

ESPERIA

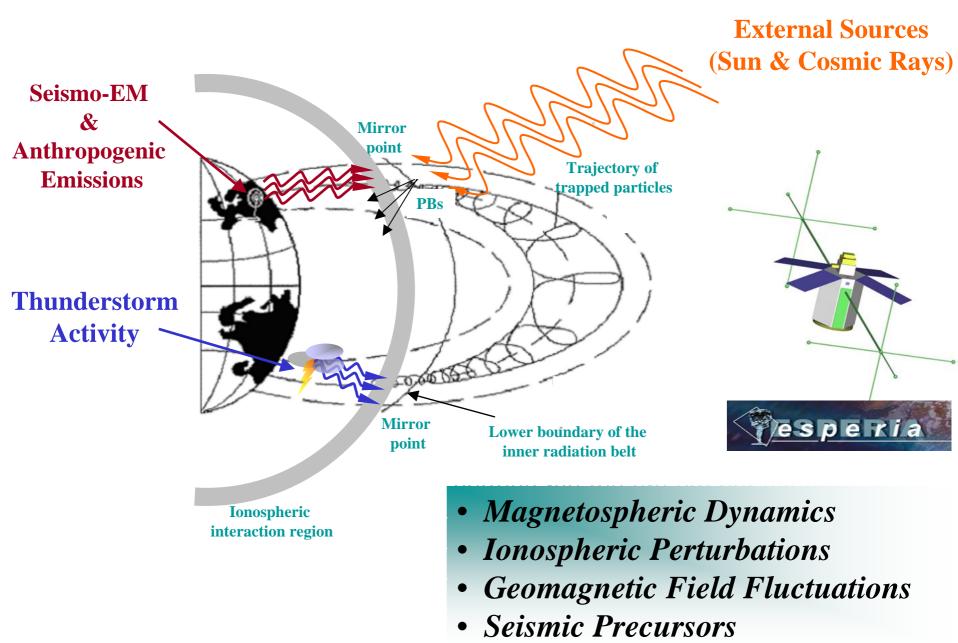
Un progetto di missione spaziale per lo studio di perturbazioni nella zona di transizione ionosfera-magnetosfera

Vittorio Sgrigna (P.I.) Universita' e Sez. INFN

Roma Tre

Prof. Vittorio Sgrigna Tel. Uff. +39 06 55177227 sgrigna@fis.uniroma3.it
Prof. David Zilpimiani
Dr. Aurora Buzzi Tel. Lab. +39 06 55177090 buzzi@fis.uniroma3.it
Dr. Livio Conti Tel. Lab. +39 06 55177090 contil@fis.uniroma3.it

ESPERIA:


Earthquake investigations by Satellite and Physics of the Environment Related to the Lonosphere and Atmosphere

ESPERIA (Earthquake investigations by Satellite and Physics of the Environment Related to the Ionosphere and Atmosphere) is a scientific proposal (Principal Investigator: Vittorio Sgrigna) for the investigation of ionospheric perturbations due to the seismic activity and to the Earth electromagnetic environment. The participants to the ESPERIA project are scientists involved in geophysics, seismology, cosmic physics, radio physics, and particle physics.

The proposal includes both on board satellite observations and ground-based measurements. On board the satellite ULF, ELF, VLF, HF electromagnetic fields, charged particle fluxes, and ionospheric plasma parameters will be measured. Ground based measurements of mechanical (tilt and strain) and electromagnetic (ULF, ELF, VLF, HF) fields will be carried out. The project also includes the monitoring of ionospheric perturbations due to the anthropogenic electromagnetic emission (power line harmonic radiation, VLF transmitters, HF broadcasting stations).

The proposal has been developed within the framework of a call for a mission of the Italian Space Agency (ASI) for a micro-satellite dedicated to Earth Sciences. First satellite observations concerning the precipitation of charged particle fluxes from the lower boundary of the Van Allen radiation belt were made in 1985 during the MARIA experiment carried out on board the SALYUT-7 orbital station. Most of these events were detected near the South Atlantic Anomaly (SAA). Further investigations, carried out by other orbital stations and satellites (Maria 2, Meteor 3A, ELECTRON and GAMMA 1), confirmed previous observations. The main observations and theoretical explanations can be found in the references listed below. On board the satellite we plan to install a particle detector, a Langmuir probe and a retarding potential analyzer for plasma investigations, electric and magnetic analyzers. Local and global seismic networks together with Zollner pendulum tiltmeters (TELLUS network), differential electromagnetic strainmeters, and electric and magnetic analyzer instrumental networks will be used in ground-based measurements.

