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Introduction

This work has been done in the framework of the KLOE experiment at
Frascati. KLOE is a general purpose detector that works on one of the
two interaction points of the DAΦNE collider running at the “Laboratorio
nazionale di Frascati”. DAΦNE is an electron-positron collider that works
at energy

√
s = 1019MeV , corresponding to the φ resonance mass. The φ is

a spin 1 meson, odd under parity and C conjugation. Its main decay modes
are K+K− (49%), K0

LK
0
S (34%), ρπ, (16%), ηγ (1.3 %). In 2001 and 2002

data taking, DAΦNE has produced about 1.5 × 109 φ mesons, and 18 × 106

η mesons. Such a large sample of η mesons is useful to understand the η
decay physics, both in rare branching ratio measurement and upper limit
determination on C and CP violating decays. From the historical point of
view η physics has been studied mainly at hadron machines where, through
nuclear reaction, a large amount of η mesons can be produced in short time.
Nowadays KLOE, with its 18 million of η mesons, has the same order of
magnitude of hadron machine data sample of η mesons in a more clear envi-
ronment, guaranteed by a lepton machine.
In this work I have studied the η decay η → π0γγ and the forbidden de-
cays η → γγγ. The study of η → π0γγ decay is the main goal, it has a
long experimental and theoretical history. The branching ratio of this decay
has been computed in many models and QCD approximation starting from
VMD (Vector Meson Dominance), and ending to ChPT (Chiral Perturba-
tion Theory) with several low energy approximation schemes (ENJL, large
Nc, unitary approach). The main part of these models predicts values far
below the today measured value, and this has been a trouble for low energy
effective theory for long time.
The PDG quoted value for the branching ratio is Br(η → π0γγ) = (7.2 ±
1.4) × 10−4, while the models give values about 1/2 lower. Recently a new
result has come up from the Crystal Ball collaboration: Br(η → π0γγ) =
(2.5±1.2)×10−4. This measurement is in better agreement with the theory,
although it is affected by a large experimental systematic uncertainty due to
the analysis procedure adopted. KLOE, with its high pure η sample, is able
to give a more precise measurement of this branching ratio.
With the high η statistic collected we have also performed an upper limit
evaluation on the η → γγγ. It tests C violation in electromagnetic and
strong interactions. The decay is possible in the Standard Model through
weak interaction, but the predicted rate are far below today experimental
sensitivity. So any measurement of a larger rate would be a clear signal of
new physics. The limits on this branching ratio evaluated in this work is the
world strongest limit nowadays available.
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Chapter 1

Theoretical models for the
η → π0γγ decay.

In this chapter several theoretical model that have been used to predict
the η → π0γγ branching ratio will be described. Special attention is given
to ChPT prediction, whose calculation is described with some details. An
introduction to ChPT is also given.

1.1 The QCD theory

In the framework of the Standard Model the strong interaction is described by
the QCD (Quantum Chromo Dynamics). The QCD is a gauge theory whose
gauge group is the color SU(3) group of the set of 3 × 3 complex matrices
whose determinant is 1. The group operation is the usual raw by column
multiplication between complex matrices. The dimension of the parameters
space is 8, so the group has 8 generators. This means that the most general
group element can be written as:

U = exp

(

−i
8∑

i=1

αit
i

)

where ti are 3 × 3 Hermitean complex matrices, with trace equal to 0 and
such that:

[ti, tj] = iCijkt
k

The Cijk constants are not fully fixed by the group structure. Multiplying
both the operators ti as the structure constants Cijk by a constant a one ob-
tains the same group structure. To fix the a value one imposes the condition:

Tr(titj) =
δij

2
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The QCD Lagrangian for a 1/2 spin field ψ is:

L = ψ̄(i/D −m)ψ − 1

4

8∑

i=1

F iµνF iµν (1.1)

where we have used the notation /D = Dµγ
µ and

Dµ = ∂µ − igs

8∑

i=1

tiAi
µ.

Fµν gives the propagation of the eight gluon fields Ai
µ, and is written as:

F i
µν = ∂µA

i
ν − ∂νA

i
µ − gsCijkA

j
µA

k
ν

while gs is the coupling constant of the gluons with the spinorial field ψ.
The spinorial field ψ can be seen as a set of three spinorial fields, one for each
color (eigenstate of SU(3)C). In the Lagrangian, the matrices ti act on the
color degrees of freedom while the matrix γµ are the 4 by 4 Dirac matrices
acting on the spinorial degree of freedom. Here m is the mass of the field ψ
that in the Standard Model is given by the spontaneous symmetry breaking
mechanism through the introduction of the boson Higgs field H.

The Lagrangian (1.1) describes the QCD interaction for a single spinorial
field. In the standard model the elementary fields that interact via strong
interaction are 6, corresponding to the quark flavors u, d, c, s, t, b. So that
the real QCD Lagrangian is the sum of (1.1) for each quark flavor.

1.2 The running of αs and ΛQCD

The problem of any Quantum Field Theory is to find the transition proba-
bility from a state |φI〉 to a state |φF 〉, from which one can compute as many
physical quantities as one wants. This can be computed starting from the
total Lagrangian L of the theory using different approaches. Usually one
proceeds to do a perturbative expansion of the transition amplitude respect

to a parameter of the Lagrangian, for example the coupling constant (αs = g2
s

4π

for the QCD). This means that for a given power of αs one computes all pos-
sible Feynman diagrams that contribute to that power. Computing these
diagrams one often finds divergences that compel to use particular technique
to make them calculable. Usually the so called renormalization procedure is
used.
The idea is to isolate the divergent terms from the not divergent terms (finite
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terms). The divergent terms are written in such a way that the divergence
is embedded in one or more parameters.
These parameters have different meaning, for different renormalization schemes.
For example in the case of dimensional regularization one choses to perform
integrals in a dimension in which the divergences disappear. Let’s call this
dimension 4− ε. When ε→ 0 the integration dimension goes to 4 as the case
of the physical space time, but the integral result diverges. One can often
write the integral result as a sum of two pieces. A finite term and a one that
is multiplied by a divergent factor 1/ε. In this way one has embedded the
divergence of the integral in the parameter 1/ε.
The idea of regularization is to rewrite a parameter of the Lagrangian, for
example αs as a function of 1/ε and the old parameter α0

s, known as “bare”
parameter. The value of αs is obtained by measuring a physical observable
depending from αs. In this way the Feynman diagram, for any other process,
can be computed because there isn’t anymore a term in 1/ε but simply the
finite coupling constant αs. In doing this job, the absorption of the diver-
gence in the parameter, one often puts in the coupling constant not only the
1/ε and α0

s terms but also finite term that are function, for example, of the
energy s at which the process happens.
Due to these terms the coupling constant αs is not a constant parameter
anymore, but it is a function of the process energy s. This means that the
“bare” coupling constant, that was used in the Lagrangian, has been replaced
with a “running” coupling constant that is a function of s. The theory is able
to predict the functional dependence of the running coupling constant by s.
The functional dependence of α is still evaluated in perturbation theory, at
1-loop level one can show that in the limit of massless quarks:

α(s) =
α

1 − bαln
(

s
µ2

) (1.2)

where:

b =







∑

i
NC(Q2

i )

3π
for QED

−11NC−2nf

12π
for QCD

In these equations Nf is the number of coupled quarks. In QED i runs over
all fermions, NC is 3 for quarks and is 1 for leptons, while in QCD it runs
only over the quarks. This is because both leptons and quarks interact via
QED but only quarks interact via strong interaction.
Equation (1.2) must be used in the following way. If one knows the value of α
at a given energy value s0 (for example s0 = Mz), one can set µ = s0 = Mz,
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and the value of α at a different scale s is given by:

α(s) =
αMz

1 − bαMz ln
(

s
M2

z

)

In these equations only the coupled fermions must be included, that is only
fermions with mass m2 � s must be taken into account in the sum. For
example for s→ +∞ all quarks and leptons must be included so:

bQED =
(3×(3· 4

9
+3· 1

9)+1×3)
3π

= 8
3π

bQCD = − (3×11−2×6)
12π

= − 7
4π

The different sign between bQCD and bQED is responsible for the different
asymptotic behavior. αQED increases at high energy, reaching a pole at

bQEDαMz ln
(

spole

M2
z

)

= 1.

Taking bQED = 8
3π

, Mz ∼ 90GeV and α(Mz) ∼ 1/127 one finds s
1/2
pole =

3× 1034GeV . For this reason we are allowed not to care about this problem.
The situation is different for QCD, in fact αQCD decreases with the energy,
and the coupling constant goes to zero at high energy.
Nevertheless the pole is still present but at low energy. Using bQCD = − 7

4π

and αs(Mz) ∼ 0.12 one finds s
1/2
pole = 51MeV . This value of the pole is wrong,

because it has been evaluated using nf = 6 but at energy around ∼ 1GeV
the t, b, c quarks are decoupled, so the number of fermions to use is 3.
If we evaluate the equation 1.2 at an energy around 1 GeV and count nf = 3
we set: α(mτ = 1.777GeV) = 0.35 ± 0.03 [1], bQCD = − 9

4π
and the pole

is: s
1/2
pole ∼ 200 − 300MeV . This means a big difference between QCD and

QED. Perturbation theory can be used in QED to describe electromagnetic
phenomena in all the physical range reachable at accelerators and the known
universe, while perturbative QCD cannot be used for scale of O(300MeV ).
This scale is known as ΛQCD, it plays a fundamental role in the physics
around and below 1 GeV. For this reason all ∼ 1GeV physics cannot be
computed simply by perturbative QCD. Other approaches must be tried.

One possible approach is to use the symmetry properties of QCD to
understand the low energy behavior. In the following we describe the Chiral

Perturbation Theory that uses the Chiral symmetry of QCD to evaluate
scattering amplitudes and decay rates of light particles.
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1.3 Chiral symmetry in QCD

Given a spinor ψ we set the following definitions:

ψL =
1

2
(1 − γ5)ψ, ψR =

1

2
(1 + γ5)ψ

from which:
ψ = ψL + ψR

Replacing this in equation (1.1) we obtain:

L = (ψ̄L + ψ̄R)(iDµγ
µ −m)(ψL + ψR) + . . . =

= iψ̄LDµγ
µψL + iψ̄RDµγ

µψR + iψ̄RDµγ
µψL + iψ̄LDµγ

µψR−
−mψ̄LψR −mψ̄RψL −mψ̄LψL −mψ̄RψR + . . .

The terms ψ̄RDµγ
µψL, ψ̄LDµγ

µψR, ψ̄LψL and ψ̄RψR are null. In fact:

ψ̄RDµγ
µψ̄L =

(
1

2
(1 − γ5)ψ

)

Dµγ
µ

(
1

2
(1 + γ5)ψ

)

=

= ψ†1

2
(1 − γ5†)γ0Dµγ

µ 1

2
(1 + γ5)ψ

being γ5† = γ5, γ5γµ = −γµγ5 with µ = 0, 1, 2, 3 and γ52
= 1 we have:

ψ†γ0 1

2
(1 + γ5)Dµγ

µ 1

2
(1 + γ5)ψ = ψ̄Dµγ

µ 1

2
(1 − γ5)

1

2
(1 + γ5)ψ =

= ψ̄Dµγ
µ 1

4
(1 + γ5 − γ5 − γ5γ5)ψ = 0

Furthermore:

ψ̄LψL =

(
1

2
(1 − γ5)ψ

)(
1

2
(1 − γ5)ψ

)

=
1

2
ψ†(1 − γ5)γ0 1

2
(1 − γ5)ψ =

= ψ̄
1

2
(1 + γ5)(1 − γ5)ψ = 0

A similar demonstration can be done for the terms ψ̄LDµγ
µψR and ψ̄RψR .

At the end the Lagrangian (1.1) can be written:

L = iψ̄LDµγ
µψL + iψ̄RDµγ

µψR −mψ̄LψR −mψ̄RψL + . . .

The field ψ is a spinorial field representing a point-like particle of mass m,
in QCD we have 6 of such fields, representing the quarks: u, d, s, c, t, b. In
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the low energy region, we are interested at, the quarks c, t, b decouple and
don’t give contributions to the interaction. For this reason we can limit our
attention to light quarks u, d, s. The Lagrangian L is written in the form:

L =
∑

q=u,d,s

iψ̄qLDµγ
µψqL+iψ̄qRDµγ

µψqR−mqψ̄qLψqR−mqψ̄qRψqL+. . . (1.3)

Now we define the following quantities:

ΨL,R =





ψuL,R

ψdL,R

ψsL,R



 ; Ψ̄L,R =
(
ψ̄uL,R ψ̄dL,R ψ̄sL,R

)

DµΨL,R =





DµψuL,R

DµψdL,R

DµψsL,R



 ; Ψ̄Ψ =
∑

i=u,d,s

ψ̄iψi

where the spinor ψi can be the full spinor ψ or its projections ψL,ψR. Defining
the quark mass matrix in this way:

M =





mu 0 0
0 md 0
0 0 ms





the Lagrangian 1.3 can be written in the compact form:

L = iΨ̄LDµγ
µΨL + iΨ̄RDµγ

µΨR − Ψ̄LMΨR − Ψ̄RMΨL + . . . (1.4)

This Lagrangian shows interesting symmetry properties under the following
unitary transformations:

Ψ′
L = ULΨL Ψ′

R = URΨR (1.5)

where UL and UR are independent 3 × 3 unitary matrices. The Lagrangian
L

′ after this transformation is:

L
′ = iΨ̄′

LDµγ
µΨ′

L + iΨ̄′
RDµγ

µΨ′
R − Ψ̄′

LMΨ′
R − Ψ̄′

RMΨ′
L + . . . =

= i(ULΨL)Dµγ
µULΨL+i(URΨR)Dµγ

µURΨR−(ULΨL)MURΨR−(URΨR)MULΨL+. . .

If we indicate with a subscript k the kth component of the array Ψ we can
write:

Ψ̄′
k =

(
3∑

j=1

Ukjψj

)

=

(
3∑

j=1

Ukjψj

)†

γ0 =

3∑

j=1

ψ†
jγ

0U∗
kj =

3∑

j=1

ψ†
jγ

0U †
jk = (Ψ̄U †)k
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and

L
′ = iΨ̄LU

†
LDµγ

µULΨL+iΨ̄RU
†
RDµγ

µURΨR−Ψ̄LU
†
LMURΨR−Ψ̄RU

†
RMULΨL+. . .

and using the property: U †U = 1, one finds:

L
′ = iΨ̄LDµγ

µΨL + iΨ̄RDµγ
µΨR − Ψ̄LU

†
LMURΨR − Ψ̄RU

†
RMULΨL + . . .

