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Relation between the two-body entropy and the relaxation time in supercooled water
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The two-body excess entropy of supercooled water is calculated from the radial distribution functions obtained
from computer simulation of the TIP4P model for different densities upon supercooling. This quantity is
considered in connection with the relaxation time of the self intermediate scattering function. The relaxation time
shows a mode coupling theory (MCT) behavior in the region of mild supercooling and a strong behavior in the
deep supercooled region. We find here that the two-body entropy is connected to the relaxation time and shows a
logarithmic behavior with an apparent asymptotic divergence at the mode coupling crossover temperature. There
is also evidence of a change in behavior of the two-body entropy upon crossing from the fragile (hopping-free)
state to the strong (hopping-dominated) state of supercooled water, and the relation that connects the two-body
entropy and the relxation time in the MCT region no longer holds.
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I. INTRODUCTION

The connection between dynamical properties and ther-
modynamics is an issue of particular interest in the study of
supercooled liquids approaching the glass transition. However,
a theoretical formulation able to address the problem of
predicting the dynamical behavior from the thermodynamic
properties is still missing. The dynamics of atoms in liquids
is strongly connected to the local density fluctuations. The
diffusivity is driven by the structural relaxation of the nearest-
neighbor cages of atoms and the rate of structural relaxation
is related to the number and distributions of the accessible
configurations, so it is conceivable that the diffusivity and,
more generally, transport properties can be related to the
entropy.

The link between thermodynamics and transport properties
is of particular interest in the study of the anomalous behavior
of water in its supercooled liquid region. If it is possible to
maintain water in the liquid state below its freezing point,
supercooled water shows a strong increase in thermodynamic
functions, like the isothermal compressibility, the isobaric
specific heat, and the sound velocity. Extrapolations of these
quantities show a possible divergence in a region below
the line of homogeneous nucleation where liquid water is
experimentally hardly kept in the liquid phase. This makes
interpretation of the phenomenology rather difficult [1,2].

Computer simulations performed on different water models
explain the anomalies of supercooled water with the presence
of the coexistence between a low-density liquid and a high-
density liquid terminating in a liquid-liquid critical point
(LLCP). This interpretation is at the heart of a vivid debate
in the literature [1,3–15].

Studies of the dynamical density correlators of water
in computer simulations [16,17] found that the behavior
upon supercooling can be interpreted in the region of mild
supercooling in terms of the mode coupling theory (MCT)
of the evolution of glassy dynamics [18]. According to the
Angell phenomenological classification [19] this implies that
water is a fragile liquid in this region. It was also found with
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the use of different water models that, in approaching the
region of the LLCP, there is a crossover from a fragile to a
strong behavior in the structural relaxation of water [9,20–24]
and confined water [25–27], in which this phenomenon was
recently observed in experiments [28–32]. The locus of the
fragile-to-strong crossover (FSC) is related to the line of
maxima of the specific heat, which, close to the LLCP, can
be identified as the Widom line emanating from the LLCP
[20,33].

The identification of the locus of the dynamical crossover
with the Widom line shows how relevant the connection
between thermodynamics and dynamical properties is for
supercooled water, and it provides strong motivation to explore
further how the diffusion or relaxation time of water upon
supercooling can be related to the thermodynamic properties.
In this respect it is of interest to consider the empirical relations
between the diffusion coefficient D and the excess entropy that
have been proposed in the past. The excess entropy is defined
by subtracting from the liquid entropy its ideal-gas term,

Sexc = S − Sid (1)

If sexc is the excess entropy per particle sexc = Sexc/N , the
empirical relations are based on the assumption that the
diffusion coefficient is proportional to the exponential of
sexc [34]:

D ∝ eαsexc/kB . (2)

The right-hand side of this relation represents a measure
of the distributions of the accessible configurations in the
time evolution of the system. The excess entropy per particle
sexc can be expanded in terms of n-body terms sn calcu-
lated by integration on the n-particle distribution functions
gn(r1, . . . ,rn) [35]. Under the assumption that the two-body
term gives the main contribution in the calculations with
Eq. (2), sexc is approximated with the two-body excess entropy
(TBEE), which can be derived from the radial distribution
function g(r) as follows:

s2 = −2πρkB

∫
{g(r)ln[g(r)] − [g(r) − 1]}r2dr. (3)

Different scaling relations based on Eq. (2) were formulated
by Rosenfeld [34,36,37] and by Dzugutov [38]. The proposed
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scaling relations were tested by computer simulation in differ-
ent liquid systems with different model potentials [34,39–46].