Main Issues of the ESPERIA Space Mission Project

The ESPERIA general project

Designed to

Study of **near-Earth** EM, plasma, and particle environment in *steady-state* and *perturbed-state* conditions.

Planned with

- Magnetic equatorial mission
- LEO satellite
- Multi-instrument payload

Privileged region of investigation

Ionosphere-magnetosphere transition zone

Detectable phenomena

- Earth's interior processes & Anthropogenic emissions
- Atmosphere-Ionosphere-Magnetosphere couplings
- Sun activity & Cosmic rays

ESPERIA Phase A Study (Italian Space Agency)

Scientific objectives

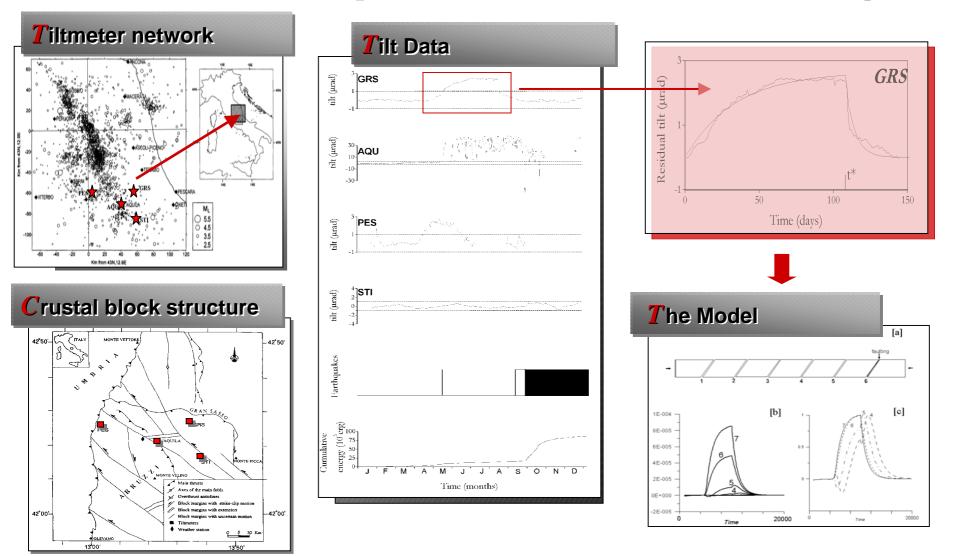
Secondary:

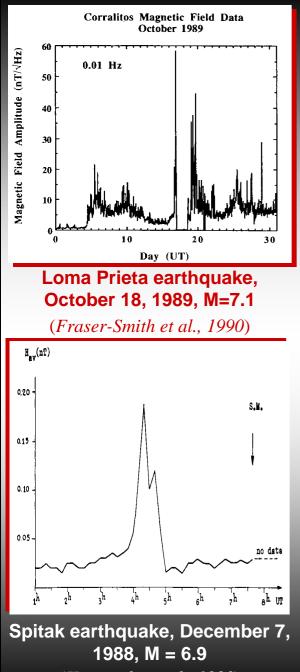
Primary: • seismo-electromagnetic emissions

man-made EM emissions

- Scientific program & observations

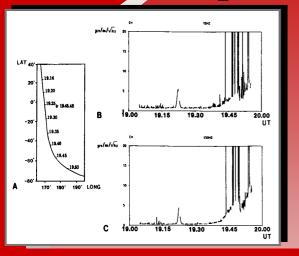
Coordinated, simultaneous, and continuous


ground-based and space observations

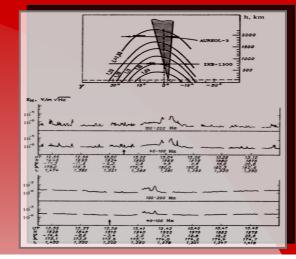

Ground-based Mechanical Observations

Intermediate-term tilt precursors (≈ weeks÷months)