If M was 0 (that is the quark masses was null) the QCD Lagrangian would
be invariant under the two transformations (1.5), these transformations are
called Chiral transformations and the Lagrangian symmetry Chiral symme-

try.
If the mass of the quark are small respect to the energy scale at which we
compute physical quantities the Chiral symmetry is partially broken. Any-
way it can be used to do prediction about the phenomenology of the quark
interaction and the bound state spectroscopy.
Let’s define the Weyl representation of the spinor Ψ:

Ψ =

(
ΨL

ΨR

)

and, given a chiral transformation (UL, UR) we define the following auxiliary
matrix:

UV =
1

2
(UR + UL) UA =

1

2
(UR − UL)

A Chiral transformation such that UA = 0 is called a vectorial transformation
while a Chiral transformation in which UV = 0 is called an axial transfor-
mation, the reason for that will be explained in the following. The QCD
Lagrangian with M = 0 is of course invariant under both transformations.
The QCD vacuum, instead, shows different behavior for vectorial and axial
transformations. Both the unitary matrix UV and UA can be written as:

UV = eiαV SV UA = eiαASA

where SV and SA are unitary matrix such that: detSV,A = 1. The matrix
group SV and SA belong to SU(3). It has eight generators Λa, the generator
of the group that gives the phase transformation is the identity matrix 1. A
chiral transformation on Ψ can be written as:

(
Ψ′

L

Ψ′
R

)

=

(
UL 0
0 UR

)(
ΨL

ΨR

)

In the vectorial case, being UA = 0 one has UL = UR = UV , while in the
axial case, being UV = 0 one has UL = −UR = UA. So that one has:
(

Ψ′
L

Ψ′
R

)

=

(
UV 0
0 UV

)

︸ ︷︷ ︸

Vector

(
ΨL

ΨR

) (
Ψ′

L

Ψ′
R

)

=

(
−UA 0

0 +UA

)

︸ ︷︷ ︸

Axial

(
ΨL

ΨR

)
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or again:
(

Ψ′
L

Ψ′
R

)

= UV

(
1 0
0 1

)(
ΨL

ΨR

) (
Ψ′

L

Ψ′
R

)

= UA

(
−1 0

0 1

)(
ΨL

ΨR

)

The matrix

(
−1 0

0 1

)

is γ5 in the Weyl representation, in fact:

γ5ΨL = γ5 1

2
(1 − γ5)Ψ =

1

2
(γ5 − 1)Ψ = −1

2
(1 − γ5)Ψ = −1ΨL

γ5ΨR = γ5 1

2
(1 + γ5)Ψ =

1

2
(γ5 + 1)Ψ = −1

2
(1 + γ5)Ψ = +1ΨR

so that we can write:

Ψ′ = UV Ψ Vector Ψ′ = UAγ
5Ψ Axial

Now we indicate with Λ0 the generator of U(1) Group and Λi (i = 1, . . . , 8)
the generators of SU(3) group. Under an infinitesimal transformation θa

V,A

around the direction a of these groups we have:

Ψ′ = (1 + iΛaδθa
V )Ψ Ψ′ = (1 + iΛaδθa

A)γ5Ψ

The currents associated to these transformations are:

Jµ,a
V = Ψ̄γµΛaΨ Jµ,a

A = Ψ̄γµγ5ΛaΨ

These two currents are both classical conserved in the limit in which M = 0
for the Noether’s theorem. Anyway it can be demonstrated [2] that quantum
correction due to the gluon anomaly make the quantity ∂µJ

µ,0 6= 0. This
problem is known as U(1)A anomaly and is responsible for the breaking of
U(1)A symmetry at quantum level.
Now we find the transformation properties of the currents Jµ,a

V and Jµ,a
A under

parity. A spinor transforms under parity according:

ΨP = γ0Ψ

so:

Jµ,a
V P = Ψ̄Pγ

µΛaΨP = Ψ̄γ0γµΛaγ0Ψ =

{
Ψ̄γ0ΛaΨ = J0,a

V µ = 0
−Ψ̄γµΛaΨ = −Jµ,a

V µ = 1, 2, 3

Jµ,a
A P = Ψ̄Pγ

µγ5ΛaΨP = Ψ̄γ0γµγ5Λaγ0Ψ =

= −Ψ̄γ0γµγ0γ5ΛaΨ =

{
−Ψ̄γ0γ5ΛaΨ = −J0,a

A µ = 0
+Ψ̄γµγ5ΛaΨ = +Jµ,a

A µ = 1, 2, 3
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In other words the time component of Jµ,a
V (Jµ,a

A ) transforms as a scalar
(pseudo-scalar) while the spatial components transform as a vector (pseudo-
vector). This is the reason why Jµ,a

V is called vector and Jµ,a
A axial. One can

demonstrate that the charge associated to the current Jµ,a
V

(
Qa

V =
∫
J0,a

V d3x
)

annihilate the vacuum, that is Qa
V |0〉 = 0 [3]. A symmetry that has this

property is called exact. The symmetry is reproduced in the spectrum of the
theory in the sense that particles belonging to the same representation of the
symmetry group have equal masses.
For the axial current Qa

A |0〉 6= 0. The derivation of this property from the
QCD Lagrangian is still missing. The property can be deduced from the
particles spectrum. In fact if Qa

A |0〉 was equal to 0 we should see for each
particle with given parity a particle with opposite parity and same mass, but
it is not observed.
A symmetry such that ∂µJ

µ = 0 and Q |0〉 6= 0 is called spontaneously bro-

ken. In this case the Goldstone theorem [4] asserts that as many null mass
boson particles must be in the theory spectrum, as the charges, which don’t
annihilate the vacuum.
These particles are called Goldstone bosons. The Goldstone bosons have
the same transformation properties and the same quantum numbers of the
charge which they are associated to. In the case of the axial symmetry they
are pseudo-scalars, as the Qa

A charges. The Qa
A charges are eight, where a

runs from 1 to 8 (the current Jµ,0
A is not conserved due to U(1)A anomaly) and

so we must have eight null mass pseudo-scalar particles. We know that in the
hadron spectrum there aren’t eight null mass particles, the reason for this is
that the axial symmetry is only an approximation of a spontaneous broken
symmetry. In fact, it would be if the quark mass matrix was the null matrix,
but it isn’t. For this reason the eight Goldstone bosons acquire a mass pro-
portional to the breaking of the symmetry, that is the quark masses.
The quark mass matrix for u, d, s is the following[1]:

M =





1.4 − 4 0 0
0 4 − 8 0
0 0 80 − 130



 MeV/c2

As we can see the u and d quarks are much lighter than the s quark, there-
fore one would expect that the SU(2)A subgroup of the SU(3)A is a better
approximation of a spontaneous broken symmetry than the SU(3)A itself.
So the Goldstone boson associated to the SU(2)A subgroup must be lighter
than the other one.
This is exactly what happens in the light meson spectrum (see fig. 1.1).
There are three mesons, the pions, π+, π−, π0 that are a representation of
the SU(2) subgroup that are very light, they are the lightest hadrons with
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mass around 130MeV , then we have the remaining pseudo-scalar mesons
with mass around 550MeV that complete, together with the pions, an SU(3)
representation.

K

πππ

K+

+

K

K − 0

0

− 0

η8

SU(2) singlet

SU(2) triplet

η0

SU(3) representation

octet

singlet

Figure 1.1: Light mesons spectrum, the SU(2) subgroup is shown.

1.4 The low energy theorem and the Chiral

expansion

As we have shown before the interaction among quarks diverges at energy
scale of O(ΛQCD), making the perturbation expansion de facto impossible.
On the contrary it can be demonstrated that the interaction among the
Goldstone bosons goes to zero when the interacting particles energy goes to
zero. Usually the interaction between pions in ππ → ππ process is expressed
in terms of scattering length. In other terms the scattering length should go
to zero as the pion kinetic energy goes to 0. In reality this doesn’t happen
exactly, because the Chiral symmetry is explicitly broken by the mass terms
in the Lagrangian, so the scattering length in the limit E → 0 is [5]:

a0
0 =

7m2
π

32πF 2
π

= 0.159

Where Fπ is the π decay constant.
Anyway the fact that the coupling among bosons vanishes when the energy
goes to zero, is the main ingredient for ChPT. The idea is to do a power
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expansion in terms of momenta and quark masses. So we build a Lagrangian
in which the interacting fields are not the quark fields but the Goldstone
boson fields. The Lagrangian is built in such a way to preserve chiral and
Lorentz invariance.
For technical reasons the Goldstone bosons fields are usually collected in a
matrix. This matrix is called P8 and has the following form:

P8 =






π0√
2

+ η8√
6

π+ K+

π− − π0
√

2
+ η8√

6
K0

K− K̄0 − 2√
6
η8






The matrix used in the Lagrangian is Σ = exp
(√

2i
Fπ
P8

)

. This matrix has

very nice transformation properties under Chiral transformation SU(3)L ×
SU(3)R, that is Σ → SLΣS†

R; where SL, SR are unitary matrices with de-
terminant equal to 1. With this definition is very simple to build Chiral
invariant terms. In fact any term of the type:

Tr(LΣMΣ†)

where L and M are linear operators commuting with SL, SR is invariant
under chiral transformation. In fact:

Tr[LΣ′MΣ′†] = Tr[LSLΣS†
RM(SLΣS†

R)†] =

= Tr[SLLΣS†
RMSRΣ†S†

L] = Tr[LΣS†
RSRMΣ†S†

LSL] = Tr(LΣMΣ†)

Lorentz invariance also restricts the type of terms that one can have in the
Lagrangian. Being Σ a scalar field, the only kinetic Lorentz and Chiral
invariant term is:

Tr(∂µΣ∂µΣ†)

The electromagnetic interaction is introduced in the Lagrangian through the
covariant derivative definition:

Dµ = ∂µ + ieAµ[Q,Σ]

where Q is the quark charge matrix:

Q =





2
3

0 0
0 −1

3
0

0 0 −1
3





To introduce the Chiral symmetry breaking terms one proceeds in this way.
First we observe that the Lagrangian (1.4) is still invariant under UR,UL
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transformations if at the same time the mass matrix M transforms in this
way:

M ′ = URMU †
L

So we must add the mass term to the Chiral Lagrangian in such way to
preserve this invariance. If we think to expand the Lagrangian respect to
quark masses the first symmetry breaking term in this expansion would be:

Lsb = f(Σ, ∂Σ, ...) ×M

At leading order in an expansion of both, powers of M and powers of mo-
menta (derivatives), the symmetry breaking term reduces to f(Σ)×M . More-
over, this expression must be invariant under simultaneous transformations
of Σ and M . The only invariant of this type is tr(MΣ†) and its complex
conjugate. Hence the leading symmetry breaking term is of the form:

Lsb =
F 2

π

2
BtrM(Σ† + Σ)

Adding this term to the Chiral Lagrangian and expanding the Σ matrix as
a power of the pion field, one can show that the pion mass is given by:

m2
π = (mu +md)B(1 +O(M))

So the pion mass is linear in the quark masses. If we indicate with pπ the pion
momentum one can write p2

π = m2
π, this means that (mu + md) ∼ p2

π. For
this reason the mass matrix counts as two power of momenta in the Chiral
Lagrangian expansion.
In the same way one can extract the following relations for the Goldstone
bosons masses:

m2
π = B(mu +md) m2

K± = B(ms +mu)

m2
K0 = B(ms +md) m2

η8
= 1

3
B(4ms +mu +md)

From which one find:
1

2

mu +md

2m2
K −m2

π

∼ 1

26

There are some estimates for the ms mass that should lie in the range 150
- 300 MeV/c2. From which one can extract the value of mu + md quantity
and from the m2

π the B value.
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Introducing the notation χ = 2BM , the lowest order ChPT Lagrangian can
be written in the form:

L2 =
F 2

π

4
tr(DµΣD

µΣ† + χΣ† + χ†Σ)

The tree diagram are obtained simply by the terms in L2. This is done by
expanding Σ as a function of P8:

Σ = exp(

√
2i

Fπ
P8) = 1 +

2i

Fπ
P8 +

1

2

(
2i

Fπ

)2

P 2
8 + . . .

In this way the terms with two powers of P8 give vertices with two Goldstone
bosons, those with four power 4 Goldstone bosons etc. The photon coupling
is given by the terms with Aµ coming from the covariant derivative.
Of course these are all tree level diagrams, starting from two vertices of L2

one can build also loop terms. Each term having a derivative gives a pµ con-
tribution to the vertex in momenta representation, so the tree level vertex
are O(p2). Diagrams with two L2 vertices are O(p4). Often these terms are
divergent and must be regularized.
Unfortunately the Chiral Lagrangian is not renormalizable. Hence differ-
ently from the QCD, we cannot absorb divergences in a finite number of
Lagrangian parameters. To restore renormalizability we must add, order by
order, new terms to the Lagrangian, known as counterterms. So that new
tree level vertices of O(p4) must be added to the L2 that are needed to ab-
sorb divergent terms from L2 loops. And so on.
At the end the Chiral Lagrangian is a sum of L2 and all its possible coun-
terterms:

LChPT = L2 + L4 + L6 + . . .

Note that the term of the Chiral expansion are even in p. This comes from
Lorentz invariance that compels to build terms with an even number of
derivatives to saturate Lorentz indices. These derivatives give rise to the
pµ term in momentum space when Feynman diagrams are built. To calculate
an amplitude at a given order in p one must take all terms of that order, in-
cluding loop corrections, taking into account the counterterms and counting
the mass term as two powers of momenta.

1.5 η → π0γγ amplitude in ChPT.

Now we evaluate the η → π0γγ amplitude in ChPT framework. O(p2) contri-
butions can come only from tree level diagrams in L2, in particular diagrams
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η

π 0

8

Figure 1.2: p2 Feynman diagram from L2.

with only one vertex. Two photons and two Goldstone bosons (the π0 and the
η) must be linked to this vertex (see fig. 1.2). The only terms with two pho-
tons, come from the covariant derivative Dµ. Hence we focus our attention
on the term tr(DµΣD

µΣ†) and we extract: tr (ieAµ[Q,Σ]Σ)
(
ieAµ[Q,Σ]Σ†).

In expanding Σ to have the right linked legs, we observe that the Σ in the
commutator must be expanded at least at the term in P8 otherwise the com-
mutator, therefore the term, vanishes.

So we must write: −e2AµAµtr
[

Q,
√

2i
Fπ
P8

]

Σ
[

Q,
√

2i
Fπ
P8

]

Σ†. Due to the two P8

terms we have yet a coupling to two mesons, so the remaining two Σ terms
can be expanded only to the first term (the identity 1).
Hence we have:

+e2
2

F 2
π

AµAµtr [Q,P8]
2 (1.6)

being

[Q,P8] =





0 π+ K+

−π− 0 0
−K− 0 0





there cannot be a vertex of the type given in fig.(1.2), It is because no π0 and
η field appear in the matrix. This is a general property: only the charged
meson couples directly to a photon in a vertex. It depends on the structure
of Q and P8 matrices. For this reason the η → π0γγ amplitude vanishes at
O(p2). Higher p orders must be evaluated.
Let’s evaluate the amplitude at p4 order. The contribution to this order
comes from tree diagrams from vertices in L4, or from two L2 vertices. We
begin to search for contributions from 2 L2 vertices.
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π

π+

−

+

−

K

K

Figure 1.3: Feynman diagrams of the vertices from L2 with a coupling to
two photons.

Let’s compute the trace in the expression (1.6), we have:

+e2
2

F 2
π

AµAµtr [Q,P8]
2 = +e2 2

F 2
π

AµAµtr





0 π+ K+

−π− 0 0
−K− 0 0





2

=

+e2
2

F 2
π

AµAµtr





−π+π− −K+K− 0 0
0 −π+π− −π−K+

0 −K−π+ −K−K+



 =

= −2e2 2

F 2
π

(
AµAµπ

+π− + AµAµK
+K−)

These two terms are the only ones coupled to two photons in L2. They
correspond to the Feynman diagrams shown in fig. (1.3).
Now we search for any 4 mesons vertices with at least η and π0 legs. These

vertices can come only from the term tr
(
∂µΣ∂µΣ†) because we don’t want

a photon attached to the vertex. So we must take all terms with four power
of P8 from Σ expansion. These are terms of the form:

∂µP8∂
µP 3†

8 ; ∂µP
2
8 ∂

µP 2†
8 ; ∂µP

3
8 ∂

µP †
8 .

We must compute the quantities P 2
8 and P 3

8 .