The behavior of the excess entropy of water was found to
be connected to the structural anomaly of the liquid [46–49]
and to the liquid-liquid transition [50,51]. In particular, in
Ref. [46] the authors found that the Dzugutov scaled equation
is in good agreement with the diffusion in supercooled water in
the region of mild supercooling, where the system is in a fragile
dynamical regime, while in the region of deep supercooling the
Dzugutov relation starts to deviate from the simulation results.

In a previous work [23] we performed a complete analysis
of the dynamical properties of the self intermediate scattering
function (SISF) of TIP4P supercooled water in the thermo-
dynamic ρ-T plane for several isochores. Along the different
isochores the results agree with the prediction of MCT and in
the deep supercooled region we found an FSC for densities
below 1.1 g/cm3. According to the recent interpretation of the
phenomenology of supercooled water we showed that the line
of the FSC points in the ρ-T plane coincides with the Widom
line.

The FSC can be interpreted in the framework of the
MCT. MCT is based on the idea of the cage effect. Upon
supercooling, the atoms of the liquid are trapped in the
nearest-neighbor cages and they can diffuse and restore the
Brownian regime when the cages relax. The time interval of
the cage relaxation increases with decreasing temperature. In
the asymptotic limit individuated by a temperature TC the
system enters a nonergodic regime where the dynamics is
blocked. This ergodic-to-nonergodic transition upon crossing
TC is predicted by the MCT in the formulation where hopping
effects are neglected; they are treated in the extended version
of the theory [18]. The FSC can be considered as a crossover
from a regime where hopping is negligible (fragile) to a regime
where it becomes relevant (strong).

In this paper we explore the relation between the relaxation
time and the TBEE in water in connection with the MCT.
Importantly, we show that the TBEE has an apparent singular
behavior upon approaching the asymptotic limit of the MCT
crossover temperature. This is followed by a deviation from the
MCT behavior of the TBEE that takes place in correspondence
with the FSC calculated from the relaxation time, confirming
our previous work where we found that the TBEE of TIP4P
water contains signatures of low-density liquid/high-density
liquid coexistence in supercooled water [51].

In Sec. II we introduce the water model and the simulation
methods. In Sec. III we recall the previous results on the
relaxation time in supercooled water. In Sec. IV we show
how the relaxation time and the TBEE are related in water. In
Sec. V the behavior of the TIP4P TBEE is interpreted in terms
of the MCT and of the FSC. In Sec. VI we draw conclusions.

II. MODELS AND METHODS

The simulation of water was performed with the molecular
dynamics method with the use of the TIP4P potential. The
water molecule is modeled with four sites. Hydrogens (H’s)
are represented by two positive sites with a charge of 0.52e

each. The H sites are connected to the neutral oxygen (O)
site. The oxygen negative charge of −1.04e is shifted and
attributed to the fourth site (X). The OH bond length is
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FIG. 1. (Color online) Relaxation time τ as a function of inverse
temperature for different values of the density. The solid (red) curve
shows the fit with the MCT power law, (4), while the dashed (blue)
line is the fitting to the Arrhenius function, (5). The plots are adapted
from Ref. [23].

0.9572 Å; the angle between the two bonds is θ = 104.5◦.
The X site lies in the molecular plane shifted 0.15 Å from
the oxygen; the OX bond forms an angle θ/2 with the OH
bonds. All the distances and angles are kept rigid during the
simulation. Interactions between the oxygen sites of the water
molecules are modeled with a the Lennard-Jones potential with
the parameters ε = 0.649 kJ/mol and σ = 3.154 Å. Charged
sites are assumed to interact only with the Coulombic potential.

Periodic boundary conditions were applied and the interac-
tions were truncated at 9 Å. The Ewald particle mesh method
was used to account for long-range electrostatic interactions.
The averages of the thermodynamic and structural quantities
were calculated on production runs of 30 ns starting from
the equilibrated configurations of our previous work. Further
details on simulation and details on calculations of the SISF
functions can be found in [23].

