $R_{\rm H} = 0.21 \text{ C}^{-1} \text{m}^3$. Inoltre è noto che le masse efficaci dei portatori sono uguali tra loro.

- 1. Determinare il drogaggio che possiede il campione. Esso è di tipo p o di tipo n?
- **2.** Quanto vale l'energia di legame delle impurezze sapendo che la densità degli stati a T_2 vale $2.28 \cdot 10^{22}$ m⁻³?
- **3.** Quanto vale l'energia di gap ϵ_g del semiconduttore?

Esercizio 3

La struttura a bande di un un reticolo lineare monoatomico di passo reticolare a=1 Å disposto lungo l'asse z, è mostrata in figura. La banda di più bassa energia $E_1(k)$ deriva da orbitali di tipo p_z e quella a più alta energia è descritta in buona approssimazione dalla legge: $E_2(k) = A(k + \frac{\pi}{2a})^2 + B$. Gli atomi hanno valenza 1.

- 1. Scrivere l'espressione della banda $E_1(k)$ derivante da orbitali di tipo p_z utilizzando il modello del legame forte (tight binding) e limitando l'interazione ai primi vicini. Specificare il segno e il valore numerico dell'integrale di sovrapposizione γ_{p_z} .
- 2. Calcolare l'energia di Fermi del sistema E_F e specificare i k degli stati occupati. Questo cristallo è un metallo o un isolante?
- 3. Trovare la massa efficace di un elettrone che si trova sul fondo della banda a più alta energia.
- 4. Come cambiano l'energia di Fermi e le proprietà del cristallo nel caso gli atomi abbiano valenza 2?



Costanti e fattori di conversione

$$\begin{split} e &= 1.6 \cdot 10^{-19} \text{ C} \\ K_B &= 1.38 \cdot 10^{-23} \text{ J/K} = 8.62 \cdot 10^{-5} \text{ eV/K} \\ \hbar &= 1.054 \cdot 10^{-34} \text{ J} \cdot \text{s} = 6.58 \cdot 10^{-16} \text{ eV} \cdot \text{s} \\ 1 \text{ uma} &= 1.6605 \cdot 10^{-24} \text{ g} \end{split}$$

Soluzioni

Soluzione Esercizio 1

1)

Nell'fcc: (1) il lato della cella cubica a è legato alla distanza tra primi vicini d_{nn} dalla relazione: $a=d\cdot\sqrt{2}=4.076$ Å, (2) la cella cubica contiene 4 atomi, quindi la densità atomica vale: $n=\frac{4}{a^3}=\frac{4}{(d\cdot\sqrt{2})^3}=\frac{\sqrt{2}}{d_{nn}^3}$.

Il vettore d'onda di Debye è dunque: $q_{\rm D}=\sqrt[3]{6\pi^2n}=\frac{\sqrt[3]{6\pi^2\sqrt{2}}}{d_{nn}}=1.5181~{\rm \AA}^{-1}$ e la temperatura di Debye vale: $\Theta_{\rm D}=\frac{\hbar v_s q_{\rm D}}{K_{\rm B}}=371~{\rm K}$

A 10 K vale l'approssimazione a basse temperature perchè 10 K $<<\Theta_D$, dunque la capacità termica nel modello di Debye si scrive:

$$c_{\rm V}(T) = \frac{12}{5} \pi^4 \left(\frac{T}{\Theta_{\rm D}}\right)^3 N K_{\rm B} \tag{8}$$

Nell'esercizio si chiedeva la capacità termica per unità di massa, che si scrive, indicando con M la

massa del campione:

$$c_{V}'(T) = \frac{c_{V}}{M} = \frac{c_{V}}{Nm_{cella}} = \frac{12}{5}\pi^{4} \left(\frac{T}{\Theta_{D}}\right)^{3} \frac{K_{B}}{m_{cella}}$$

$$(9)$$

Calcoliamo la massa:

$$m_{Au} = 197 \text{ uma} = 327.12 \cdot 10^{-27} \text{ kg}$$
 (10)

$$m_{cella} = 4 \cdot m_{Au} = 1.308 \cdot 10^{-24} \text{ kg}$$
 (11)

A T = 10 K la capacità termica per unità di massa vale $c'_{V}(10K) = 4.83 \cdot 10^{-2} J/(kg K)$

2)

Il reticolo fcc ha reticolo reciproco di simmetria bcc. I moduli dei due vettori più corti sono:

$$G_1 = \frac{2\pi\sqrt{3}}{a} = 2.670 \text{ Å}^{-1} \tag{12}$$

$$G_2 = \frac{4\pi}{a} = 1.1547 G_1 = 3.083 \text{ Å}^{-1}$$
 (13)

inoltre (scattering): $G_i = 2 k \sin(\theta_i/2) = \frac{4\pi}{\lambda} \sin(\theta_i/2)$

Dalla posizione del primo ordine ricaviamo λ :

$$\lambda = \frac{4\pi}{G_1} \sin(\theta_1/2) = 1.69 \text{ Å}$$

Poiché la base del reticolo è monoatomica $(\vec{d_0} = (000))$ e il reticolo semplice, il fattore di struttura è costante, infatti indicando con $\{g_1, g_2, g_3\}$ i vettori di base del reticolo reciproco e con $\vec{G} = h\vec{g_1} + k\vec{g_2} + l\hat{g_3}$ il generico vettore di questo reticolo, il fattore di struttura del cristallo si scrive come:

$$F(\vec{G}) = N \sum_{i} f_i \ e^{-i\vec{G} \cdot \vec{d_i}} = N f_0$$

L'intensità del picco è proporzionale al modulo quadro del fattore di struttura, ma essendo quest'ultimo indipendente dal particolare vettore di reticolo reciproco, il rapporto tra le intensità di due ordini qualsiasi vale sempre 1.