P 2
8 =





„

π0
√

2
+

η8
√

6

«

2

+ π+π−
+ K+K− 2

√

6
η8π+

+ K+K̄0 π0K+
√

2
+ π+K0 − η8K+

√

6

2
√

6
η8π−

+ K0K− π−π+
+

„

− π0
√

2
+

η8
√

6

«

2

+ K0K̄0 π−K+ − π0
√

2
K0 − η8

√

6
K0

π0K−

√

2
− η8K−

√

6
+ π−K̄0 K−π+ − π0K̄0

√

2
− η8K̄0

√

6
K−K+

+ K0K̄0
+ 2

3
η2
8




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In evaluating P 3
8 , to simplify calculation, we take in account only terms that

can contribute to a vertex with one π0 leg and/or one η8 leg. So each term
with two or more π0 or η8 or with none of the two is discarded. With this
simplification P 3

8 is:

P 3
8 =








π+π−π0
√

2
+

q

3
2

π+π−η8+

+
√

2π0K+K−

0 0

0

q

3
2

η8π+π− − π0π+π−

√

2
−

−
√

2π0K0K̄0
0

0 0

„

π0
√

2
−

q

3
2

η8

«

K−K+−

−
„

q

3
2

η8 + π0
√

2

«

K0K̄0








Let’s start to evaluate the quantity ∂µP
2
8 ∂

µP 2†
8 using the same prescription

used to evaluate P 3
8 . But now we want one π0 and one η8 in the product of

the fields. In adjoint we are interested only to diagonal terms because at the
end we must compute a trace, so:

(

∂µP
2
8 ∂

µP 2†
8

)

11
=

∂µ(π0η8)∂
µ(π+∗

π−∗
)√

3
+
∂µ(π0η8)∂

µ(K+∗
K−∗

)√
3

+

+
∂µ(π+π−)∂µ(π0∗η8

∗)√
3

+
∂µ(K+K−)∂µ(π0∗η8

∗)√
3

+

−∂µ(π0K+)∂µ(η8
∗K+∗

)√
12

− ∂µ(η8K
+)∂µ(π0∗K+∗

)√
12

(

∂µP
2
8 ∂

µP 2†
8

)

22
= −∂µ(π−π+)∂µ(π0∗η8

∗)√
3

− ∂µ(π0η8)∂
µ(π+∗

π−∗
)√

3
+

−∂µ(π0η8)∂
µ(K0∗K̄0∗)√
3

− ∂µ(K0K̄0)∂µ(π0∗η8
∗)√

3
+

+
∂µ(π0K0)∂µ(η8

∗K0∗)√
12

+
∂µ(η8K

0)∂µ(π0∗K0∗)√
12

(

∂µP
2
8 ∂

µP 2†
8

)

33
= −∂µ(π0K−)∂µ(η8

∗K−∗
)√

12
− ∂µ(η8K

−)∂µ(π0∗K−∗
)√

12
+

+
∂µ(π0K̄0)∂µ(η8

∗K̄0∗)√
12

+
∂µ(η8K̄

0)∂µ(π0∗K̄0∗)√
12

Summing all these terms one obtains:

Tr
(

∂µP
2
8 ∂

µP 2†
8

)

=
∂µ(π0η8)∂

µ(K+∗
K−∗

)√
3

+
∂µ(K+K−)∂µ(π0∗η8

∗)√
3

+

−∂µ(π0K+)∂µ(η8
∗K+∗

)√
12

− ∂µ(η8K
+)∂µ(π0∗K+∗

)√
12

+

−∂µ(π0η8)∂
µ(K0∗K̄0∗)√
3

− ∂µ(K0K̄0)∂µ(π0∗η8
∗)√

3
+
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+
∂µ(π0K0)∂µ(η8

∗K0∗)√
12

+
∂µ(η8K

0)∂µ(π0∗K0∗)√
12

+

−∂µ(π0K−)∂µ(η8
∗K−∗

)√
12

− ∂µ(η8K
−)∂µ(π0∗K−∗

)√
12

+

+
∂µ(π0K̄0)∂µ(η8

∗K̄0∗)√
12

+
∂µ(η8K̄

0)∂µ(π0∗K̄0∗)√
12

Can be easily demonstrated that Tr
(

∂µP8∂
µP 3†

8

)

= 0 while:

Tr
(

∂µP
3
8 ∂

µP †
8

)

= Tr
(

∂µP8∂
µP 3†

8

)†
= Tr∗

(

∂µP8∂
µP 3†

8

)

= 0

So vertices with four mesons and one π0 and one η8 come from Tr
(

∂µP
2
8 ∂

µP 2†
8

)

.

They correspond to the Feynman diagrams shown in fig. (1.4).
As one can see in our calculation a vertex of the type π+π−π0η8 is present

+

−

K

K π

η
8

0 π

η
8

0

K
0

K
0

Figure 1.4: Feynman diagrams corresponding to vertices with four legs with
one π0 and one η8 leg.

in the diagonal term of the matrix ∂µP
2
8 ∂

µP 2†
8 but it disappears in the trace

due to a cancellation between the elements. This is not accidental. In fact
the term ∂µΣ∂µΣ† is invariant under SU(3). It is also invariant under the
subgroup SU(2) of the isospin I. And a vertex of this type violates isospin
having π+, π− and π0 odd G-Parity and η8 even G-Parity. A vertex of this
type appears instead in the mass term Tr(χΣ† + χ†Σ) where χ = 2BM :

M =





mu 0 0
0 md 0
0 0 ms



 .

Here we look for a 4 legs vertex so we must expand Σ at the term P 4
8 . Now we

compute this quantity taking into account that at the end we must compute
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π

η
8

0

π

π

+

−

Figure 1.5: G-parity violating vertex for η → π0γγ amplitude.

a trace and we are interested only to π0η8 vertices. So we have:

(P 4
8 )11 =

2
√

3

3
π+π−η8π

0 +

√
3

3
η8π

0K+K−

(P 4
8 )22 = −2

√
3

3
π+π−η8π

0 +

√
3

3
η8π

0K0K̄0

(P 4
8 )33 = −

√
3

3
η8π

0K+K+ +

√
3

3
η8π

0K0K̄0

Multiplying this matrix for the diagonal matrix M and computing the trace
we obtain:

Tr(χ†Σ) =
2
√

3

3
(mu −md)η8π

+π−π0 − (ms −mu)
η8π

0K+K−
√

3
+

+

√
3

3
(ms −md)π

0η8K
0K̄0

The term η8π
+π−π0 gives rise to the diagram shown in fig. (1.5) while the

other two terms simply add a contribution to the vertex factor of diagrams
shown in fig.1.4. To build the η → π0γγ diagram we must use the diagrams
shown in fig. (1.3), fig. (1.4) and fig. (1.5). The only way is to contract
the π+,π− and K+,K− legs to have the diagrams shown in fig. (1.6). These
can be evaluated using the usual Feynman rules for boson propagator and
boson legs. They are finite. This happens because also in L4 Lagrangian
cannot be a direct 2-photon coupling of the type of fig. (1.2) for the same
reason illustrated before for L2: the photons couple only to charged mesons.
So there aren’t counterterms that could absorb divergences coming from the
loop integral.
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Figure 1.6: Feynman diagrams for η → π0γγ amplitude at O(p4).

Indicating with P, p, q1, q2 the η, π0, and the two photons quadrimomenta
respectively, the amplitude for the decay η(P )π0(p)γ(q1)γ(q2) is usually writ-
ten in the form:

M =
∑

i

(at
i + aP

i )A+
∑

i

(bti + bPi )B

where A and B are the two kinematic allowed amplitudes:

A = (ε1 · ε2)(q1 · q2) − (ε1 · q2)(ε2 · q1)
B = −(ε1 · ε2)(P · q1)(P · q2) − (ε1 · P )(ε2 · P )(q1 · q2) +

+(ε1 · q2)(ε2 · P )(P · q1) + (ε1 · P )(ε2 · q1)(P · q2)

where with εi we indicate the photon elicity.
The coefficient at

i and bti refer to the tree-level and counter-term contribution,
while aP

i and bPi to the loop contributions. i refers to the order O(pi). So in
our case we have at

2 = bt2 = aP
2 = aP

2 = at
4 = bt4 = 0. The pion and kaon loop

diagrams give contribution only to aP
4 . So we have bπ,K

4 = 0 [6] and defining
s = (q1 + q2)

2 = 2q1 · q2:

aπ
4 = − 2

√
2α

3
√

3πF 2
π

∆m2
K

(

1 +
3s−m2

η − 3m2
π

m2
η −m2

π

)

H(s,m2
π)

aK
4 = −

√
2α

3
√

3πF 2
π

(

3s−m2
η −

1

3
m2

π − 8

3
m2

K

)

H(s,m2
K)

and

sH(s,m2) = s

∫ 1

0

dz

∫ 1−z

0

dy
zy

m2 − szy
= −1

2
− 1

2x
ln2

√
x+

√
x− 4

−√
x +

√
x− 4

with (x = s/m2).
In these formulas ∆m2

K =
(
m2

K0 −m2
K+

)

QCD
= 6.0× 10−3 GeV2 is the kaon
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mass difference after that the electromagnetic self energy has been removed.
Evaluating these quantities and integrating over the phase space one finds
the contribution to the η width coming from η → π0γγ process at O(p4) in
ChPT:

Γ(4)(η → π0γγ) = 7.18 × 10−3eV

As we have seen before the pion loop contribution is suppressed by the G-
parity violation in the vertex ηπ+π−π0, which makes the amplitude propor-
tional to md −mu or ∆m2

K while the kaon loop is suppressed by the factor
m2

K appearing in the kaon propagator.
Also O(p6) calculation has been performed. At this level the calculation be-
comes less precise. In fact the L6 Lagrangian has many terms ∼ 100 and
it is impossible to evaluate the coefficients from experimental measurements
of other branching ratios or physical quantities. To give the ChPT predic-
tion several techniques have been adopted to evaluate the O(p6) Lagrangian
terms. These run from resonance saturation assumption to large Nc limit
calculation. In the next section we’ll give an overview of the techniques.

1.6 η → π0γγ at O(p6) and beyond.

The first technique used to estimate the L6 coefficients was based on the

resonance saturation assumption. It consists to assume that L6 Lagrangian
coefficients are mainly determined by the Vector Meson Dominance (VMD)
diagram shown in fig. (1.7). The basic idea of the VMD model is that the
coupling of light mesons to photons proceeds via the Vector Mesons, which
have the right spin and parity to couple to real photons.
VMD can be used to estimate the L6 coefficient by taking only the O(p6)

contribution from the Vector Mesons propagators [6]. This assumption is
known as “Resonance Saturation” and it works for L4 Lagrangian. Doing
this one obtains the value:

Γ(6)
vec.res. = 0.18 eV.

If one takes the full VMD propagator one has an all order estimate (at O(p6)
and beyond), giving the result ΓV MD = 0.31 eV.
Other contributions from O(p8) have been taken into account, coming from
diagrams shown in fig. (1.8) that have the same strength of pion and kaon
loops. It happens because in this case there isn’t a G-parity violating vertex
in the diagram. Due to strong interference among loop diagrams and VMD
diagrams, the loop contribution is much higher when considered together
with the VMD estimate. This gives a value of Γ ∼ 0.42 eV.
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Figure 1.7: VMD and a0 diagrams for the η → π0γγ amplitude.
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Figure 1.8: Loops at O(p8) [7].
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In ref. [6] also the contribution coming from the scalar meson a0 and a2 is
taken into account. The a0 scalar meson decays both in the γγ final state
and in the ηπ0 final state, crossing the a0 → γγ decay and building a scalar
propagator one can construct the diagram shown in fig. (1.7 right) obtaining
a ηπ0γγ coupling.
The sign of this contribution was unknown and it produces a large error on
the decay width:

Γ ∼ 0.42 ± 0.20 eV.

Recently a new work has been published that re-evaluates all contributions to
the amplitude in Chiral Perturbation Theory using a Chiral Unitary approach
[7]. Here we will not describe the Chiral Unitary approach, the interested
reader can refer to [7] and reference therein. We underline the main results
of this work.
The tree level VMD amplitude has been reevaluated using more recent data
in [8] and renormalizing the VMD couplings to the measured branching ratios
of vector meson decays. In [6] only ω → π0γ was adjusted because it was
the only available at that time, while SU(3) considerations were done on the
other couplings. The estimated VMD tree-level amplitude is:

ΓV MD−tree = 0.30 ± 0.06 eV

The uncertainty linked to the sign of the a0 resonance is eliminated. The a0

is generated directly in the KK → π0η amplitude through non perturbative
techniques that are able to reproduce the a0 resonance peak. In this way the
size and sign of a0 resonance is unambiguously determined. At the end its
contribution is small (0.01 eV). The strong constructive interference between
tree-level VMD and 1-loop diagram is confirmed, rising about of 30% the
VMD estimate. Also the O(p8) term is added and VMD loops are considered.
In this way the main systematic uncertainty of [6] is reduced. At the end
one obtains the value:

Γ = 0.47 ± 0.10 eV

Here the main systematic error comes from the error on the measurements of
vector mesons branching ratios. To illustrate the importance of the several
contributions, the mγγ spectrum obtained adding each amplitude component
is shown in fig. (1.9).

This is what concern the more recent theoretical study on the η → π0γγ
decay width.
In the literature we find many theoretical calculations. In the framework of
ChPT other calculations were done to estimate the L6 operators coefficients.



1.6 η → π0γγ at O(p6) and beyond. 35

Figure 1.9: From bottom to top, short dashed lines: chiral loops O(p4);
long dashed line: tree level VMD; dashed-dotted line: coherent sum of the
previous mechanisms; double dashed-dotted line: VMD loops added; contin-
uous line: O(p8) loop term added; the dotted line below the continuous one
indicates the full calculation without a0 contribution. [7]

In [9] the L6 Lagrangian was studied taking into account only terms leading
in the large NC limit. The large NC limit is an approximation in which the
QCD contributions are expanded as a power series of 1/NC, where NC = 3
is the number of colors. The leading term in this expansion consists to take
NC → +∞. This approximation has produced many successful results [10].
Only three operators contributing to the η → π0γγ amplitude are leading
in the large NC expansion. The coefficients of these operators are called
d1, d2, d3.
The coefficients d1 and d2 where estimated in [6] by the resonance satura-
tion assumption. All contributions were estimated in [9] using the so-called
Extended Nambu Jona-Lasinio Model. The ENJL model consists in ap-
proximating the large-NC QCD at the chiral symmetry breaking scale Λχ (a
model parameter) by an effective four-fermion theory. The main assumption
is that higher dimension fermion operators are irrelevant for long distance
interactions. The decay width prediction of this model is:

ΓENJL(η → π0γγ) = 0.58 ± 0.3 eV

This value is obtained with a prediction for the d3 coefficient d3 = 1.5×10−5.
The d3 constant has been evaluated in the scalar resonance saturation as-
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Figure 1.10: The quark-box diagram for the η → π0γγ decay.
.

sumption (a0) by [11] giving the value d3 ' 0.38 × 10−5. In that case the
resonance saturation would not be valid for L6 Lagrangian. This is quite
surprising because it does work well in the O(p4) case [12]. Only the mea-
surement of the decay width with good accuracy could clarify the problem.
Another NJL calculation made by reference [17] gives the following result:

Γ(η → π0γγ) = 0.11 eV

1.7 η → π0γγ in the full VMD and in the

quark loop model context.

Out of ChPT description of the η → π0γγ there were other theoretical esti-
mates of the decay rate. In [13] the tree level VMD calculation was performed
according the diagrams shown in fig.(1.7).
The value obtained is:

ΓV MD = 0.30+0.16
−0.13 eV

In [14] a quark-box model is used to evaluate the decay width.
The quark box diagrams are shown in fig. (1.10). The model parameters
are the pseudo-scalar meson-quark-quark couplings (ηqq and π0qq) and the
constituent quark masses. The quark masses are not the real quark masses,
but they are effective quark masses. Reasonable ranges of this masses can
be deduced in the study of the decay P (pseudoscalar) → γγ, P → ll̄ and
P → γll̄. The assumption mu = md = m is done with 280 < m < 330
MeV/c2 and ms = 500 MeV/c2. The ms value is roughly fixed being the
calculation almost insensitive to this parameter. The π0qq and ηqq coupling
are determined by the decay η → γγ and π0 → γγ that proceed through the
triangle diagrams shown in fig. (1.11).
From the P → γγ decay width one finds the following couplings of the π0 and
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Figure 1.11: Triangle diagrams used to evaluate the ηqq and πqq couplings.

η to quarks: gπ0uu = gπ0dd = 3.19±0.11 and gηuu = gηdd = gηss = 1.26±0.06.
The resulting η → π0γγ width is:

ΓQuark−Box = 0.70 ± 0.12 eV

Varying m in the [280,330] MeV interval the width spreads in the range:

ΓQuark−box = 0.60 − 0.97 eV.