Preseismic fault creep events: 1997 Umbria-Marche seismic sequence

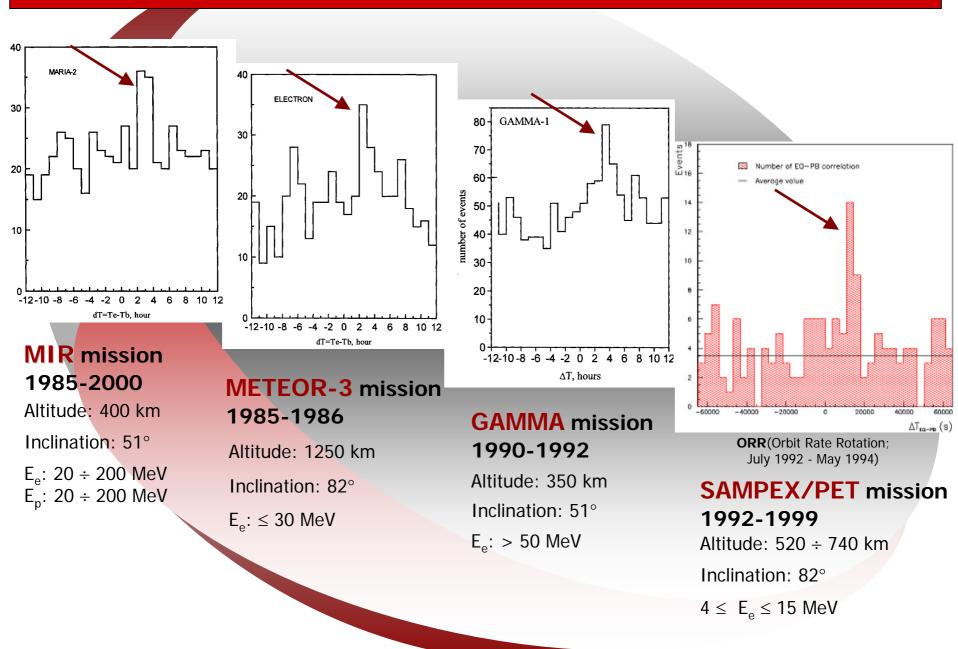


(Kopytenko et al., 1993)


G round-based EME observations

Earthquake	М	Date	Type of emission	Pre/ co/ post seismic	Freq. range (Hz)	Amplitude	Back- ground	Distance of the epicenter	hstrument	Reference
Loma Prieta, CA	7.1 Ms	18/10/1989	ELF//LF BM	Pre(3h), co	0.01	5 - 60 nT Hz-1/2	~1 nT Hz-1/2	52 km	ground-based magnetometers	Fraser-Smith, A.C., et al 1990
Loma Prieta, CA		18/10/1989	ULF magnetic	Post	0.01 - 10	¤1nT		7.3 km	proton magnetometers	Mueller, R.J., and M.J.S. Johnston 1990
Loma Prieta, CA		18/10/1989	ULF magnetic	Pre (3h), post	0.01	4-5 nT		7 km	-	Molchanov, 0.A., et al 1992
Armenia, Spitak		7/12/1988	ULF magnetic	Pre (4h), post	0.01 - 1	0.2 nT	0.02 nT	128 km	3-axis high- sensitivity magnetometers	Molchanov, 0.A., et al 1992
Armenia, Spitak		7/12/1988	ULF magnetic	Pre (4h), post	0.005 - 1	0.1 - 0.2 nT	0.03 nT	120 km and 200 km	-	Kopytenko, Y.A. jet al 1993
Upland, CA	4.7	17/4/1990	ULF-ELF magnetic	Pre (1 dav)	30-4.0	- 40 dB	- 46.8 dB	160 km	vertical magnetic sensor	Dea, J.Yetal 1993
<i>Na</i> tsonville CA	4.3	23/3/1991	ULF-ELF magnetic	Pre (2 days)	3D - 4.D	- 43 dB	- 47.6 dB	600 km	north-south magnetic sensor	Dea, J.Yetal 1993
<i>Na</i> tsonville CA	43	23/3/1991	ULF-ELF Magnetic	Pre (2 days)	3D - 4.D	- 44 dB	- 46.8 dB	600 km	vertical magnetic sensor	Dea, J.Yetal 1993
Guam	7.1 Ms	8/8/1993	ULF magnetic	Pre (1 mounth)	0.02 - 0.05	¤0.1nT	-	65 km	3-axis ring-core- type fluxgate magnetometer	Hayakawa, M., et al.1996
Chi - Chi	7.6	21/09/1999	ULF-ELF	Pre(4-5h)	0 D01 – 50 Hz	5 – 10 dB	-	-	3-mutually orthogonal induction coils	Otha et al., 2001

