SCRITTO- 18 GENNAIO 2022

Esercizio 1

Due punti materiali di masse $m_1=1\,\mathrm{kg}$ ed $m_2=2\,\mathrm{kg}$ si trovano su due piani inclinati come mostrato in figura 1 e sono collegati attraverso una fune inestensibile e di massa trascurabile. Il coefficiente d'attrito dinamico tra il punto materiale di massa m_2 e la superficie su cui si muove è dato da $\mu_d=0.3$, mentre la superficie su cui si muove il punto materiale di massa m_1 è liscia.

$$[\theta_1=30^\circ\;,\;\theta_2=45^\circ]$$

- Calcolare l'accelerazione a del sistema e la tensione T della fune (5 punti).
- Assumendo ora che tra il punto materiale di massa m_1 e la superficie su cui si muove ci sia attrito, calcolare il corrispondente coefficiente d'attrito dinamico μ'_d affinchè la nuova accelerazione del sistema valga a' = a/2 (6 punti).

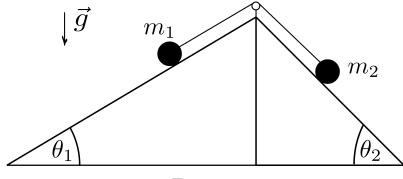
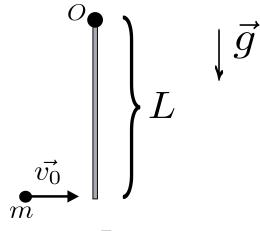


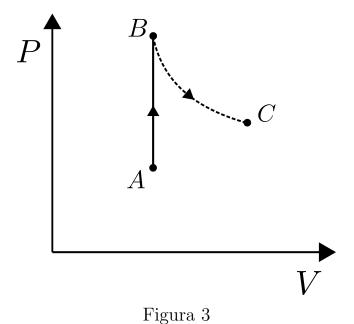
Figura 1

Esercizio 2

Un'asta sottile ed omogenea di massa $M=4\,\mathrm{kg}$ e lunghezza $L=1\,\mathrm{m}$ è libera di ruotare intorno al polo O mostrato in figura 2. L'asta è inizialmente in quiete ed è disposta lungo la verticale. Un punto materiale di massa $m=2\,\mathrm{kg}$ urta l'asta nel suo estremo più basso. La velocità del punto materiale nel momento dell'impatto è $v_0=2\,\mathrm{m\,s^{-1}}$ ed è diretta come in figura 2. L'urto è completamente anelastico ed istantaneo. Calcolare:

- Il momento d'inerzia del sistema dopo l'urto rispetto all'asse passante per il punto O e perpendicolare al piano. (**2 punti**).
- La velocità angolare del sistema ω_0 subito dopo l'urto (4 punti).
- L'angolo massimo raggiunto dal sistema (5 punti).




Figura 2

Esercizio 3

Una mole di gas perfetto biatomico si trova inizialmente in equilibrio termico a temperatura $T_A=100\,\mathrm{K}$ e occupa un volume $V_A=1\,\mathrm{m}^3$. Il gas subisce una trasformazione isocora reversibile A-B che lo porta a temperatura $T_B=200\,\mathrm{K}$ seguita da una trasformazione irreversibile B-C che lo porta in uno stato di equilibrio caratterizzato da una temperatura $T_C=300\,\mathrm{K}$ ed un volume $V_C=2\,\mathrm{m}^3$. Le due trasformazioni sono schematizzate nel piano P-V in figura 3. Calcolare:

- Il calore Q_{AB} scambiato dal gas nella trasformazione isocora A-B (3 punti).
- La variazione di entropia del gas ΔS_{AB} nella trasformazione isocora A-B (3 punti).
- La variazione di entropia del gas ΔS_{BC} nella trasformazione irreversibile B-C (5 punti).

 $(R = 8.314 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}).$