1.8 Theoretical model predictions summary.

Theoretical estimates of η → π0γγ decay width are summarized in table (1.1)
where the references are reported.

As we have shown there are many models and frameworks in which the
η → π0γγ has been computed. This demonstrates the theoretical interest for
this decay. The experimental history is very rich too. Many experiments have
tried to measure this decay width leaving, still today, large uncertainities in
the measurement. For this reason it is impossible to estabilish definitively
the physical process that is able to describe the decay.
A summary of the experimental measurements will be given in the next
section with a sketch of the experimental history.

1.9 η → π0γγ phenomenology.

In fig. (1.1) we show 2 η states. Both of them are not strange and are
SU(2) singlet, for this reason they are called with the same name. The only
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Model Γ(η → π0γγ) (eV) error range (eV) reference

VMD 0.30 +0.16, -0.13 [13]
Quark Box 0.70 0.60 - 0.97 [14]

CHPT (res. sat.) p6 0.18 ... [6]
ChPT (res. sat.) 0.42 ±0.20 [6]
ChPT (ENJL p6) 0.58 ±0.3 [9]
Unitary ChPT 0.47 ±0.10 [7]

ENJL 0.27 +0.18, -0.07 [15]
NJL 0.92, 0.58 ... [16]

NJL (Belkov) O(p6) 0.11 ... [17]

Table 1.1: Theoretical predictions for Γ(η → π0γγ).

difference is that one belong to the SU(3) octet (η8) and the other one is
the SU(3) singlet (η0). If SU(3) were an exact simmetry the η8 and η0 state
would be two different particles in the physical spectrum.
This doesn’t happen because the quark masses are different, SU(3) is broken,
and the physical η states are a mixing between η8 and η0. So the physical
states, η and η′ can be written in the form:

(
η
η′

)

=

(
cosθ −sinθ
sinθ cosθ

)

·
(
η8

η0

)

As we have seen before the U(1)A axial simmetry is broken by the Chyral
anomaly, so the η0, that is associated to the U(1)A, is not a Goldstone boson.
For this reason it is not compelled to have a zero mass in the Chyral limit.
In fact the two physical η states have a mass of 547.30 MeV (η) and 957.78
MeV (η′). While the η has a mass comparable with the kaon masses, ∼ 500
MeV, the η′ mass is much higher. This indicates that η is almost η8 and η′

is almost η0, that is the θ angle is small.
The θ mixing angle has been measured also by the KLOE experiment study-
ing the ratio of branching fractions:

Br(φ→ η′γ)

Br(φ→ ηγ)

and a value of θ = −12.9+1.9
−1.6

◦
[18] has been extracted.

The η is a pseudoscalar particle symmetric under C conjugation, its main
decay modes are reported in tab. (1.2) together with their branching ratio.
To measure rare η decays one must produce a large quantity of η mesons,
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Decay channel Br

2 γ (39.43 ± 0.26)%
3π0 (32.51 ± 0.29) %

π+π−π0 (22.6 ± 0.5) %

Table 1.2: Main η decay modes [1].

this has been done in hadron machine through the following reactions:

π− + p→ η + n
π+ + d→ p+ p+ η
π+ + p→ π+ + p+ η

K− + p→ Λ + η
π+ + n→ η + p
π− + n→ π− + n + η

The first η → π0γγ observation was claimed at CERN in 1966 [19]. In that
experiment a fraction of η → π0γγ decays of the same order of η → γγ and
η → 3π0 contributions was guessed. Theoretical predictions were much lower
so since that time a lot of measurements were performed. Some experiments
measured a value, some others gave an upper limit.
In fig. (1.12) the branching ratios measured and the upper limit determined
are shown, all the references can be found in ref. [20].
The two last measurements are those of GAMS-2000 experiment [33] and

Crystall Ball experiment [34]. The PDG quotes the GAMS-2000 value:

Br(η → π0γγ) = (7.2 ± 1.4) × 10−4 GAMS

while the Crystall Ball measurement is:

Br(η → π0γγ) = (2.7 ± 0.9stat. ± 0.5syst.) × 10−4

This means that the first CERN observation and many others were wrong.
The GAMS result itself is in doubt now due to the CB new measurement.
The GAMS mesurement has triggered many of the theoretical works dis-
cussed in this chapter, because ChPT prediction was unable to reproduce
that result.
GAMS searched for η → π0γγ in an η sample produced through the reaction
π−p → ηn. The produced number of η’s was 6 × 105 and ∼ 35 η → π0γγ
events were identified. Despite the small value of collected events, the signal
signature is very clear (see fig. 1.13).

The Crystall Ball η sample is produced in the same way, the number of
produced η’s is much higher 3 × 107, and the number of detected events is
120 ± 40. Despite this, the method used to extract the signal is based on
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an absolute background subtraction based on MC simulation. No particular
signal topology is observed.

The very different values measured by GAMS and Crystall Ball give dif-
ferent theoretical indication.
In the GAMS case all ChPT based models give value too small, and only the
Quark Box model gives a value in good agreement. The Crystall Ball result
lies in a lower range, being consistent with almost all ChPT predictions. For
this reason the η → π0γγ has been studied at KLOE in this work. In our
case the η is produced through the φ → ηγ decay, the backgrounds and the
systematic are completely different respect to hadron machines.
The SND collaboration [20], that works at a φ-factory too, has performed
this measurement and given an upper limit: Br(η → π0γγ) < 8.4× 10−4 not
reaching the GAMS sensitivity due to low number of η mesons produced.

Figure 1.13: η → π0γγ signature of the GAMS experiment.
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Chapter 2

The KLOE experiment.

In this chapter we describe the KLOE experiment. The KLOE detector,
together with the algorithms used to select and analyze the DATA, is shown.
Also an overview of the Monte Carlo simulation of the experiment is given.
The DAΦNE collider on which KLOE works is also presented.

2.1 The DAΦNE collider.

The KLOE experiment works on the collider DAΦNE at Frascati. DAΦNE
(Double Annular Φ-factory for Nice Experiments) is able to produce large
quantity of φ mesons. This type of machines are commonly known as φ
factory. The φ is generated in e+e− collisions and the φ decay products are
then analyzed by the KLOE detector. A lot of low energy measurements can
be performed, in particular φ, η and kaons decays can be studied. DAΦNE
works at the energy corresponding to the φ resonance peak (Mφ = 1019.456±
0.020 MeV) [1]. The φ production cross section at DAΦNE has a peak value
of σe+e−→φ ∼ 3.1 µb.

The first stage of the DAΦNE collider consists of a LINAC used to accel-
erate electron and positron up to 510 MeV . They are accelerated at different
times and temporary collected in a small accumulator ring (see fig. 2.1).

The injection chain (LINAC plus accumulator) flips from an e+ condition
to an e− condition. The e+ and e− beams are made of bunches, they are
injected into two different rings, shifted in the horizontal plane. The dou-
ble ring configuration is necessary to reduce inter-beam interaction, an effect
that limits the luminosity. The two rings intersect in two collision points. At
one the KLOE detector is located, while the other is alternatively occupied
by two other experiments: DEAR and FINUDA (see fig. 2.2).

The maximum number of bunches that can circulate is 120, correspond-
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Figure 2.1: Scheme of the DAΦNE collider apparatus.
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Figure 2.2: Double ring collider scheme. The two interaction regions are
shown.

ing to a bunch crossing period of 2.7 ns. During 2001-2002 data taking the
average bunch number was ∼ 60. The beams collides at the KLOE interac-
tion point (IP in the following) with a crossing angle θx ' 25 mrad, then
the φ is produced with a momentum of about 13 MeV in the horizontal plane.

In order to have high circulating currents the injection is very frequent
as can be seen in fig. (2.3), where the beam currents together with the
luminosity as a function of time are reported. High currents are needed to
reach high luminosity that is the characteristic feature of DAΦNE.
The design peak luminosity is 5 × 1032 cm−2s−1 while the peak luminosity
reached in 2001-2002 data taking was ∼ 8 × 1031cm−2s−1. At the moment
DAΦNE is still running and in 2004 data taking has reached ∼ 1.1 × 1032

cm2s−1. The total integrated luminosity is ∼ 450 pb−1 in 2001-2002 data
taking, while in 2004 KLOE has collected ∼ 750 pb−1.

2.2 The KLOE detector.

The KLOE detector consists of three main elements: an electromagnetic
calorimeter, a drift chamber and a superconducting solenoid, a schematic
transverse section of the detector is shown in fig. (2.4). In the following
we will use the following coordinate system: the horizontal direction along
the beam pipe is z, the vertical coordinate is y and the horizontal direction
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Figure 2.3: Electron (blue) and positron (red) currents in the DAΦNE ma-
chine, luminosity and beam life time (2004 data taking).

orthogonal to the beam pipe is x.

2.2.1 The drift chamber

The Drift Chamber (DC) (see fig. 2.5) surrounds the beam pipe which is a
sphere made of a beryllium-aluminum alloy with 10 cm diameter and 50 µm
thickness.
The beryllium, having a low atomic number, has been used to minimize the
interaction of particles produced at the IP with the material.
These elements are inserted inside a superconducting coil which produces
a solenoids magnetic field parallel to the beam axis. The field intensity is
0.52 T .
The drift chamber has the following properties:

• high and uniform reconstruction efficiency over a large volume, in order
to reconstruct correctly particles that decay inside its sensitive volume
(such as KL);

• track resolution in the transverse plane σRφ ' 200 µm and vertex
resolution σvtx ' 1 mm;
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Figure 2.4: Vertical transverse section of the KLOE detector.

Figure 2.5: Photos of the drift chamber (left) and of the calorimeter (right).
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• very good momentum resolution (∆p⊥/p⊥) for low momentum tracks
(50 < p < 300 MeV ). In this energy range the dominant contribution
to the momentum resolution is the multiple scattering:

∆p⊥
p⊥

=
0.053

L|B|β

√

L

X0

where p⊥ is the transverse momentum in GeV, β is the velocity of the
particle, L is the track length in m, B is the magnetic field in T and
X0 is the radiation length;

• it is transparent to low energy photons (down to 20 MeV).
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Figure 2.6: (left) Momentum resolution for 510 MeV e± from Bhabha scat-
tering events as function of the polar angle; (right) KS invariant mass dis-
tribution as calculated from oppositely charged tracks from the interaction
point.

The chamber has a uniform cell structure on a large cylindrical volume,
whose length is variable from 2.8 m near the beam-pipe to 3.3 m near the
calorimeter walls; the outer radius is 2 m, the inner radius is 25 cm.

The uniform filling of the chamber has been achieved through a structure
of drift cells “almost” square shaped, arranged in coaxial layers with alter-
nating stereo angles which increase with the radius from ± 60 to ± 150 mrad.
The stereo angle is defined as the angle between the wire and a line parallel
to the z-axis.
The ratio of field to sense wires is 3:1. The sense wires are made of gold-
plated tungsten and their diameter is 25 µm. The field wires are made of
silver-plated aluminum and their diameter is 80 µm. There are 12 inner and
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46 outer layers, the corresponding cell areas are 2× 2 and 3× 3 cm2, respec-
tively, for a total of 12582 drift cells.
The voltage difference is 1750 V and 1900 V for the small and large drift cells
respectively.

Materials are chosen in order to minimize the density along the path of
particles. A carbon fiber composite (≤ 0.1X0) is used for the chamber walls.
The gas used is a 90% helium, 10% isobutane mixture. To reduce multi-
ple scattering and photon conversion the gas mixture has a radiation length
X0 ' 1300 m. Taking into account also the wires, the average radiation
length in the chamber volume is about X0 ∼ 900 m.

The momentum resolution for 510 MeV e± Bhabha-scattering events is
shown in fig. (2.6) for 50◦ < θ < 130◦ . It is σp ' 1.3MeV , σp/p = 2.5×10−3.
The π+π− invariant mass distribution of KS → π+π− is also shown in the
figure. The resolution is δm/m = 1.8 × 10−3.

2.2.2 The calorimeter.

The calorimeter has a cylindrical structure surrounding the DC. The cylinder
axis is on the horizontal plane parallel to the beam direction.
The calorimeter has the following properties:

• a very good time resolution (' 100 ps) and a good determination ('
1.4 cm) of the photon conversion point, this task is very important to
select events that are produced at the IP from the kaons decays that
happen in the DC volume. The good position resolution together with
the large radius (∼ 2m) consent to have a very good resolution on
the angle of the photon conversion point . This is a very important
property that is used through kinematic fit techniques (see chapter 3)
to reject missing momentum events;

• an high hermeticity (98% of the solid angle), thanks to which multi-
photon process has an acceptable geometrical efficiency and events with
different number of photons can be separated correctly. The energy res-
olution is good (5.7%/

√

E[GeV ]) and the calorimeter is fully efficient
over the range 20 ÷ 500 MeV ;

• it has also a very fast time response, that is used to trigger events at
the first stage.

The calorimeter has a led-scintillating fiber sampling structure. Scintillating
fibers provide good light transmission over the required distances, up to
∼ 4.3 m.
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It is made of three main elements: a cylindrical barrel and two end-caps.
The barrel consists of 24 modules 4.3 m long × 23 cm thick with trapezoidal
transverse section, with bases of 52 and 59 cm. Each end-cap consists of
32 vertical modules 0.7 ÷ 3.9 m long and 23 cm thick. The barrel covers a
region between 45◦ and 135◦, the end-caps cover the angles included between
10◦ and 45◦ and between 135◦ and 170◦ respectively. The transverse section
of the modules is rectangular, of variable width. Modules are bent at the
upper and lower ends to allow insertion into the barrel calorimeter and also
to maintain the photo-tube axes parallel to the magnetic field. Due to the
large overlap of barrel and end-caps (see fig. 2.9), the calorimeter has no
inactive gap at the interface between those components. The central end-
cap modules are vertically divided into two halves.

Figure 2.7: Schematic view of the fiber-lead composite of each module of the
electromagnetic calorimeter.

All modules are made of 200 grooved, 0.55 mm thick lead foils alternat-
ing with 200 layers of scintillating fibers with diameter 1 mm, glued in the
grooves with a special epoxy, which is not harmful to the fiber plastic (see
fig. 2.7).
Fibers are mostly orthogonal to the entering particles in order to avoid
channeling. The ratio by volume of the different component material is:
lead:fiber:epoxy 42:48:10. This low value of the lead content consents to
have an almost homogeneous calorimeter. In this way the energy loss in the
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Figure 2.8: Transverse section of the KLOE detector, it is possible to see the
shapes of the end-cap EMC modules.

fifth plane

cosmic ray

Figure 2.9: Schematic view of the overlap region between barrel and end-cap.
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Figure 2.10: Schematic view of a module transverse section.

passive material is almost independent from the shower direction and the
energy response is direction independent.
The attenuation length of the fibers is λ ≥ 3 m, while the average density
is 5 g/cm3, the radiation length is ∼ 1.5 cm and the overall thickness of the
calorimeter is ∼ 15 radiation lengths.
Light is collected on both sides of each module. The longitudinal coordinates
is measured by the time difference.
The calorimeter is divided into five planes in depth, four of 4.4 cm, the last
is 5.2 cm deep (see fig. 2.10).
In the transverse direction each plane is subdivided into cells 4.4 cm wide.

The set made of 5 cells lined up, one for each transverse plane is named
“column”.
The read-out r − φ for barrel (x − z for end-cap) granularity for the EmC
is finally ∼ 4.4 × 4.4 cm2 slightly varying in size across the modules. This
allow a good spatial resolution.