EMIE space observations


Electric field anomalies in the ULF-ELF range detected by AUREOL-3 satellite in coincidence of an earthquake of M=5.1, 17/3/1982 (*Parrot & Mogilevsky*, 1989).

EME ULF/ELF anomalies recorded contemporarily by AUREOL-3 and IKB-1300 satellites 4h before the Spitak's aftershock of M=5.2. [Galperin et al 1992].

	Frequency Range	Amplitude Range	T_EQ- T_SEM	Earthquake Magnitude	Reference	
E	0.1÷74 kHz	≈ 10 µV/m √ <i>Hz</i>	0-6 hours	>4.9	Parrot et al. 1989	
	≈ 100 Hz	≈ 10 nT	≈1 hour			
	0.1÷15 kHz	≈ 10 µV/m√ <i>Hz</i>	1– 8 hours	>5.5	Larkina et al.	
	0.1÷15 kHz	≈1 pT /√ <i>Hz</i>	1 – 8 hours		1989	
	0.1 ÷ 8 Hz	≈5 µV/m	≈ 15 min	4.8	Chmyrev et	
В	0.1 ÷ 8 Hz	≈3nT	≈ 15 min	4.0	al. 1989	
E	40 ÷ 200 Hz	≈ 10 mV/m	≈ 4 hours	4.6	Galperin et al. 1992	
E	8 ÷ 20000 Hz	≈ 10 µV/m √ <i>Hz</i>	0-24 hours	>5.0	Molchanov et al. 1993	
В	140 ÷ 450 Hz	≈ 10 nT	0-3 hours	>5.0	Buchachenko	
)	140 400 112	io pi	0.0.1.0010	-0.0	et al. 1996	

Correlations between Earthquakes & Particle Bursts: ΔT_{EQ-PB} distributions

× Payload Instruments:

Electric Field Analyser (EFA)

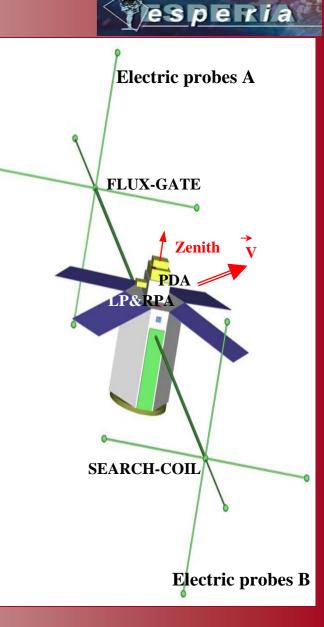
- frequency range: ~DC ÷ 10 MHz
- accuracy: 300 nV/m
- dynamic range: 120 dB

Magnetic Field Analyser (MAFA)

- <u>FLUX GATE</u>: frequency range: \sim DC ÷ 10 Hz
 - accuracy: a few (6-8) pT
 - resolution: 24 bit

<u>SEARCH – COIL</u>: • frequency range: ~10 Hz ÷ 100 kHz

• sensitivity:10⁻² pT /(Hz)¹/₂ (at 1 kHz)

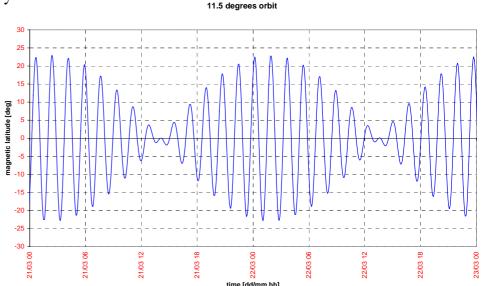

Langmuir Probe & Retarding Potential Analyser

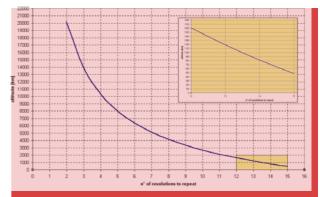
- <u>LP:</u> electron temperature: $300 \div 15000$ K
 - electron density: $10^2 \div 10^7 \text{ cm}^{-3}$
- <u>RPA:</u> ionic temperature: 300 ÷ 10000 K
 - ionic density: $10^2 \div 10^7 \text{ cm}^{-3}$

Particle Detector Analyser (PDA).