III. DYNAMICAL CROSSOVERS
IN SUPERCOOLED WATER

In a previous work [23] we calculated the SISF of the
translational motion of the oxygens of the TIP4P water along
various isochores from ρ = 0.95 g/cm3 to ρ = 1.10 g/cm3.

TABLE I. MCT fit parameters of τ for isochores investigated with
the power law, (4), activation energies from the fit to the Arrhenius
formula, (5), and FSC temperatures TL as obtained in Ref. [23].

ρ (g/cm3) TC (K) γ EA (kJ/mol) TL (K)

0.95 204.6 2.53 55.2 224.4
1.00 191.5 2.54 42.1 217.2
1.03 185.0 2.55 36.0 210.0
1.05 179.07 2.53 34.7 200.0
1.10 172.4 2.45 − −
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FIG. 2. (Color online) Two-body excess entropy, Eq. (3), as a
function of temperature for different isochores.

The range of temperatures explored was from T = 300 K down
to T = 190 K [23]. Upon cooling for each density the SISF
shows the double-relaxation regime typical of supercooled
liquids. At long times the SISF enters in the α-relaxation region
and it decays with a behavior that can be fitted with a stretched
exponential exp(−t/τ )β , where τ is the structural relaxation
time and β is called the Kohlrausch exponent.

In a range of temperatures of mild supercooling the
relaxation time τ shows the power-law behavior predicted by
MCT [18],

τ = C(T − TC)−γ , (4)

where C is a constant and TC is the crossover temperature
that marks the idealized transition from an ergodic to a
nonergodic dynamical regime. The relaxation time and the
fits with Eq. (4) as calculated in our previous work [23] are
reported in Fig. 1 for different densities, from ρ = 0.95 g/cm3

to ρ = 1.10 g/cm3. It is evident that the curves forτ , apart
for the highest density, deviate from the MCT prediction of
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FIG. 3. (Color online) Translational diffusion coefficient D re-
ported as a function of s2 for the densities indicated in each panel.
The solid black line is the fit to Eq. (6).
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FIG. 4. (Color online) Translational diffusion coefficient D re-
ported as a function of s2 for the densities indicated in each panel.
The solid black line is the fit to Eq. (6).

Eq. (4) at the lowest temperatures investigated, starting from
a temperature TL > TC . The MCT power law, (4), marks the
region of fragile behavior, and TL marks a crossover to an
exponential Arrhenius strong behavior with

τ ∼ exp(EA/kBT ), (5)

where EA is the activation energy.
This FSC can be explained in terms of hopping effects.

Before the asymptotic limit TC is reached, hopping effects
neglected in the ideal version of MCT intervene and restore
ergodicity, inducing a change in the behavior of τ at decreasing
temperature below TL. This finding is in agreement with the
FSC found in other models of water [20,21,25].

For the highest density investigated, 1.10 g/cm3, we can
fit the curve with Eq. (4) for the entire range of temperatures
explored in our simulations. The relation between the FSC
and the presence of a LLCP in water has been discussed in the
previous work and this behavior, connected with the fact that
the 1.10 g/cm3 isochore does not cross the Widom line, has
been interpreted in detail there. We listt in Table I the results
obtained with the fits shown in Fig. 1.

IV. TWO-BODY ENTROPY, DIFFUSION,
AND RELAXATION TIME

Now we explore the connection of the excess entropy with
the diffusion and the relaxation time in our system. Since in this
work we are interested in the translational dynamics of pure

TABLE II. Fit parameters of D vs s2 according to Eq. (6).

ρ (g/cm3) AD (10−5 cm2 s−1) αD

0.95 2.020 3.61
1.00 2.047 3.87
1.03 2.122 4.09
1.05 2.399 4.45
1.10 2.969 5.19
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FIG. 5. (Color online) Inverse of the α-relaxation time reported
as a function of s2 for the densities indicated in each panel. The solid
black line is the fit to Eq. (7).

water, s2 is derived from the oxygen-oxygen radial distribution
function and in (3) we identify g(r) as gOO(r).