The energy deposit in each cell is obtained from the charge measured at
each side of the modules by the ADC’s. The cell time is derived by time
intervals measured at each side of the modules by the TDC’s.
The energy resolution and the linearity of the energy response have been
measured using photons from radiative Bhabha events and from φ→ π+π−π0

events. In both cases the photon energy Eγ is estimated by tracks momenta
reconstructed by the drift chamber and it is compared with the measured
energy ECL. The fractional resolution σE/Eγ and the relative deviation from
linearity (Eγ −ECL)/Eγ, obtained from radiative Bhabha events are plotted
in fig. (2.11) as function of the photon energy. Linearity is better than 1% for
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Figure 2.11: (top) Linearity of the calorimeter energy response as a function
of the photon energy; (bottom) energy resolution of the calorimeter as a
function of the photon energy. The two curves are evaluated with radiative
Bhabha events.

Eγ > 75MeV , while deviations from linearity at the 4−5% level are observed
for low energies, probably due to the loss of shower fragments. The fit of the
energy resolution to the function a/

√

E[GeV ] + b gives a negligible constant
term, proving that the resolution is dominated by sampling fluctuations, and
gives a stochastic term a = 5.7%. Compatible results are obtained from
φ→ π+π−π0.
The time resolution derived by the analysis of various radiative φ decays is
shown in fig. (2.12). Good agreement between the measurements for different
channels is observed down to 100 MeV . The curve in the plot is the result
of a fit:

σt =
54 ps

√

E[GeV ]
⊕ 140ps (2.1)

the first term is due to the sampling fluctuation and the second term is a
constant to be added in quadrature. The constant term is given by the



54 The KLOE experiment.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500
Eγ (MeV)

σ T-
R/

c (
ps

)
φ → πγ, π → γγ
φ → πγ, γrad

φ → ηγ, η → γγ
φ → ηγ, γrad

e+e-→e+e-(γ)
φ→π+π-π0

KL→π+π-π0

Eγ   (MeV)

ε γ

0.6

0.7

0.8

0.9

1

1.1

20 40 60 80 100 120 140 160 180 200

Figure 2.12: (left) Time resolution of the calorimeter as a function of the
photon energy, for radiative φ decays; (right) Photon detection efficiency
as a function of the photon energy, as measured from radiative Bhabha,
φ→ π+π−π0 and KL → π+π−π0 samples.

quadrature sum of two contributions: residual calorimeter miscalibrations,
which contribute for ∼ 50 ps, and the intrinsic time spread due to the finite
lenght of the luminous point in the beam direction, which contributes for
∼ 125 ps. Compatible results are obtained from φ → π+π−π0 and from
radiative Bhabha decays.
The position of a cluster centroid in the transverse plane (see fig. 2.10) is
determined from the geometrical distribution of fired cells and is σt ∼ 1.4cm
while the longitudinal coordinate is determined with the difference of the
signal arrival times at both ends. It is:

σz ∼ 1.4cm
√

E[GeV ]

The photon detection efficiency is an important quantity for this work.
It was estimated using three data samples: radiative Bhabha events and
φ → π+π−π0 decays, which provide photons originated in the interaction
point, and KL → π+π−π0 decays, in which the photons originate from a KL

decay vertex in the DC volume. The detection efficiency εγ , resulting from
these three analyses, are shown as a function of the photon energy in fig.
(2.12 right). A constant value of ∼ 99% is observed above 100 MeV , while
a loss in efficiency is evident below 100 MeV .
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2.2.3 The trigger system

The main function of the trigger system is to:

• produce an unbiased trigger signal for all φ events;

• recognize cosmic-ray events and accept a downscaled sample for cali-
bration purposes.

Cosmic rays are recognized by the coincidence of two outer calorimeter planes
(cosmic trigger veto).
During years 2000-2001, with an average luminosity of ∼ 1031 cm−2s−1, the
average trigger rate was about 2.5 KHz. Of those only ∼ 250 Hz were
due to φ events and Bhabha. About 400 Hz were due to downscaled cos-
mic rays, while an additional ∼ 650 Hz were due to cosmic rays escaping
the trigger veto. The remaining ∼ 1.2 KHz come from machine background.

There are two main sources of background. One is the Bhabha events
at small angles, where electrons and positrons hit two focusing quadrupoles
located very close to the IP and produce showers inside the detector. The
other source is due to particle losses from the beams. These off-momentum
particles are originated in beam-gas interactions or Touschek scattering.

The trigger is based on local energy deposit in calorimeter and multiplicity
information from the drift chamber. It is composed by two levels (see fig.
2.13) in order to both produce an early trigger with good timing to start
the Front End Electronic (FEE) and to use as much information as possible
from the drift chamber. After the arrival of a first level trigger, additional
information is collected from the drift chamber, which is used, together with
the calorimetric information, to confirm the former and to start the DAQ
system.

The “first level” trigger algorithm accepts events if one of these two con-
ditions are found true (see figure 2.13):

• 2 calorimeter clusters with energy larger than a fixed threshold (Low
Energy Threshold, LET) with Barrel-Barrel, Barrel-Endcap or Endcap-
Endcap topology. The thresholds are: 50 MeV for barrel and variable
from 90 - 140 MeV for end-caps. The values are higher for endcap
elements closer to the beam pipe;

• 15 drift chamber hits within 250 ns.
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Figure 2.13: KLOE trigger logic, the Bhabha veto has been built but never
used in 2001-2002 data taking. This because the luminosity was lower than
the design luminosity and the DAQ system was able to acquire all the Bhabha
events, the Bhabha are rejected at reconstruction level.

The trigger sets a 2 µs long acknowledge signal, which vetoes other first level
triggers and allows signal formation from the drift chamber cells.
Before being distributed to the calorimeter FEE, it is synchronized with a res-
olution of 50 ps with the DAΦNE radiofrequency divided by 4 (T = 10.8 ns)
(see sec. 2.4). Therefore the calorimeter TDC’s measure the time with re-
spect to a bunch crossing coming n periods after the collision that originated
the event, where n has to be determined by the offline reconstruction of the
event. This tecnique allows us to preserve the resolution on time measure-
mentat at the level of ps, which would be otherwise spoiled by the intrinsic
jitter of the trigger signal formation.
After the first level decision, a second level trigger is requested to confirm
level 1 decision according the following criteria:

• φ trigger one of the following criteria:

– at least a calorimeter hit in the barrel or 3 hits in the same end-
cap;

– 40 DC hits integrated during 850 ns after T1;
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• Cosmic veto, the following condition is not fullfilled:

– 2 hits on the external plane of the calorimeter with B-B, B-E topol-
ogy, no activity in the central region of the DC (this to avoid that
high energy particles from the IP could fire the external calorime-
ter plane and identified as cosmic rays).

At the end of the dead time the trigger system asks for a confirmation from
the second level.

The level two trigger T2 gives the stop to chamber TDCs and starts the
acquisition of the event.

2.3 Reconstruction algorithms for the calorime-

ter.

The calorimeter is segmented into 2440 cells, which are read out by Photo-
multipliers at either end (referred to as sides A and B in the following). Both
charges QA,B

ADC and times tA,B
TDC are recorded. For each cell, the particle arrival

time t and the impact point along the fiber direction are reconstructed using
the times at the two ends as

t = 1
2
(tA + tB − tA0 − tB0 ) − L

2v

s = v
2
(tA − tB − tA0 + tB0 )

(2.2)

with tA,B = cA,BtA,B
TDC , where cA,B are the TDC calibration constants, tA,B

0 are
the overall time offsets, and L and v are the cell length and the light velocity
in the fibers. The impact position in the transverse direction is provided by
the location of the readout elements. The energy signal Ei on either side of
cell i is determined as

EA,B
i = kEg

A,B
i (s)

SA,B
i

SA,B
mip,i

where S = QADC−Q0,ADC is the charge collected after subtraction of the zero-
offsets, and Smip is the response to a minimum-ionizing particle crossing the
calorimeter center.The correction factor g(s) accounts for light attenuation
as a function of the impact position s along the fiber, while kE is the overall
energy scale factor. The final value of Ei for the cell is taken as the mean of
the determinations at both end.

Ei(MeV) =
EA

i + EB
i

2
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The calibration constants related to minimum-ionizing particles, Smip and
g, are acquired with a dedicated trigger before the start of each long data-
taking period. The time offsets tA,B

0 and the light velocity v in the fibers
are evaluated every few days using high-momentum cosmic rays selected
using drift-chamber information. In this iterative procedure, the tracks re-
constructed in the drift chamber are extrapolated through the calorimeter,
and the residuals between the expected and measured times for each cell are
minimized. Finally, a procedure to determine the value of kE and to refine
the values of t0A,B runs online [35]; it uses Bhabha and e+e− → γγ events
to establish a new set of constants every ∼ 100 − 200 nb−1 (approximately
every hour during 2002 data taking).

Calorimeter reconstruction starts by applying the calibration constants to
convert the measured quantities QADC and QTDC to the physical quantities
S and t. Position reconstruction and energy/time corrections vs. s are then
performed for each fired cell. Next, a clustering algorithm searches for groups
of cells.
In the first step, cells contiguous in rφ (on barrel) or xz (on the endcap) are
grouped into pre-clusters. In the second step, the longitudinal coordinates
and arrival times of the pre-clusters are used for further merging and/or split-
ting. The cluster energy, Ecl, is the sum of the energies for all cells assigned
to a cluster. The cluster position, (x, y, z)cl and time, tcl, are computed as
energy-weighted averages over the contributing cells. Cells are included in
the cluster search only if times and energy are available on both sides; oth-
erwise, they are listed as ”incomplete” cells. The available information from
most of the incomplete cells is added to the existing clusters at a later stage
by comparison of the (x, y) positions, (x,z) on the end-cap1, of such cells with
the cluster centroids.

The production of fragments from electromagnetic showers has been stud-
ied by comparing data and Monte Carlo samples of e+e− → γγ events, with
tight selection cuts applied to the two highest-energy clusters in the event
(the ”golden photons”).
The distribution of the minimum distance between the centroids of a golden
photon with any other cluster:

∆x =

√

(xglod
cl − xi

cl)
2 + (ygold

cl − y2
cl)

2 + (zgold
cl − zi

cl)
2

is characterized by reasonable agreement between data and MC at large val-
ues of ∆x; at low values an appreciable discrepancy is observed. In this latter

1It is because the coordinate along the fibers is z for the barrel and y for the end-caps.
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case, a similar discrepancy is observed for the distribution of the difference
in time, ∆t, between the selected clusters.
This discrepancy is due to the bad simulation of fragments in the MC. The
multiplicity of fragments in data exceeds that in MC events by about a factor
of two and is dominated by clusters with energy below 50 MeV. We attribute
these discrepancies to small inaccuracies in the descriptions of the shower
development and time response in the Monte Carlo, so that the longitudi-
nal cluster-breaking procedure performs differently for data and MC events.
For this reason, depending upon the multiplicity of photons in the event, a
split-cluster recovery procedure is applied at the analysis level to merge close
clusters depending on their values of ∆x , ∆t , and energy.

2.4 Determination of the absolute time scale

and event-start time

The bunch-crossing period is T = 2.715 ns. Due to the large spread of the
particle arrival times, the trigger time does not identify the bunch crossing
that produced an event; the time at which this bunch crossing occurred
must therefore be determined offline. In order not to spoil the EmC time
resolution, the start to the TDC system is obtained by synchronizing the
level-1 trigger with a clock that is phase-locked to the DAΦNE radiofrequency
signal. The clock period is 4 TRF = 10.85 ns. The calorimeter times are
measured in common-start mode and are given by the TDC stops from the
discriminated PMT signals:

tcl = tTOF + δc −NBCtRF

where tTOF is the time of flight of the particle from the event origin to the
calorimeter, δc is the sum of all offsets due to electronics and cable delays,
and NBCtRF is the time needed to generate the TDC start (see fig. 2.14).
The quantities δc and tRF are determined using e+e− → γγ events. For such
events, the distribution of ∆TOF = tcl − rcl/c shows well-separated peaks
corre- sponding to the different values of NBC for events in the sample (see
fig. 2.15). We define δc as the position of the largest peak in the distribution,
and obtain tRF from the distance between peaks. This is done by calculating
the discrete Fourier transform of the ∆TOF distribution and fitting the peak
around ν = 1/tRF . The absolute TDC time scale is obtained by imposing
tRF (fit) = tRF . Both δc and tRF are determined with precision better than 4
ps for every 200 nb−1 accumulated.



60 The KLOE experiment.

Figure 2.14: Timing scheme for bunch-crossing signal, calorimeter signals,
and level-1 trigger formation.

Figure 2.15: Calibration of EmC time scale using e+e− → γγ events, ∆TOF

distribution.
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Since we want the cluster times to correspond to particle times of flight,
a time offset t0,evt ≡ δc −NBCtRF must be subtracted from all cluster times
(see eq. 2.3). The trigger-formation time NBCtRF varies on an event-by-event
basis; it is determined offline at different points of the reconstruction path. A
zeroth-order value forNBC (and hence t0,evt) is obtained by assuming that the
earliest cluster in the event is due to a prompt photon from the interaction
point. By imposing tTOF = rcl/c for this cluster, we obtain

t0,evt = δc −Nint

[
rcl/c− tcl + δc

tRF

]

tRF (2.3)

where Nint stands for the nearest integer to the quantity in brackets. We
refer to t0,evt as the event-start time.

Soft clusters due to the accidental coincidence of machine-background
events with the e+e− collisions can arrive earlier than the fastest cluster from
the collision event itself. To increase the reliability of the estimate of t0,evt,
the cluster used for its evaluation must also satisfy the conditions Ecl > 50
MeV and Rxy = (x2

cl + y2
cl)

1/2 > 60 cm.

The t0,evt evaluated in this way is used only to reconstruct and classify
the event by physics channel. However, many physics channels contain no
prompt photons in the final state, so this determination of NBC , therefore
the corrected cluster times t

(0)
cl , may differ from the actual times of flight by

an integer number of bunch crossings ∆NBC . This quantity is evaluted in
different ways for several channels. For the neutral radiative decays, that are
interesting for this work, the goal in redetermining the event-start time is to
correct situations in which NBC is at first incorrectly determined because of
the accidental coincidence of beam background clusters. For such events, if
the second cluster with Ecl > 50 MeV and Rxy > 60 cm arrives more than 4
ns after the first, ∆NBC is calculated using the second cluster.

2.5 Track-to-cluster association.

To identify photons one must reject cases in which a charged particle hits the
calorimeter producing a cluster. This case is identified by the track-to-cluster
algorithm.
The track-to-cluster association module establishes correspondences between
tracks in the drift chamber and clusters in the calorimeter.
The procedure starts by assembling the reconstructed tracks and vertices
into decay chains and isolating the tracks at the end of these chains. For
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each of these tracks, the measured momentum and the position of the last
hit in the drift chamber are used to extrapolate the track to the calorimeter.
The extrapolation gives the track length Lex from the last hit in the chamber
to the calorimeter surface, and the momentum ~pex and position ~xex of the
particle at the surface. The resulting impact point is then compared with the
positions ~xcl of the reconstructed cluster centroids. A track is associated to a
cluster if the distance to the centroid in the plane orthogonal to the direction
of incidence of the particle on the calorimeter, Dtcl = |(~xcl − ~xex)∧ ~pex/|~pex|,
is less than 30 cm. For each track, the associated clusters are ordered by
ascending Dtcl values.

2.6 The background rejection filter FILFO.

The background-rejection algorithm is based on calorimeter clustering and
DC hit counting, so that background events can be eliminated before DC
reconstruction, which is the most CPU-intensive section of our reconstruc-
tion program. The main FILFO features are the downscaling of Bhabha and
cosmic events, and machine background rejection.
For the identification of background events, cuts are applied on the number
of clusters; the number of DC hits; the total energy in the calorimeter; the
average polar angle, position, and depth of the (two) most energetic clus-
ter(s); and the ratio between the number of hits in the innermost DC layers
and the total number of DC hits. These cuts have been studied to minimize
losses for physics channels. Additionally, a simple cut on anomalously large
energy deposits in any calorimeter region is included to reject rare machine
background topologies due to sporadic beam-loss events.

2.7 Monte Carlo: physics generators and de-

tector simulation.