- Energy range: 300keV÷2GeV
- Pitch angle accuracy < 4° with particle identification
- Geometry: 5 silicon strip telescopes + 1 calorimeter &

1 silicon strip telescope + 1 calorimeter


X Orbit Characteristics

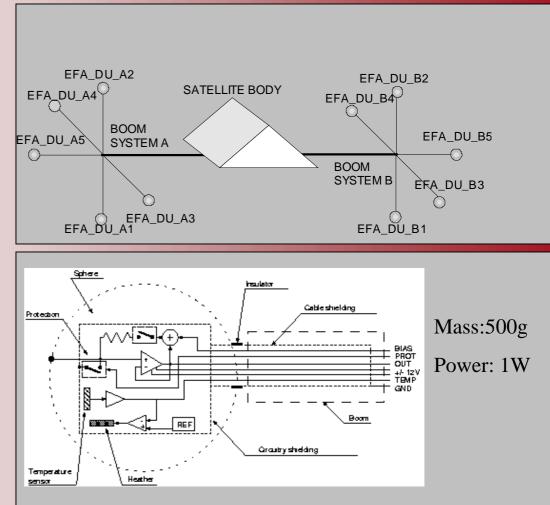

- **Ground track repetition** with an accuracy of 10 km (high-accuracy Earth' surface monitoring)
- Revisit time: ≤ 24 h
- Geosynchronous orbit: 14 orbits / day
- Altitude: **813 km**
- Inclination: 11°.5
- Eccentricity: 0
- Orbit period: **110 min**
- Maximum oscillation around the magnetic equator: $\pm 23^{\circ}$
- Field of view: ± 39°
- Orbit knowledge and time resolution ≈ 100 m and 1s, respectively

× Spacecraft

- Platform MITA
- Nadir pointing
- FEEP thrusters applied to the platform (constant altitude)

× Mission duration ≥ 2 years

EFA sensors



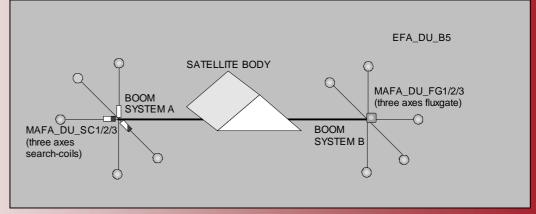
•10 spherical probes mounted on two booms system

Features:

- Two booms system;
- primary boom : 5 meters
- secondary boom: 2 meters

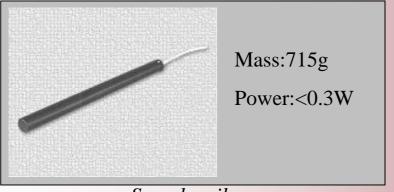
- Single Probe schematic *Features:*
 - Spheres with pre-amp. inside
 - Thermal control
 - DC Current Bias

sphere sensor



MAFA sensors

• Vectorial instruments: search coils and fluxgates


Features:

- Two MAFA sensors
- Fluxgate (DC-10Hz)
- Search Coils (10Hz-100KHz)

Search Coils possible supplier :MEDA inc., 22611 Market Court Suite 114 Dulles, VA 20166

Fluxgate possible supplier : Space Magnetometry Group of the Danish Space Research Institute and of Measurement Sci. & Instrum. Syst., Oersted-DTU, Technical University of Denmark

