Esame di Fisica Generale 2 del 10 Settembre 2014

Svolgere tutti gli esercizi in 3 ore

ESERCIZIO 1

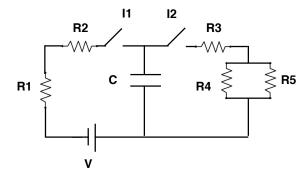
Un condensatore è costituito da due superfici cilindriche coassiali di raggio $R_1 = 2 \,\mathrm{cm}$ e $R_2 = 5 \,\mathrm{cm}$ e di altezza $h = 7 \,\mathrm{cm}$. Lo spazio tra le due superfici è riempito da un dielettrico di costante dielettrica relativa $\varepsilon_r = 5$. Calcolare la capacità C (1 Punto).

Il condensatore viene connesso ad un generatore $V_0=50\,\mathrm{V}$ attraverso l'interruttore I_1 e due resistenze $R_1=1\,\mathrm{k}\,\Omega$ e $R_2=1.5\,\mathrm{k}\,\Omega$ (vedi figura). L'interruttore I_1 viene chiuso per un tempo $t_1=20\,\mathrm{ns}$. Calcolare:

- 1. La ddp ai capi del condensatore e la carica immagazzinata
- 2. L'energia elettrostatica immagazzinata nel condensatore e il lavoro fatto dal generatore

Il condensatore viene quindi connesso tramite l'interruttore I_2 ad un secondo circuito $(R_3 = 1 \,\mathrm{k}\,\Omega,\ R_4 = 1.5 \,\mathrm{k}\,\Omega,\ R_5 = 2 \,\mathrm{k}\,\Omega)$. Calcolare:

- 1. La corrente che circola nel circuito dopo un tempo $t_2=25\,\mathrm{ns}$
- 2. L'energia dissipata per effetto joule dopo un tempo $t_2=25\,\mathrm{ns}$



SOLUZIONE

La capacità del condensatore cilindrico è

$$C = \frac{2\pi\varepsilon_0\varepsilon_r h}{\ln\frac{R_2}{R_r}} = 21.4\,\mathrm{pF}$$

Quando l'interruttore I_1 viene chiuso il condensatore si carica attraverso la resistenza equivalente

$$R_S = R_1 + R_2 = 2.5 \,\mathrm{k}\,\Omega$$

La costante di tempo del circuto è $\tau_1 = CR_S = 53.5\,\mathrm{ns}$, segue che la ddp ai capi del condensatore dopo t_1 è:

$$V_C = V_0(1 - e^{-t/\tau_1}) = 15.6 \,\mathrm{V}$$

e la carica immagazzinata vale $Q_C = CV_C = 333.8\,\mathrm{pC}$. L'energia immagazzinata nel condensatore vale

$$U_C = \frac{1}{2}CV_C^2 = 2.6 \,\mathrm{nJ}$$

mentre il lavoro fatto dal generatore è pari a $W_G = Q_C V_0 = 16.7 \,\mathrm{nJ}.$

Quando l'interruttore I_1 è aperto e I_2 viene chiuso il condensatore si scarica sulla resistenza equivalente

$$R_{eq} = R_3 + R_P = 1.86 \,\mathrm{k}\,\Omega, \qquad R_P = \frac{R_4 R_5}{R_4 + R_5} = 0.86 \,\mathrm{k}\,\Omega$$

Il circuito ha una nuova costante di tempo $\tau_2 = CR_{eq} = 39.8 \,\mathrm{ns}$, la ddp ai capi del condensatore vale quindi

$$V_C' = V_C e^{-t/\tau_2} = 8.3 \,\text{V}$$

e la corrente vale

$$i = \frac{V_C'}{R_{eq}} = 4.5 \,\mathrm{mA}$$

L'energia dissipata si può calcolare come la differenza tra l'energia immagazzinata nel condensatore carico e quella residua dopo il tempo t_2 in cui il condensatore si è scaricato:

$$\Delta E = \frac{1}{2}CV_C^{'2} - \frac{1}{2}CV_C^2 = -1.9 \,\text{nJ}$$

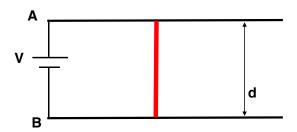
ESERCIZIO 2

Una sbarretta conduttrice di massa $m=0.2\,\mathrm{kg}$ e resistenza $R=500\,\Omega$ può scorrere senza attrito su due binari orizzontali di resistenza trascurabile. La distanza tra le rotaie è $d=20\,\mathrm{cm}$. Il sistema è immerso in un campo magnetico uniforme $B=4\mathrm{T}$ ortogonale al piano delle rotaie e della sbarra ed entrante nel foglio. Al tempo t=0 un generatore viene collegato ai binari $(V_A>V_B)$. Se il generatore fornisce una corrente costante $i=1\,\mathrm{A}$ calcolare