The KLOE Monte Carlo program, GEANFI, is based on the GEANT 3.21
library [36, 37] widely used in current high-energy and astroparticle physics
experiments. GEANFI incorporates a detailed description of the KLOE ap-
paratus, including

• the interaction region: the beam pipe, the low-β quadrupoles;

• the drift chamber;

• the endcap and barrel calorimeters;
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Process Polar Angle σ(µb)

e+e− → e+e−(γ) 20◦ < θ < 160◦ 6.2
e+e− → µ+µ−(γ) 20◦ < θ < 160◦ 0.085
e+e− → π+π−(γ) 20◦ < θ < 160◦ 0.080
e+e− → γγ(γ) 20◦ < θ < 160◦ 0.30
e+e− → ωπ0 0.008
e+e− → φ 3.1

Table 2.1: Cross sections for several e+e− interaction processes at
√
s = 1.02

GeV. For the process e+e− → φ, the visible cross section is listed.

• the superconducting magnet and the return yoke structure.

A set of specialized routines has been developed to simulate the response
of each detector, starting from the basic quantities obtained from the geant
particle-tracking and energy-deposition routines.

2.7.1 Generators for non resonant processes and φ pro-

duction.

GEANFI contains the code to generate the physics of interest at DAΦNE.
The cross sections for the relevant processes in e+e− collisions at

√
s = 1.02

GeV are listed in tab. (2.1).
A precise Bhabha-event generator is required for the measurement of the

luminosity. To reach an accuracy of a few per mil for the effective cross
section, radiative corrections must be properly treated. BHAGEN, an exact
O(α) generator based on the calculations of [38], has been implemented in
GEANFI from the very beginning. More recently, the BABAYAGA [39] gen-
erator [25,26] has been interfaced with GEANFI. This generator is based on
the application to QED of the parton-shower method originally developed
for perturbative QCD calculations. The generator takes into account cor-
rections due to initial-state radiation (ISR), final-state radiation (FSR), and
ISR-FSR interference, and has an estimated accuracy of 0.5%. BABAYAGA
can also be used to generate e+e− → µ+µ− and e+e− → π+π− events.

The process e+e− → ωπ0 is simulated with all ω decay modes enabled,
the ω width taken into account, and a 1 + cos2θ dependence assumed for
the ωπ0 angular distribution. In particular, the process e+e− → ωπ0 with
ω → π0γ is one of the background channels for the analysis of the decay
η → π0γγ; it is treated according to the VMD matrix element described in
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[40].

The routines in the geant library simulate two and three body decays
according to pure phase-space distributions. Only the main decay modes of
muons, pions, kaons, and mesons are simulated. We have enriched the list of
simulated particle-decay modes to include rare decays and refined the kine-
matic distributions of the secondaries to include the correlations expected
from the matrix elements for the different decay processes.

The generator for φ events selects the φ decay channel and declares the de-
cay products to GEANT. Initial-state radiation and the beam-energy spread
of the machine ( ∆Ebeam/Ebeam = 0.05%) are taken into account event by
event in the simulation of the decay kinematics.

2.7.2 Machine background simulation.

A detailed simulation of detector activity due to the accidental coincidence
of hits from machine background is required in order to obtain the high pre-
cision and careful control of systematics needed for most physics analyses.
This activity consists mainly of noise hits in the DC and low-energy clus-
ters in the EmC, mostly at small angles. Background hits in the chamber
and calorimeter are added to the simulated events at the reconstruction stage.

For the 2001–2002 data, this background was obtained from e+e− → γγ
events satisfying specific topological cuts. These events are selected from
the data with a cross section of ∼ 40 nb. Since e+e− → γγ events are fully
neutral, all DC hits in these events are considered background, in addition
to all EmC clusters not identified as belonging to the γγ topology (care is
taken to correctly distinguish clusters from initial state radiation or from
cluster splitting, which actually belong to the γγ topology, from those due
to machine background).

We insert the hits from each background selected event into multiple
events in the corresponding MC run, with a reuse factor chosen to ensure
that all background events are used roughly the same number of times. This
ensures reproduction of the time-variable background spectrum in the simu-
lated output.

For both the EmC and DC, when hits are inserted, their timing relative
to the start time of the γγ event from which they were extracted is preserved.
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In the drift chamber, a background hit that arrives earlier than a simulated
hit on the same wire causes the simulated hit to be removed from the event,
and vice versa. On the calorimeter, if both a background hit and a simulated
hit occupy the same cell, the time of the earlier hit is retained, while the
energy is taken as the sum of the two hits energy.
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Chapter 3

η → π0γγ - Analysis.

In this chapter we will show the analysis strategy used to search for η → π0γγ
events. The production mechanism will be described and a detailed study of
the background channels will be given.
The analysis tools that we have developed and used in this work are pre-
sented. Data-Monte Carlo comparisons are shown for the relevant selection
variables. The analysis results will be given in the next chapter.

3.1 η production mechanism at KLOE.

The DAΦNE machine is a φ factory. The φ meson is produced in the process
e+e− → φ with a cross section of ∼ 3.1 µb. The φ meson decays in the η
particle with a branching fraction of ∼ 1.3 % [1]. The present analysis is done
with the DATA sample collected during years 2001 and 2002, corresponding
to a total integrated luminosity of ∼ 450 pb−1. The total number of produced
φ mesons is 1.5× 109 that leads to 2.0× 107 η mesons produced. Then the η
decays into the searched channel η → π0γγ. The π0 decays into two photons
almost every time being Br(π0 → γγ) = 98.798 ± 0.032 %. The final state
of the whole process is the production of 5 γ’s. The production and decay
chain has been depicted in fig. (3.1).
To identify the signal we will look for a peak in the energy distribution
of photons. In fact, being the φ → ηγ a two body decay, from energy-
momentum conservation one gets that the γ is a monochromatic photon.
Defining pφ, pη and pγ the quadrimomenta of φ, η and γ respectively, we can
write:

pφ = pη+pγ ⇔ p2
η = (pφ − pγ)

2 ⇔ m2
η = m2

φ−2·mφEγ ⇔ Eγ =
1

2

(

mφ −
m2

η

mφ

)
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π0

η final state
5γ

+

−

φ

e

e

Figure 3.1: Scheme of the production mechanism of the η meson and decay
chain into the π0γγ final state .

where Eγ is evaluated in the φ rest-frame. Using the values mφ = 1019.456±
0.020 MeV/c2, mη = 547.75±0.12 MeV/c2 one obtains Eγ = 362.67 ± 0.07 MeV.

3.2 Background to the η → π0γγ process.

As described in the previous chapter (see sec. 1.9) the measured branching
ratio for the η → π0γγ channel lies in the range (2.7 − 8.4) × 10−4. Taking
into account the e+e− → φ cross section and the φ → ηγ branching ratio,
the corresponding cross section is between 11 and 36 pb. The main back-
ground channels are reported in tab. (3.1) together with their effective cross
sections. They come from the φ decays to neutral kaons, f0, a0,η, Bhabha
scattering and e+e− → γγ.

3.2.1 KL crash, KS → 2π0

The φ→ KLKS can emulate the signal topology if a KL enters the calorime-
ter (KL crash) and a KS decays into two pions. In fact, being the φ almost
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channel σ (nb)

φ→ KL(crash)KS(→ π0π0) 175
φ→ KL(→ 3π0)KS(→ π0π0) 37
φ→ KL(→ 3π0)KS(→ π+π−) 239

φ→ f0(f0 → π0π0)γ 0.30
φ→ a0γ, a0 → ηπ0, η → γγ 0.26

φ→ η(η → 3π0)γ 13.8
φ→ η(η → π+π−π0)γ 10
φ→ η(η → γγ)γ 16.9
φ→ π0(η → γγ)γ 4.16

φ→ ρ0π0, ρ0 → η(→ γγ)γ 0.04
φ→ ρ0π0, ρ0 → π0γ 0.11

e+e− → ω(ω → π0γ)π0 0.45
e+e− → γγ 7.5

e+e− → e+e−(γ) 1.5 × 103

Table 3.1: Background for the η → π0γγ decay. The values are obtained
from [8]. For the f0 and a0 we use the KLOE measured value of the branch-
ing ratios φ → f0γ [41], φ → a0γ[42]. The Bhabha and gamma gamma
contribution are evaluated using a polar angular cut of 18◦ and a minimum
energy of 5 MeV for the radiated photons using the BABAYAGA Monte
Carlo generator [39].
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Figure 3.2: t − r/c distributions: (left top) clusters generated by KL crash,
(left bottom) clusters generated by photons produced at I.P, (right) partic-
ular view of clusters generated by photons produced at I.P.

at rest, the two kaons are produced with an energy of 509.8 MeV, their γ is
therefore 1.024, the KL mean free path is therefore 3.36 m. Being the mean
distance of the calorimeter walls from the Interaction Point (IP) 2.4 m, about
1/2 of KL reach the calorimeter where they undergo hadron interactions (KL

crash). The KS instead, having a mean free path of 0.6 cm, decay close to
the interaction point.
At the end we have 5 calorimeter clusters and no track, a situation that can
emulate the signal. This type of background can be easily rejected using
the time information provided by the calorimeter. In fact the KL spend in
average about 30 ns to reach the calorimeter, while the photons only 7 ns.
So the cluster associated to the KL crash is much later than the clusters
associated to the KS → π0π0 decay. In the φ→ η(→ π0γγ)γ process one has
five photons coming from the IP. Knowing the cluster position ~rclu and the
cluster time tclu one must have tclu − |~rclu|

c
∼ 0 (clusters with this property

are called prompt clusters). In fig. (3.2) the t − r/c variable is shown for
KL crash and photons. There the selection power of this variable can be
appreciated.

3.2.2 KL → 3π0, KS → π0π0

The process φ → KLKS,KL → 3π0, KS → π0π0 produces ten photons in
the final state. This could simulate the signal if 5 photons are lost. Cutting
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on the time of the photons is possible to reject the main part of the events
and only the events in which the KL decays near the interaction point are
potential background. In the case of not detected photons a cut on the total
energy of the prompt photons easily rejects this background.

3.2.3 KL → 3π0, KS → π+π−

The KL → 3π0, KS → π+π− could reproduce the signal if the π+ and π−

tracks are not reconstructed in the drift chamber. In this case the two pions
produce two clusters in the calorimeter that, together with the 6 photons
coming from the KL decay, produce 8 clusters. If three of them are lost,
the signal topology is reproduced. This background is rejected by the time
constraint too. In fact the KL is compelled to decay near the interaction
point while the charged pions have β ∼ 0.85, thus not satisfying the prompt
clusters condition.

3.2.4 f0γ, a0γ , ωπ0 and ρ0π0.

The φ → f0(→ 2π0)γ ends in a 5 γs final state reproducing exactly the
η → π0γγ topology. The only way to reduce this background is to reject
events in which 2 π0 are found. This is done by rejecting events with two pairs
of photons such that each one has the π0 invariant mass. In the η → π0γγ
case we have, in fact, only a pair of photons giving the π0 mass.
The same considerations are valid for φ→ a0(→ ηπ0)γ with η → γγ. In this
case a veto on the η → γγ invariant mass is imposed.
The e+e− → ωπ0 is a not resonant process. This means that it is not me-
diated by the φ particle. It is a background source if ω decays into π0γ. In
this case we end up with a π0π0γ final state. It can be rejected as the f0

background but in this case also a constraint on the mass of the π0γ system
can be imposed to veto the ω mass.
The ρ0π0 channel is a background candidate when ρ → η(→ γγ)γ and
ρ→ π0γ. It is easily rejected by the criteria used to reject f0 and a0.

3.2.5 Accidental clusters background.

The φ → η(η → γγ)γ, φ → π0(π0 → γγ)γ, e+e− → γγ are all events
with less than 5 photons. These can emulate the 5 photons topology if
clusters due to the machine background add up to the events producing a 5
cluster topology. As we will show later the machine background is mainly
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concentrated at small angle and low energy. A cut on the minimum energy
of the cluster and their angle fully rejects this background.
The same consideration is valid for the Bhabha process e+e− → e+e−, if
the two charged tracks are not reconstructed. Electrons travel almost at
the same velocity of photons and cannot be rejected by a time requirement.
Anyway the Bhabha angular distribution is very peaked at small angles, so
an angular cut rejects almost all of them.

3.2.6 η → 3π0

The φ→ η(→ 3π0)γ channel has 7 photons in the final state. It can emulate
the signal in three different cases: two photons are lost, one is lost and two
merge together and, finally, if two pairs of photons merge together into two
clusters. These three cases are treated in different ways as explained in the
following.

3.3 Event preselection, the EVCL algorithm.

The selection criteria described above are partially applied at DATA recon-
struction level. After DATA acquisition the event are processed by the back-
ground rejection filter, FILFO, described in section (2.6). After that a fur-
ther module called EVCL, event classification, divide the full data sample
in several, not disjointed, sets (streams). The events we are looking for are
collected in the so called “Neutral Radiative Stream”. It contains events
with an arbitrary number of gammas.
The selection criteria are the following:

• at least three prompt clusters which are not associated to the DC re-
constructed tracks by the “Track to Cluster” algorithm (see sec. 2.5);

• the total energy of the prompt clusters (prompt energy) must be greater
than 700 MeV to reject kaon background and charged event back-
ground.

The effect of this last cut is shown in fig. (3.3) for Monte Carlo simulated
events.

3.4 Time and number of clusters.

The events which we are looking for have only prompt photons. We look for
five clusters in the calorimeter and impose a time constraint on the clusters
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Figure 3.3: Total prompt energy (MC simulation): top events with at least
2 charged tracks in the final state; bottom neutral events. The EVCL cut
is shown. The two samples are independent.

as explained before. The mean position of the interaction point is known
run by run from the analysis of Bhabha scattering events. Given the cluster
position ~rclu, the average vertex position ~rvtx and the cluster time tclu, we
require that each cluster satisfies the following relation:

∣
∣
∣
∣

|~rclu − ~rvtx|
c

− tclu

∣
∣
∣
∣
< min(5σt, 2ns) (3.1)

where σt is a function of the cluster energy:

σt =

√

(54ps)2

√

E[GeV ]
+ (140ps)2

The time resolution is worse at low energy, this means that without the 2
ns condition many fake clusters could enter in the event. For this reason we
require 5 and only 5 clusters which satisfy equation (3.1).
The simpler requirement of just 5 clusters is not a good choice. This can be
seen in fig. (3.4) where the number of clusters expected from Monte Carlo
simulation is shown both for signal and background after the EVCL selection.
As we can see large part of the signal events have more than 5 clusters due
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to accidental clusters. In fig. (3.5) we have reported the number of prompt
clusters. In this case only a minor part of signal events has more than five
prompt clusters, while the background is much reduced with a 5 prompt
clusters requirement.

To improve the energy resolution a fit procedure has been applied that
compells the photons to close the kinematic. This procedure is described in
the following section.

3.5 Kinematic fit.

Given a set of measured quantities xi, we indicate with xtrue
i their true values.

xi is the best approximation of xtrue
i . In most cases xi is normal distributed

around xtrue
i with standard deviation σi. If the variables xtrue

i are constrained
by some physical law (energy-momentum conservation for example), they
must satisfy k equations, that we can write in implicit form:

Fj(x
true
k ) = 0 j = 1, . . . , k (3.2)

The fit procedure finds a new approximation (µi) of xtrue
i by minimizing the

quantity:

χ2 =
∑

i

(xi − µi)
2

σ2
i

and imposing the (3.2) constraints on µi. This has been done using the
lagrangian multipliers method, that consists in minimizing the quantity:

χ2 =
∑

i

(xi − µi)
2

σ2
i

+
∑

j

λjFj(µk) (3.3)

respect to the variables µi and λj. To this purpose an iterative procedure
has been developed.
In our case the xi are the following variables:

• the time of the 5 clusters, ti;

• the position of the clusters centroid xi, yi, zi;

• the clusters energy Ei;

• the mean position of the interaction point (IP) XIP , YIP , ZIP ;

• the mean value of the φ quadrimomentum PX , PY , PZ , E.
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0
200
400
600
800

1000
1200
1400

x 10 3

0 1 2 3 4 5 6 7 8 9 10 11 12

Background

number of prompt clusters

Signal

number of prompt clusters

0
200
400
600
800

1000
1200
1400

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.5: Number of prompt clusters for background and signal (Monte
Carlo simulation).