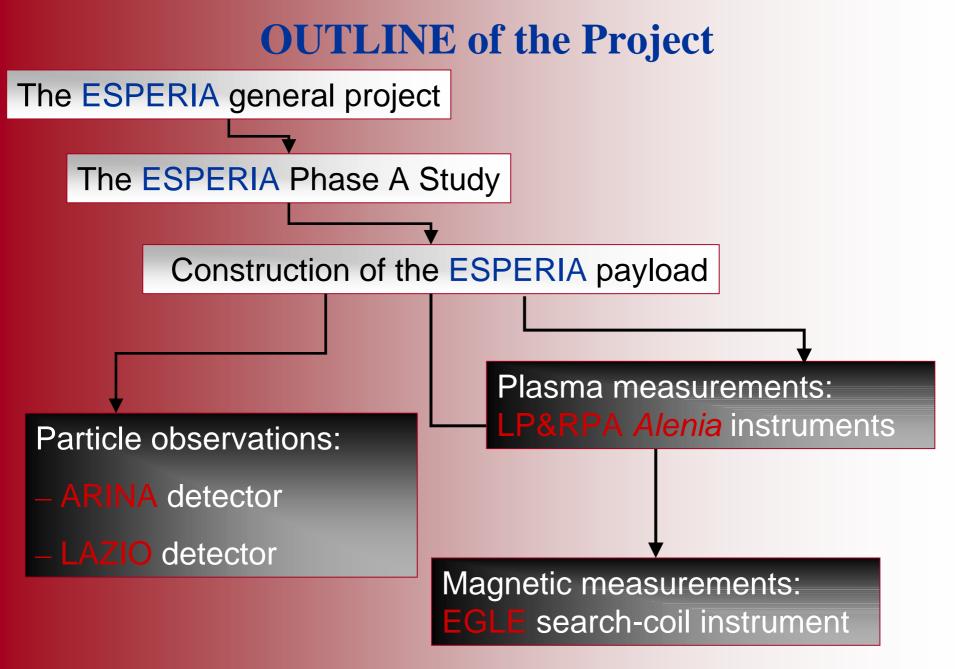
Search coil sensor

Mass:84g Power: <1W

fluxgate sensor

LP&RPA sensors

- LP sensor for plasma density, electron temperature, plasma potential, floating potential analysis.
- RPA sensor for ion energy spectrum


LP& RPA Boxes developed at LABEN/Proel Tecnologie Division for SMART-1 & Stentor satellite

Participants

Institutes	Participants		
University Roma Tre &	V. Sgrigna (Principal Investigator), A. Buzzi,		
INFN Section, Rome (Italy)	L. Conti, M. Parisi, L. Stagni		
University Tor Vergata &	P. Picozza (P.IPAMELA), M. Casolino,		
INFN Section, Rome (Italy)	M.P. De Pascale.		
University of Rome "La Sapienza" (Italy)	M. Caputo, P. Dominici		
University of Florence & INFN Section (Italy)	<u>P.Spillantini</u>		
😻 University of L'Aquila & INFN Section (Italy)	<u>R. Scrimaglio</u> , N. Finetti, L. Carota		
INGY INGV, Rome (Italy)	<u>R. Console</u>		
LPCE/CNRS-CNES, Orleans (France)	<u>M. Parrot (P.IDEMETER)</u>		
MOM MEPhI, Institute of Cosmic Physics, Moscow (Russia)	<u>A.M. Galper</u> (<i>P.IARINA</i>), S.V. Koldashov, A.M. Murashov		
Institute of Physics of the Earth, RAS (Russian Fed.)	<u>I. Shirokov</u> , V. Nikolaev		
GAS Institute of Geophysics, Tiblisi (Georgian Rep.)	<u>D. Zilpimiani</u> , Z. Chelidze		
St. Petersburg University (Russian Fed.)	<u>T.B. Yanovskaya</u> , V.N. Troyan		
University of Athens (Greece)	<u>K. Eftaxias</u> , V. Hadjcontis		
IFSI-CNR, Rome (Italy)	<u>R. Bruno</u> , A. Di Lellis		
IFAC-CNR, Florence (Italy)	<u>M. Bini</u> , A. Ignesti		
University and Polytechnic of Milan (Italy)	<u>V. Piuri</u>		
A FINAMECCANNEA COMPANY LABEN S.p.A. (Italy) (payload)			
CARLO GAVAZZI SPACE S.p.A. (Italy) (satellite)			
← telespazio TELESPAZIO S.p.A. (ground segment)			

Relation with other Missions and Science Teams

The ARINA experiment

- Detection of **preseismic particle** bursts (PBs)
- *ARINA* particle detector will be installed on board the Russian RESURS-DK1 satellite *Orbit: elliptic Altitude : 300÷600 km Inclination: 70.4°*
- Launch scheduled: September 2005 (within the PAMELA mission)
- Duration of the Mission : > 3 years