- 1. In che direzione si muove la sbarretta e il modulo della forza che agisce su di essa
- 2. La velocità della sbarretta al tempo $t_1 = 30\,\mathrm{s}$
- 3. Il lavoro fatto dal generatore fino al tempo t_1

Nel caso in cui la tensione fornita dal generatore sia costante e pari a $V_0 = 40\,\mathrm{V}$ calcolare:

- 1. la velocità della sbarretta in funzione del tempo considerando che all'istante t=0 si muove con una velocità v_0
- 2. La velocità limite della sbarretta



SOLUZIONE

La corrente è costante e sulla sbarretta agisce la forza di Lorentz $\bar{F}=i\bar{l}\times\bar{B}$ e il moto è uniformemente accelerato. Dato che $V_A>V_B$ la corrente circola in senso orario ed essendo B entrante nel foglio la sbarretta si muove verso destra. Il modulo della forza vale

$$|F| = idB = 0.8 \,\mathrm{N}$$

Segue che la velocità dopo t_1 vale

$$F = m \frac{dv}{dt} \Rightarrow v = \frac{idB}{m} t_1 = 120 \,\mathrm{m/s}$$

Il lavoro fatto dal generatore sarà pari alla somma tra l'energia dissipata per effetto Joule sulla sbarretta e l'energia cinetica acquistata dalla sbarretta stessa. Dato che i è costante la potenza dissipata sulla sbarretta è costante e pari a $P=Ri^2$. Il lavoro W_G vale:

$$W_G = \frac{1}{2}mv^2 + Ri^2t_1 = 2040 \,\mathrm{J}$$

Se la tensione del generatore è costante il moto non è uniformemente accelerato perché all'aumentare della velocità della sbarretta aumenta la fem indotta nel circuito. La fem indotta vale:

$$fem = -\frac{d\Phi(B)}{dt} = -lB\frac{dx}{dt} = -lBv$$

Nella sbarretta circola quindi una corrente $i = \frac{-dBv}{R}$. La sbarretta è soggetta quindi a una forza

$$F = -\frac{d^2B^2v}{R} = m\frac{dv}{dt}$$

e la velocità vale

$$v(t) = v_0 e^{-\frac{B^2 d^2}{Rm}t}$$

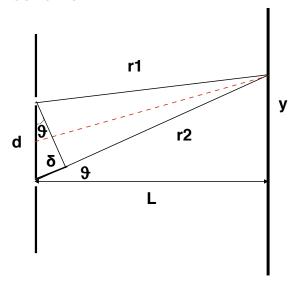
La velocità limite viene raggiunta quando la fem indotta eguaglia in modulo la tensione fornita dal generatore: nel circuito non circola pi corrente e la sbarretta non è più soggetta a forze esterne.

$$V_0-fem=V_0-v_{lim}lB=0 \Rightarrow v_{lim}=\frac{V_0}{lB}=50\,\mathrm{m/s}$$

ESERCIZIO 3

Uno schermo nero si trova a $L=3\,\mathrm{m}$ da due fenditure illuminate. La distanza tra le due fenditure è $d=0.05\,\mathrm{mm}$. La frangia scura del quarto ordine (m = 4) si trova ad una distanza $y=6\,\mathrm{cm}$ dalla frangia centrale. Calcolare la lunghezza d'onda della luce. (6 punti)

SOLUZIONE



Se $L\gg d$ e $d\gg\lambda$ si ha che $\sin\vartheta\approx\tan\vartheta\approx\vartheta$. Sapendo che $d\sin\vartheta=m\lambda$ e che $y=L\tan\vartheta$ gli angoli ϑ a cui corrispondono frange chiare o scure saranno rispettivamente

$$\vartheta_{luce} = \frac{m\lambda}{d} \qquad \vartheta_{buio} = \frac{(m + \frac{1}{2})\lambda}{d}$$

La rispettiva distanza dalla frangia centrale sarà quindi

$$y_{luce} = L \frac{m\lambda}{d}$$
 $y_{buio} = L \frac{(m + \frac{1}{2})\lambda}{d}$

Avremo quindi:

$$y_{buio}(m=4) = \frac{9}{2} \frac{L\lambda}{d} \Rightarrow \lambda = \frac{2}{9} \frac{dy_{buio}}{L} = 222 \,\mathrm{nm}$$