76 η → π0γγ - Analysis.

Variable σ

E
(

0.057/
√

E(GeV) + 0.006
)

· E
X 1.4 cm

Y (barrel) Z (end-cap) 1.4 cm

Z (barrel) Y (end-cap) 1.4cm/
√
E (GeV)

t
√

(0.14)2 + (0.054)2/E (GeV) ps

Table 3.2: Resolutions used in the kinematic fit. These values are used both
for DATA and MC.

The last two quantities are determined run by run with a dedicated algorithm
that works on Bhabha scattering events at large angle.
The total reconstructed variables are 32. On them we impose 9 constraints:
5 of them are the time of flight of photons, one for each cluster:

tj −
rj

c
= 0

rj =
√

(xj −Xvtx)2 + (yj − Yvtx)2 + (zj − Zvtx)2

where j runs on the five photons. The other four constraints are the energy-
momentum conservation:

PX,Y,Z =

5∑

i=1

P γi

X,Y,Z, E =

5∑

i=1

Eγi

where:

P γi

X =
xi −Xvtx

ri
Eγi , P γi

Y =
yi − Yvtx

ri
Eγi , P γi

Z =
zi − Zvtx

ri
Eγi

The σi are reported in tab. (3.2). The effect of the kinematic fit is shown in
fig. (3.6) where the energy spectrum of η → π0γγ is shown before and after
the kinematic fit for Monte Carlo simulated events.
In the figure we can see that the photon energy resolution has a big im-
provement thanks to the energy-momentum constraint. In fig. (3.7) we have
reported also the spectrum for the η → 3π0 background.In this case no res-
olution improvement is observed, this is simply due to the lost photons that
don’t allow to close the kinematic. On top of the distribution one can see
a small structure around 363 MeV. This is due to the η → 3π0 background
when there is the merging of two pairs of clusters. In this case there isn’t
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mass fit (MeV) sigma fit (MeV) mean (MeV) rms (MeV)
MC 134.93 ± 0.04 6.95 ± 0.05 135.2 5.228

DATA 135.08 ± 0.07 6.80 ± 0.09 135.3 5.197
Difference 0.15 ± 0.08 0.15 ± 0.10 – –

Table 3.3: m0
π values. The DATA-MC discrepancy is less than 2 sigmas both

on the central value than on the sigma. Furthermore they are in agreement
with the PDG value (134.9766± 0.0006) MeV [8].

missing momentum and the kinematic is correctly closed, so the fit improves
the energy resolution.
To test the ability of the Monte Carlo simulation to reproduce this effect,

we have selected a control sample enriched with events with 5 and only 5
photons coming from the IP. This sample is dominated by the process is
e+e− → ω(→ π0γ)π0.
It has five prompt photons in the final state and 2 π0 as intermediate state.
We can check the photon energy resolution before and after the kinematic fit
simply by comparing the π0 mass. To select this sample, reducing η → 3π0

contribution, we require that:

• the total energy is greater than 1000 MeV and the total momentum
is less than 100 MeV. The total momentum versus the total energy
histogram is shown in fig.(3.8), together with the selection region.

• a minimum cluster energy greater than 20 MeV and angle greater than
25◦, to reject accidental clusters.

In fig. (3.9) we show the mγγ distribution before and after the kinematic fit
for both DATA and MC. The energy resolution improvement is evident.

To compare better the shape of the peak, a direct comparison has been
made normalizing the histogram in the range 125 - 145 MeV/c2. The very
nice agreement is shown in fig.(3.10).

A quantitative comparison has been performed fitting these distribution
around the peak. The obtained values are reported in tab. (3.3) while the
fit result is shown in fig.(3.11).

Also the stability of the fitted value as a function of the photon energy
has been checked by fitting the mγγ distribution with a double gaussian plus
a 2th degree polynomial as a function of the energy of one of the two photons.
The photon energy range, [40-400] MeV, has been divided into 40 MeV wide
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mass fit (MeV) sigma fit (MeV)
MC 547.38 ± 0.13 9.3870 ± 0.16

DATA 546.65 ± 0.36 10.37 ± 0.48
Difference 0.73 ± 0.38 0.987 ± 0.51

Table 3.4: mη and sigma value for DATA and MC. The difference is below 2
sigma.

bins, the results are reported in fig.(3.12). Variation below 1% are observed.

The same comparison has been done around the η mass using the sample
φ → a0γ, a0 → ηπ0, η → γγ, in this case, due to the large presence of
background, also the background has been fitted from the sidebands. The
histogram has been fitted with a gaussian plus a straight line. The fit results
are reported in tab. (3.4) and the fitted histograms are shown in fig.(3.13).
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Figure 3.13: mη fit: (top) Monte Carlo, (bottom) DATA.

3.6 Selection variables.

After the first kinematic fit a second kinematic fit is done requiring also the
π0 mass constraint. In this case we have a total of 10 possible combination;
one for each way to associate a pair of photons to the π0.
The input to this fit are the calorimeter reconstructed variables, not the out-
put of the previous fit. The constraints are the same with the adjoint of the
π0 mass. All combinations are tried and the least χ2

π0 value is retained and
used as selection variable.
This variable is used to cut the relevant background that don’t close correctly
the kinematic, such as kaons background and η → 3π0 background.
The χ2

π0 is not useful to reject φ → ηγ, φ → π0γ and e+e− → γγ back-
ground. In this case the adjoint of two background clusters can easily close
the kinematic.
The background cluster energy is, anyway, pushed to zero by the first kine-
matic fit. These events, in fact, are able to close the kinematic with only
three photons, the other two are compelled to acquire value near to zero or
negative. This can be seen in fig. (3.14) where the energy of all photons after
the kinematic fit is shown.
To cut this background we cut on the minimum energy of the photons after
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the kinematic fit Emin > 20MeV and with an angle greater than 21◦. After
this cut the MC and data distribution looks like those reported in fig.(3.15).

A DATA-MC comparison on the χ2
π0 has been performed using the ωπ0

control sample. The result is shown in fig.(3.16) in linear and logarithmic
scale, there is in this variable a small discrepancy at small values. The error
expected from this discrepancy is much below the statistical error of the final
measurement (see chapter 4).

3.7 MC normalization.

In our Monte Carlo simulation there are several channels whose cross section
drastically depends on the total energy in the C.M. An example is the e+e− →
ωπ0 channel that is simulated with a constant cross-section around the φ peak
while it goes down at the φ meson mass due to the ω − φ interference.
For this reason the normalization of the different channels must be done
to have the correct background composition. To do this we use the mγγ

distribution of each pair of photon. We build 7 histograms, one for each
background channel that is relevant at this stage of the analysis: ωπ0, f0γ,
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Channel Correction factor

ωπ0 0.1408 ± 0.0017
f0 0.214 ± 0.008
a0 0.137 ± 0.007
ρπ0 0.09 ± 0.02

η 2 merged 0.59 ± 0.06
η 1 lost 1 merged 0.300 ± 0.019

η 2 lost 0.151 ± 0.012

Table 3.5: Correction factors applied to the simulated background channels
obtained fitting the mγγ spectrum. The MC statistic is 5 time the DATA
statistic, so a value of 0.2 is expected if MC was right.

a0γ, ρ
0π0, η → 3π0. The last one is subdivided into three topologies: 2 lost

photons, 1 lost photon and 1 merged cluster, 2 merged clusters. Given a
pair of photons we build the invariant mass and put it in the histogram, so
for each event we have 10 entries in the histogram. This is done to avoid
problems of the choice of the pair of photon linked to the π0.
We fit the DATA distribution with a linear combination of the 7 histograms,
and we obtain the background content of the DATA. In tab. (3.5) we have
reported the coefficients of the fit.
The result of the fit is shown in fig. (3.17). As a cross check of the result, also

the invariant mass of three photons has been built. The distribution peaks
at the ω mass in the case of the ωπ0 background. Using the normalizing
factors reported in tab. (3.5) one obtains the spectrum shown in fig. (3.18).
As it can be ssen, the spectrum is perfectly reproduced.

3.8 η → 3π0 rejection.

A large part of background comes from the process η → 3π0 when one or two
photons are lost. This happens, above all, at small angle where, due to the
presence of the beam pipe, the calorimeter has two holes. Furthermore at
small angle there is a lot of machine background and the clustering algorithm
fails to reconstruct clusters correctly. To reject this background we have
developed two dedicate kinematic fit procedures. One to reject the case in
which we lose two clusters and one in which we lose one cluster and merge two
other ones. In both cases we have a five cluster topology. The procedure is
based on the algorithm described in [43]. It is very similar to the procedure
described in sec. (3.5) but in this case we consider the momentum of the
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Figure 3.17: mγγ spectrum fitted to obtain the normalization of the back-
ground contributions.
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Figure 3.18: mγγγ obtained using the correction factors reported in tab. (3.5).
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Figure 3.19: Notation scheme for the kinematic fit description.

lost photons as unknown variables. For this reason we put 3 unknowns for
each lost photon in the fit corresponding to the linear momentum of the lost
photons. In the fit we constraint the η mass and the masses of the 3 π0.
This means that the kinematic constraint of the fit are 4 (coming from the
energy momentum conservation) plus 4 coming from the mass of the decaying
particles. In this way the fit is over constrained. To have the convergence of
the iterative procedure one must find some starting value for the unknowns.
These are determined by solving a subset of the constraining equations. We
proceed in the following way: we indicate with x and y the missing photons
quadrimomenta, with p the quadrimomentum of the detected photons and
with pmissing the total missing quadrimomentum, following fig. (3.19) we can
write the following system:







x + y = pmissing

(x + p3)
2 = m2

π0

x2 = 0
(y + p4)

2 = m2
π0

y2 = 0

⇔







x = pmissing − y
(pmissing − y + p3)

2 = m2
π0

(pmissing − y)2 = 0
(y + p4)

2 = m2
π0

y2 = 0

(3.4)

Defining with ~p the spatial component of the quadrivector p and with p4 the
time component (the energy) we can write:







~pmissing · y = p4
missingy

4 − p2
missing

2

~p2 · ~y = p4
2y

4 − ~pmissing · ~p2 +
m2

π0

2

~p4 · ~y = p4
4y

4 − m2

π0

2

y2 = 0

Now we define the matrix A and the vectors ~C and ~B in the following way:

A =





~pmissing

~p3

~p4



 ~C =





p4
missing

p4
3

p4
4



 ~B =







−p2
missing

2

−~pmissing · ~p2 +
m2

π0

2

−m2

π0

2






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so that the previous system can be written in the matrix form:

{

A~y = ~B + ~Cy4

y2 = 0
⇔
{

~y = A−1( ~B + ~Cy4)
y2 = 0

Substituting the upper equation in the lower one, one obtains:

y2 = 0 ⇔ (y4)2 − |~y|2 = 0 ⇔

⇔
(

1 − |A−1 ~C|2
)

(y4)2 + 2
(

A−1 ~B ·A−1 ~C
)

y4 + |A−1 ~B|2 = 0

This equation has a solution if and only if one has:

∆2

4
=
(

A−1 ~B · A−1 ~C
)2

−
(

1 − |A−1 ~C|2
)

|A−1 ~B|2 ≥ 0

The parameter ∆2 evaluated in this way is used as a cut parameter. It is
able, in fact, partially to reject the η → 3π0 with 2 γs lost background.
The momenta evaluated solving the system (3.4) are put as starting values
in the kinematic fit algorithm. Often the algorithm doesn’t reach the con-
vergence. This happens more for signal than for background. This effect can
be used as a further selection criteria (failing convergence means that the
event is not able to satisfy all constraints). In tab. (3.6) we have reported
efficiency and background rejection using two criteria: ∆2 < 0 and [∆2 < 0
OR no convergence]. When the fit converges the χ2 of the kinematic fit is

∆ < 0 ∆ < 0 OR no convergence

ε(η → π0γγ) 79.05 ± 0.19 % 95.25 ± 0.10 %
ε(η → 3π0) 2 lost 33.55 ± 0.07 % 51.63 ± 0.08 %

Table 3.6: Selection efficiency for signal and background for the two criteria
(see text).

shown in fig. (3.20) for signal and background.
The 1 lost - 1 merged case has been treated in the same way. In this

case we assume that the merged cluster is the sum of the energy of the two
photons which contribute to it. The procedure is very symilar to the 2 lost
case, only the unknown physical quantities are changed. In this case we have
5 unknowns: the lost photon momentum and the energy of the two pho-
tons contributing to the cluster. To obtain the starting values, following the
convention depicted in fig.(3.21), we can write:
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





~x = ~pmissing

(p3 + p4,1)
2 = m2

π0

(x+ p4,2)
2 = m2

π0

⇔







~x = ~pmissing

E4,1 =
m2

π0

E3(1−cosθ34)

E4,2 =
m2

π0

|~pmissing |(1−cosθ3x)

In the last equation the direction of the missing photon is simply given by
the the direction of the the missing momentum vector. In this case the fit
converges both for signal and background and the χ2 of the fit doesn’t help
(see fig. 3.22). Anyway other distributions can help. The energy of the
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Figure 3.22: Distribution of the χ2 of the kinematic fit in 1 lost - 2 merged
case, the curves for signal and background are pratically indistinguishable.

lost photon for example and its direction. These distributions are shown in
fig.(3.23) and are used to reject this background.
In the signal case the angle distribution of the lost photon identified by the

fit is flat in cosθ and its energy is small. In the background case, instead, the
photons are mostly lost at small angle and have higher energy in average.
These distributions are indeed used to reject background.
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Figure 3.23: Energy and angle distribution of the lost photon as given by the
kinematic fit, both for signal and background.

3.9 η → 3π0 with 2 merged clusters rejection

(the likelihood function).

The φ → η(→ 3π0)γ can reproduce a 5 γ’s topology if two pairs of clusters
merge together into 2 clusters. In most cases the merging happens between
two different π0, so that one has a π0γγγ topology which is the same topology
of the signal. No missing momentum is observed and the kinematic fit brings
the energy of the γ coming from the φ → ηγ to its expected value, that is
363 MeV (the same of the signal), making this background really irriducible.
To reduce it, a likelihood function has been built to identify the merged
cluster. In fact the spatial and temporal distribution of the hits which are
collected in a cluster is different for merged and not merged clusters. The
variables which are used in the likelihood are:

• The rms of the x,y, z and t coordinates of the hits, so defined (x for
example);

xrms =

n.hits∑

i=1

(xi − x̄)2 · Ei
∑n.hits

i=1 Ei

x̄ =

n.hits∑

i=1

xi ·Ei
∑n.hits

i=1 Ei

(3.5)

• the skewness of the x, y, and z variables.

xskw =
n.hits∑

i=1

(xi − x̄)3 · Ei
∑n.hits

i=1 Ei

(3.6)
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The distributions have been studied on a sample made of events with 7 γ’s,
coming from the process φ → η(→ 3π0)γ. The Monte Carlo distributions
have been corrected to reproduce the DATA distributions, in order to have a
good DATA-MC agreement. The clusters have been divided into two subsets.
Those with more than 3 hits (calorimeter cells in the cluster) and those with
3 hits. This because the distributions look quite different for the two cases.
Four likelihood variables have been built: 2 for the two endcaps and 2 for
the barrel.
The likelihood is built in the following way:

• the distribution of the variables defined in equations (3.5) and (3.6) are
normalized, and they give the p.d.f functions of the variables (let’s call
them vi), f(vi). The f(vi) are different for good clusters and merged
clusters, so we will have f good(vi) and fmerged(vi).