ARINA physical & technical parameters						
Geometric factor, cm2 sr		10				
Aperture, degrees		±25				
Energy of Electrons (MeV)	(3 ÷ 30)					
Energy of Protons (MeV)		(30 ÷ 100)				
Energy resolution		10 %				
Trigger time resolution, ns		50				
Angular resolution, degrees		6				
Mass, kg	6.5					
Dimensions, mm	$300 \times 200 \times 200$					
Power consumption, W	9.5		сп /			
Mass memory volume, Mbytes	8		C1 – C3 trigger coincidence scintillation telescope C4 – C10 scintillation calorimeter			
Orientation of instrument axis	perpendicular to the plane of orbit		C11 – C12 scintillation anticoincidence detectors			

The LAZIO / EGLE experiment

- \checkmark The experiment aims at performing measurements of
- the radiation environment \Rightarrow LAZIO
- the magnetic environment inside the ISS \Rightarrow EGLE
- EGLE (Esperia's Geo-magnetometer for a Low frequency wave Experiment) is an high-precision low-frequency search-coil magnetometer.
- Magnetic field data will be recorded by PCMCIA cards.

EGLE magnetic sensor

	• • • • •				
Basic technical specifications of the EGLE probe MH					
Frequency band of receiver signals	$0.5 \div 50000 \text{Hz}$				
Shape of transfer function	linear — flat				
Type of output	Symmetrical				
T ransformation factor at both output terminals:					
at linear part (0.5 – 5 Hz)	f*4 mV/(nT*Hz)				
at flat part (5 – 50000 Hz)	20 mV/nT				
Transformation factor error:					
at flat part of band pass without edges	≤±0.25 dB				
at flat part band pass edges	≤3 dB				
Magnetic noise level, pT*Hz ^{-1/2} :					
 at 5 Hz 	≤0.4				
 at 100 Hz 	≤ 0.02				
 at 5 kHz 	≤ 0.004				
at 50 kHz	≤0.02				
Nominal output load	≤200 pF				
Nominal output load	\geq 50 k Ω				
Power supply voltage	$\pm (15 \pm 0.2) V$				
Power consumption	300 mW				
Temperature range of operation $-30^{\circ}C \div +50^{\circ}C$					
Quetan dimensions (without provingent posts)	1 = 400 mm				
Outer dimensions (without prominent parts)	d = 32 mm				
Length of the output cable	0.7 m				
Weight	≤320 g				

Work in progress:

- •ARINA & LAZIO (tests of the **ESPERIA** particle detector)
- •EGLE (test of the **ESPERIA** magnetometers)
- •DEMETER data analysis (Guest investigation program)
- •Theoretical modeling

Proposals for other experiments on board of *ESPERIA*

1. Atmospheric & ionospheric structure and dynamics NASA/SENH (J. LaBrecque) Blackjack limbsounding & reflections GPS receiver for occultation measurement

2. Geomagnetic field mapping : ESPERIA as an equatorial complement to polar missions
 DSRI/DTU (E.Christensen & F.Primdhal), NASA/SENH/GSFC/JPL (J. LaBrecque & P. Taylor)
 Scalar magnetometer (or Polatomic self-calibrating vector/scalar magnetometer)
 & star imager

3. Luminous emissions (sprites, blue jets,...) during thunderstorm activity DSRI (E. Christensen) & LPCE/CNRS (M. Parrot) ⇒ Imaging Camera

4. Equatorial electrojets Indian Institute of Technology, Kanpur, IITK. (R. Singh)

Conclusions & Outlook

✓ *ESPERIA* Phase A study has been made for ASI

✓ Instrumental and theoretical activities are in progress :

•Two experiments (*ARINA & LAZIO/EGLE*) are going to be carried out on board a LEO satellite & the ISS

•LP&RPA intruments have been built by Alenia

✓ There is a fruitful collaboration between *ESPERIA*, *ARINA*, and *DEMETER ARINA* & *DEMETER*: simultaneous polar missions \Rightarrow data comparisons

ESPERIA payload features and orbit characteristics allow many investigations of lithospheric-atmospheric-ionospheric-magnetospheric phenomena