In Fig. 2 we report s2, as extracted from the gOO(r) of our
simulations [52], as a function of temperature for different
isochores. The excess entropy gives a negative contribution
whose modulus increases with decreasing temperature. While
the slope is monotonous for all isochores, changes in the
curvature are present, which are more evident for the lower
densities. Their meaning is discussed later.

As stated in Sec. I, Eq. (2) hypothesizes a relation between
the diffusion coefficient D and an exponential of the excess
entropy that can be written as

D = ADeαDs2/kB , (6)

with AD = AD(ρ) and αD = αD(ρ). We report in Fig. 3 D

as a function of s2for the densities 0.95–1.00 g/cm3 and in
Fig. 4 that for higher densities, 1.03–1.10 g/cm3, and the fits
to Eq. (6). The fitting parameters are listed in Table II. We
comment below on the results obtained.
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FIG. 6. (Color online) Inverse of the α-relaxation time reported
as a function of s2 for the densities indicated in each panel. The solid
black line is the fit to Eq. (7).

TABLE III. Fit parameters of 1/τ vs s2 according to Eq. (7). Tmin

is the approximate lower temperature at which the fit can be applied.
TL is the FSC crossover temperature as obtained in Ref. [23].

ρ (g/cm3) Aτ (ps−1) ατ Tmin (K) TL (K)

0.95 11.23 3.95 220.0 224.4
1.00 11.39 4.13 210.0 217.2
1.03 11.51 4.32 200.0 210.0
1.05 11.98 4.56 195.0 200.0
1.10 20.90 5.79 − −

With the idea that the relaxation of a supercooled liquid
is determined through the cage effect by the accessible
configurations, we assume that an analogous relation is valid
also for the relaxation time,

1

τ
= Aτe

ατ s2/kB , (7)

with Aτ = Aτ (ρ) and ατ = ατ (ρ), as before. It is particularly
important to study the behavior of τ , which is a more
significative parameter for MCT test than D. In fact, D

can show more marked deviations from the predicted MCT
behavior upon approaching TC . This was observed in MCT
analysis of different glass-forming liquids; see, for example,
Refs. [53] and [54].

We check whether this relation between τ and the excess
entropy is satisfied by plotting τ−1 as a function of s2 and by
fitting the curves with Eq. (7). The results are shown in Fig. 5
for the densities 0.95–1.00 g/cm3 and in Fig. 6 for higher
densities, 1.03–1.10 g/cm3. The fitting parameters are listed
in Table III.

It is clear that the fits both to Eq. (6) for D and to Eq. (7) for
τ are accurate in a range that excludes the lower temperature
values apart from the case 1.10 g/cm3. To connect with the
results shown in the previous section we consider, in particular,
the plots of τ in Figs. 5 and 6 and the deviations from
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FIG. 7. (Color online) Two-body excess entropy as a function of
T for ρ = 1.00 g/cm3 (black circles). The fit in the fragile region
[solid (red) line] was done with Eq. (8). Inset: The same functions
are reported as a function of ln(ε).
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exponential behavior. The estimated lowest temperature Tmin

for which Eq. (7) can be applied are listed in Table III.
By considering the previous results for the α-relaxation

times reported in Fig. 1 we observe that the temperature TL

at which the FSC was found for each density [23] is very
close to Tmin, as also shown in Table III. For the density ρ =
1.10 g/cm3 the FSC is not found, and correspondingly the fit
of τ with Eq. (7) is valid over the whole temperature range
explored in our simulation. Returning to Fig. 2 we now note
that the change in curvature of s2 at low temperatures for all the
isochores, except ρ = 1.10 g/cm3, corresponds to the FSC.

Importantly, from our findings it can be deduced that the
exponential relation, Eq. (7), that we hypothesized between τ

and s2 is certainly valid for TIP4P water but only in the fragile
regime where MCT holds [23]. Deviations appear when the
system crosses the FSC, which, in water, also coincides with
the Widom line.

V. ASYMPTOTIC BEHAVIOR OF THE TWO-BODY
ENTROPY AND MCT

As stated above, in the fragility range the α-relaxation time
follows the asymptotic behavior predicted by MCT, Eq. (4).
Now if we take into account the exponential form, (7), of 1/τ

as a function of s2, an asymptotic behavior for the TBEE can
be predicted.