Soluzione Esercizio 2

1)

Per un semiconduttore drogato la costante di Hall è costante in temperatura nel regime intermedio, ovvero quando la densità dei portatori maggioritari è pari al drogaggio. Poiché $R_{\rm H}>0$ il drogaggio sarà di tipo p e vale:

$$N_A = \frac{1}{eR_{\rm H}} = 2.98 \cdot 10^{19} \text{ m}^{-3}$$

2)

La temperatura $T_2=150~{\rm K}$ segna il passaggio al regime di basse temperature, per cui a $T=T_2$ vale:

$$N_A = \sqrt{\frac{N_V(T_2)N_A}{2}}e^{-\epsilon_a/(2K_BT_2)}$$
 con $N_V(T_2) = 2.28 \cdot 10^{22} \text{ m}^{-3}$

invertendo si trova:

$$\epsilon_a = -K_B T_2 \ln \left(\frac{2N_A}{N_V(T_2)} \right) = 77 \text{ meV}$$

3)

La temperatura $T_1 = 300$ K segna invece il passaggio al regime di alte temperature, per cui a $T = T_1$ vale:

$$N_A = \sqrt{N_V(T_1)N_C(T_1)}e^{-\epsilon_g/(2K_BT_1)} = N_V(T_1)e^{-\epsilon_g/(2K_BT_1)}$$

infatti poiché le masse dei portatori sono uguali ad ogni temperatura, $N_V(T) = N_C(T)$.

$$N_V(T_1) = N_V(T_2) \left(\frac{T_1}{T_2}\right)^{3/2} = 6.45 \cdot 10^{22} \text{ m}^{-3}$$

$$\epsilon_g = -2K_BT_1 \ln\left(\frac{N_A}{N_V(T_1)}\right) = 397 \text{ meV}$$

Soluzione Esercizio 3

1)

Nella catena lineare i primi vicini si trovano in $R = \pm a$. Quindi l'espressione della banda originata da orbitali di tipo p_z è:

$$E_1(k) = E_{p_z} - \gamma_{p_z} \left(e^{ika} + e^{-ika} \right) = E_{p_z} - 2\gamma_{p_z} \cos(ka)$$
(14)

L'integrale di sovrapposizione fra gli orbitali p_z è negativo $(\gamma_{p_z} < 0)$, dunque la banda è:

$$E_1(k) = E_{p_z} + 2|\gamma_{p_z}|\cos(ka)$$
 (15)

il valore di $|\gamma_{p_z}|$ si ricavano dalla figura:

$$E_1(0) - E_1(\pi/a) = 4|\gamma_{p_z}| = 0.60 \text{ eV}$$
 (16)

$$|\gamma_{p_z}| = 0.15 \text{ eV} \tag{17}$$

2)

Gli atomi del cristallo sono monovalenti, quindi gli N elettroni andranno ad occupare la banda $E_1(k)$ dal suo minimo (che si trova a bordo zona) fino allo stato con vettore d'onda $k_{\rm F}=\frac{\pi}{2a}$ e energia pari all'energia di Fermi del sistema $E_{\rm F}$. Gli stati occupati, sono quelli i cui k cadono dunque nell'intervallo: $(-\frac{\pi}{a}, -\frac{\pi}{2a}) \cup (\frac{\pi}{2a}, \frac{\pi}{a})$. L'energia di Fermi è: $E_{\rm F}=E_{p_z}+2|\gamma_{p_z}|\cos(\pi/2)=E_{p_z}=0.5$ eV. Dato che il livello di Fermi cade dentro la banda il cristallo è un metallo.

3)

La massa efficace richiesta è:

$$m^* = \hbar^2 \left[\frac{\partial^2 E_2(k)}{\partial k^2} \right]_{k=-\pi/(2a)}^{-1} = \frac{\hbar^2}{2A}$$

il valore della costante A si ricava dal valore che assume la banda a $k=\pi/a$, e risulta A=0.045 eV·Å² e $m^*=7.7\cdot 10^{-30}$ kg.

4)

Se gli atomi del cristallo sono bivalenti, i risultanti 2N elettroni occuperanno tutta la banda a più bassa energia. Gli stati occupati sono quindi tutti quelli con i $k \in (-\pi/a, \pi/a)$. Poiché questa banda è separata da una gap finita dalla banda a più alta energia, il cristallo è isolante.