In terms of the reduced temperature ε = (T − TC)/TC ,
formula (7) can be written as

s2/kB = B + b ln(ε), (8)

where

B = − 1

ατ

ln

(
CAτ

T
γ

C

)
, (9)

with C and A the coefficients of Eqs. (4) and (7), respectively,
and

b = γ

ατ

. (10)

In Fig. 7 the fit of s2 as a function of T obtained with Eq. (8)
is reported for the density 1.00 g/cm3. We can clearly see that
this formula applies only in the fragile range. In the inset the
two-body entropy is reported as a function of ln(ε) to make
more evident the linear behavior and the deviation from it.

The same kind of fit can be performed for the other densities
and the results are shown in Fig. 8. In Table IV we list the
fitting parameters. We also report the values of the exponent
γ obtained from definition (10). It is particularly relevant to
observe that both the asymptotic crossover MCT temperatures
obtained in these fits and the γ values extracted from Eq. (10)
are very close to the values that come from the MCT analysis
of the dynamics performed in Ref. [23].

Therefore the two-body entropy shows a nonanalytic
behavior at the MCT crossover with an apparent asymptotic
logarithmic divergence. As hopping intervenes to restore
ergodicity, Eqs. (7) and (8) no longer hold.

VI. CONCLUSIONS

Study of the interplay between the thermodynamic and the
dynamic properties of a liquid is essential for the theoretical
interpretation of many phenomena. This issue is of particular
relevance in the case of supercooled water, where there is still
a vivid debate about water anomalies.

In our work we have shown that the TBEE of supercooled
water is strictly related to the diffusion coefficient D and
the relaxation time τ . This is in agreement with a previous
analysis of the diffusivity in the fragile region of supercooled
water [46]. Our use of Eq. (7) for τ is based on the idea that
the relaxation processes of the liquid are related to the number
of available configurations.

Importantly we connect the validity of relation (7) to the
recent phenomenology of supercooled water. We find in fact
that Eq. (7) is verified in the range where the MCT is valid

TABLE IV. Fit parameters of Eq. (8) and the resulting TC compared with the MCT crossover temperatures [23]. The values of γ obtained
from Eq. (10) are also reported.

TC (K) γ

ρ (g/cm3) B b From Eq. (8) From MCT [23] From Eq. (10) From MCT [23]

0.95 0.02754 0.7024 200.0 204.6 2.77 2.53
1.00 − 0.07584 0.6423 190.0 191.5 2.65 2.54
1.03 − 0.1627 0.6085 181.0 185.0 2.63 2.55
1.05 − 0.2001 0.5701 177.3 179.07 2.60 2.53
1.10 − 0.3062 0.4382 170.1 172.4 2.54 2.45
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and the hopping processes can be neglected. The deviation of
the data from Eq. (7) marks the FSC behavior of liquid water,
where the Widom line of the liquid-liquid critical phenomenon
is also located. We would like to stress that while the FSC is
a rather general feature of formerly liquid glass, the fact that
it happens upon crossing a thermodynamic locus connected to
a critical point, the Widom line, is only related to supercooled
water, which, at least for this class of potential, shows an LLCP
in the vicinity of the FSC line.

The approximation of sexc with s2 gives a good description
of the behavior of the diffusion coefficient in supercooled water
at least in the fragile region, as already found for the diffusion
coefficient [46]. We have found now that the TBEE shows a
logarithmic divergence at the MCT crossover temperature TC .
It appears that the TBEE, a rather easy function to calculate
from the radial distribution function, can be considered a useful
marker of the MCT crossover. In the interpretation of this result

it must be considered that MCT equations contain as input the
two-body structure of the liquid. Moreover, the TBEE has the
MCT properties only when hopping can be neglected, and this
indicates that the presence of hopping influences the TBEE.

It would be of interest in the future also to explore sexc

in the region of hopping and the systematic corrections due
to n-body terms. The contribution to the entropy of higher
structural correlations and its relevance have recently been
discussed for glass forming liquid models [55].

Our results indicate important connections between relax-
ation time and entropy that merit further exploration in future,
and not just for supercooled water.
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