• The likelihoods for good and merged clusters are built according the
formula:

Lgood,merged(v1, v2, ..., vn) =
∏

i

f good,merged
i (vi)

• The logarithmic of the ratio of the two likelihood

r = log

( Lgood

Lmerged

)

is built and used as discriminating variable.

In fig. (3.24) the DATA-MC comparison of r for good clusters is reported.
The distributions are in good agreement. In fig. (3.25) we show the r distri-
bution for merged clusters and for not merged clusters. As one can see r is
able to distinguish between the two cases.

3.10 The f0, a0 , ωπ0 and ρ0π0 rejection.

This type of background produces five prompt neutral clusters in the calorime-
ter, anyway they can be rejected by vetoing the particles in the final state.
The f0 and ωπ0 have 2 π0 in the final state, while the a0 has an η that un-
dergoes a 2 γ decay. The veto is done by rejecting configurations in which 2
pairs of photons, whose invariant mass is the π0 one, are found, or one with
a π0 and one with an η. To reject ωπ0 also the m(ω) mass is vetoed . To do
this we build three discriminating variables:

S2(2π0) =
(m(γ1γ2) −m(π0))2

σ2
m(π0)

+
(m(γ3γ4) −m(π0))2

σ2
m(π0)
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Figure 3.24: DATA-MC comparison of r for good clusters from 7 γ events.
The 3 and > 3 hits cases are shown separately.

Figure 3.25: r distribution for good clusters (narrow distribution) and for
merged clusters (broad distribution) for barrel (left) and endcap (right).
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S2(ηπ0) =
(m(γ1γ2) −m(π0))2

σ2
m(π0)

+
(m(γ3γ4) −m(η))2

σ2
m(η)

S2(ωπ0) =
(m(γ1γ2) −m(π0))2

σ2
m(π0)

+
(m(γ4γ5) −m(π0))2

σ2
m(π0)

+
(m(γ1γ2γ3) −m(ω))2

σ2
m(ω)

The values of the uncertainties used for these variables are function of the
energy and direction of the photons. In our case the angular uncertainity is
negligible respect to the energy one. For this reason we neglect the effect of
angular uncertainty and we express the error on the mass as a function of
the uncertainty on the energy. This expression is very simple, in fact given
two photons γ1 and γ2 the invariant mass of the pair can be written in the
form:

mγγ =
√

2E1 · E2(1 − cosθ12)

and therefore:

σm

m
=

1

2

√
(
σE1

E1

)2

+

(
σE2

E2

)2

The energy resolution σE has been reevaluted. It is not the calorime-
ter energy resolution, because the kinematic fit improves it. The resolution
function has been estimated with Monte Carlo and shown in fig. (3.26).

To check DATA-MC agreement on the S variable, we select two control
samples. The ωπ0 control sample selected before is used to check S2(π0π0)
and S2(ωπ0) while a new control sample is defined to check S2(ηπ0). This
control sample is chosen in such a way to enhance the a0 contribution in the
DATA, this is done vetoing all other contributions with the following cuts:

• cluster energy > 50 MeV and angle > 25◦;

• χ2 kinematic fit < 20 to reject η → 3π0;

• S2(π0π0) > 10 to reject f0;

• S2(ωπ0) > 15 to reject ωπ0

• photon energy < 355 MeV to reject ηγ;

The DATA-MC comparison for the three variables is reported in fig. (3.27)
where a nice agreement can be seen in both linear and logarithmic scale. In
the same figure the expected distribution for the η → π0γγ signal is also
shown.
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Figure 3.27: DATA-MC comparison for S2(π0π0), S2(ωπ0) and S2(ηπ0): con-
tinuos line MC, error bars DATA. The MC distributions for the η → π0γγ
signal are also shown (right).



Chapter 4

η → π0γγ branching ratio
measurement.

In this chapter we give the Br(η → π0γγ) measurement, the cuts on the
selection variables described in the previous chapter. The statistical approach
used to extract the value is described.

4.1 Preselection.

The analysis has been done in two steps, a preselection and a selection. The
preselection selects events with 5 prompt neutral clusters whose total energy
is greater than 800 MeV from the FILFO (see sec. 2.6) and EVCL (see sec.
3.3) filtered data. The FILFO background and the EVCL filter efficiency are
evaluated at the end of the selection chain just to show that their contribu-
tion is negligible.

The FILFO and EVCL algorithm select 59677853 events from about 450
pb−1 of DATA. These events are then filtered by the preselection filter whose
efficiency and DATA sample size are reported in tab. (4.1).

The DATA sample selected in this way (1917490 events) is reduced to
discard noisily runs with bad trigger information and bad φ momentum de-
termination. This rejection leaves a DATA sample of 1866231 events.

4.2 Optimization algorithm.

To find the best combination of cuts needed to maximize the analysis sensi-
tivity, an algorithm has been developed that maximize the statistical signif-
icance.
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Cut ε(η → π0γγ) DATA sample

5 prompt clusters 60.8 ± 0.2 % 3044659
Etot > 800 MeV 93.46 ± 0.13 % 1935296
kinematic fit with 99.65 ± 0.03 % 1917490

π0 passed

Global efficiency - DATA reduction 56.6 ± 0.2 % 3.213 ± 0.002 %

Table 4.1: Efficiency and DATA suppression of the preselection cuts.

If we suppose to have an exact estimate of the background BMC from the
MC simulation, and in the data sample there are S signal events we detect
N = S + BMC , the error on N is

√
N so that the S estimate and the error

on S will be:

S = N − BMC σS =
√
N ∼

√

S +BMC

therefore the relative error on S will be ∼ S√
S+BMC

.
The significance has been maximized respect to the cuts on the variables
using the MC sample. The variables used to select the signal and reject
background are described in the previous chapter and are here summarized:

• the minimum energy of the photons after the kinematic fit Emin;

• the minimum angle of the photons θmin;

• the χ2
π0 of the kinematic fit with the π0 hypothesis;

• the S2(π0π0), S2(ωπ0), S2(ηπ0) as described in sec. (3.10);

• the angle θγx and the energy Eγx of the lost photon from the output
of the kinematic fit in the η → 3π0 with 1 lost and 2 merged photons
hypothesis (see sec. 3.8);

• the likelihood function for merged cluster identification, as described
in sec. (3.9).

To these cuts we add the response of the kinematic fit in the η → 3π0 with
two lost photons hypothesis, in particular we choose the combination re-
ported in tab. (3.6) right because it has an higher efficiency.

For Emin and θmin the optimization algorithm has been forced to scan
the region: Emin > 20 MeV and θmin > 21◦, in order to reject accidental
background as described in the previous chapter. It confirms these two values
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Optimized cut relative efficiency DATA selected.

θγ > 21◦ 94.07 ± 0.13 % 574474
Emin > 20 MeV 91.17 ± 0.16 % 286516
2 lost rejection 95.00 ± 0.13 % 246602

χ2
π0 < 15 (fig. 3.16) 57.40 ± 0.30 % 128197

S2(ωπ0) > 30 (fig. 3.27) 71.8 ± 0.4 % 34446
S2(π0π0) > 7 (fig. 3.27) 83.4 ± 0.3 % 12157
S2(ηπ0) > 8 (fig. 3.27) 62.4 ± 0.5 % 4422

16◦ < θγx < 164◦ (fig. 3.23) 97.7 ± 0.2 % 4136
Eγx < 76 MeV (fig. 3.23) 92.0 ± 0.4 % 3550

Likelihood (fig. 3.25) 53.7 ± 0.7 % 1034
r < −0.5 barrel, < 0. end-caps

EVCL 98.92 ± 0.19 %

Global efficiency (data suppression) 4.72 ± 0.08 % (1.73 ± 0.05) × 10−5

Table 4.2: Optimized cuts, efficiency and data sample rejection factor. The
FILFO and Trigger efficiency is 100 %

as optimum values.

After these cuts the efficiency is 4.72 % while we have 1034 events in the
DATA sample. The expected background composition as estimated by MC
is reported in tab. (4.3). In the same table we show the expected number of
events obtained using the correction factor of tab. (3.5).
As we will show after, the discrepancy between DATA and MC expected is
not due to the signal presence, this is a common problem of rare decay search,
even if the DATA and MC distribution agree very well also in the tail (has we
have seen in the previous chapter), the background that is suppressed with
a huge factor ∼ 1.73× 10−5 is hardly reproduced by the MC simulation. For
this reason we prefer not to use an absolute subtraction procedure, but to fit
a distribution in which the MC and background look very different.
To identify the signal we proceed in the following way:

• we identify the photon γφ originated in the φ decay among the 5 γ of
the φ → η(→ π0γγ)γφ process in the following way. Looking at the
inclusive distribution of the 5 γ’s energy shown in fig. (3.6), it can be
seen that the energy of the main part of photons is below the γφ peak
at 363 MeV. So γφ is simply identified as the most energetic photon.

• we build the invariant mass m(4γ) of the remaining 4 photons. It peaks
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Background channel N. events N. events corrected

ωπ0 709 99.83
f0 265 56.71
a0 361 49.46
ρπ0 203 18.27

η 2 merged 119 70.21
η 1 lost 1 merged 624 187.2

η 2 lost 1065 160.82

Total 3346 642

Table 4.3: Background expected from MC, with and without correction of
tab. (3.5).

at the η mass in the signal case.

In fig. (4.1) we show the m(4γ) distribution for both signal and weighted
background.
The number of signal events is extracted by fitting the 2 MC distributions for

signal and background to the DATA distribution with the method described
in the following section.

4.3 Maximum likelihood fit with finite Monte

Carlo statistic.

The fit has been performed using the HMCMLL routine of the HBOOK pack-
age [44]. It is useful when one has a small number of events in some of the
DATA histogram bins and a small number of events in the MC simulated dis-
tribution. The problem is described and the solutions shown in the following.

We want to determine the contents of two samples in our DATA distribu-
tion starting from several (2 in our case) MC predicted distributions. Let’s
suppose that the MC distribution has a very large number of events NJ and
let’s call with Pj (j = 1, 2, ..., m) the fraction of the sample j in our data. The
prediction fi for the number of events in the bin i of the DATA histogram is
given by:

fi = ND

m∑

j=1

Pjaji/NJ

where aji is the number of events that are in the bin i of the histogram of
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Figure 4.1: Monte Carlo distribution of m(4γ) for background (left) and
signal (right).

the source j. Being NJ very large the fluctuations on the numbers aji are
very small and as a consequence aji is very close to its true value. Let’s call
this value Aji.
If NJ is not so large the correct expression to use is:

fi = ND

m∑

j=1

PjAji/NJ

The quantities Aji are the expected values for aji and are unknown, while
ND is the number of events in the DATA histogram. The values aji are
distributed according a binomial distribution in each bin i. In the limit in
which Aji << NJ , that is the histogram has many bins, the aji distribution
can be well approximated by a Poisson distribution with mean Aji.
For what concern the DATA histogram, the content of the i bin, di, is dis-
tributed according a Poisson distribution with mean fi. Then we can build
a joint probability to find a value di for the content of the i bin of the DATA
histogram, whose expected value is fi, and to find a value aji, whose expected
value is Aji, for the content of the bin i of the source j histogram. In practice
we must maximize the following function:

L =
∏

i

e−fi
f di

i

di!
×
∏

ij

e−Aij
A

aij

ij

aij!

This distribution is maximized respect to the fraction Pj and the quantity
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Aji. Of course we are interested only to the Pj quantities.

To simplify the calculation it is better to maximize lnL that is:

lnL =
nbin∑

i=1

dilnfi − fi +
n.sources∑

j=1

ajilnAji − Aji

The values ln(di!) and ln(aij!) are constant quantities that don’t enter in the
maximization.

4.3.1 Weighted distributions.

In our case the MC background distribution comes from weighted events.
Each event k is weighted with a factor lk of tab. (3.5) according to the
background channel it belongs to. For this reason in each bin i we have
different weighted events. The MC spectrum is obtained by weighting each
i bin of the unweighted MC histogram with a weight wi obtained averaging
the weights lk of the events entering the bin i.
The only difference respect to the previous considerations is in fi definition:

fi = ND

m∑

j=1

PjwjiAji/NJ

4.4 The fit.

In fig. (4.2) we show the MC distributions used in the fit. The unweighted
background distribution together with the weights evaluated for each bin,
the MC weighted distribution and the signal distribution.
As can be seen in the figure the m(4γ) spectrum has been cut in the range
426 - 612 MeV/c2 to exclude very low populated bins. The chosen bin width
is 6 MeV.

The fit result for the background and signal fractions is:

P(background) = 0.907 ± 0.049 P(signal) =0.093 ± 0.031

and the covariance matrix is:
(

2.41 · 10−3 −0.847 · 10−3

−0.847 · 10−3 0.984 · 10−3

)
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Figure 4.2: MC distribution used to fit the DATA: (top) background un-
weighted together with the weights, (bottom) MC weighted with the signal.
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Figure 4.3: 4γ invariant mass DATA distribution fitted with MC shapes.

The DATA distribution fitted together with the MC background and
signal is shown in fig. (4.3). To show the significance of the signal fraction we
have reported in fig. (4.4) the 68.27 %, 90 %, 95 % and 99 % confidence region
in the background-signal fraction plane. The signal presence is significant at
about 99 %
Taking into account the 426 - 612 MeV/c2 window the signal efficiency is

4.63 ± 0.09 % and the DATA sample is of 735 events. So we obtain the
following numbers for background and signal events.

Nbackground = 667 ± 36 Nsig = 68 ± 23

To extract the branching ratio we have measured the number of η → 3π0

with a dedicated selection made selecting events in this way:

• FILFO and EVCL passed;

• seven prompt calorimeter clusters not associated to a charged track,
with an angle > 23◦ and energy > 20 MeV;

• at least a cluster with energy greater then 280 MeV.

The number of selected events in the same DATA sample is N(η → 3π0) =
2288882 while the efficiency is ε(η → 3π0) = 0.378±0.008(syst)±0.001(stat.),
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so we get the following result for η → π0γγ branching ratio:

Br(η → π0γγ)

Br(η → 3π0)
=
N(η → π0γγ) · ε(η → 3π0)

N(η → 3π0) · ε(η → π0γγ)
= (2.43 ± 0.82) × 10−4

That taking into account that Br(η → 3π0) = 32.51 ± 0.29 % we obtain:

Br(η → π0γγ) = (8.0 ± 2.7) × 10−5

4.5 Systematic studies.

The systematic due to DATA-MC discrepancies in the shape of the M4γ

distribution of the signal and of the background has been studied by varying
the bin width of the histograms used in the fit and the window chosen to fit
the histograms.

4.5.1 Systematic due to the bin width choice.

The bin width has been varied between 2 MeV and 9 MeV, the fit has been
done for each value of this bin width leaving the fitted region at [426 - 612]
MeV.
For each bin width the fractions of background and signal have been refitted,
the branching ratio has been reevaluated and reported in fig. (4.5). The
maximum excursion among the values is 0.52 × 10−5. The chosen bin width
gives the maximum value, so to symmetrize the error we correct the branching
ratio value for 1/2 of the excursion and give 1/2 of it as systematic error,
that is the central value is 7.70 × 10−5 while the systemetic error due to the
bin choice is 0.26 × 10−5.

4.5.2 Systematic due to the window chosen to fit m4γ

distribution.

To check the stability of the fit to the choice of the window used to extract
the branching ratio we have varied the lower cut in the range 378 - 474 MeV
and the higher cut in the range 570 - 720 MeV, the bin width has been fixed
to 6 MeV.
In fig. (4.6) we have reported the branching ratio as a function of the lower
mass cut (left) and of the higher mass cut (right). The systematic error
coming from these variation is taken as 1/2 of the maximum variation and
they are 0.44 × 10−5 for the lower cut and 0.56 × 10−5 for the higher cut.
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Source of systematic error variation range error

Bin width 2 - 9 MeV 0.26 × 10−5

Lower cut on m4γ 378 - 474 MeV 0.44 × 10−5

Higher cut on m4γ 570 - 720 MeV 0.56 × 10−5

Overall systematic error 0.8 × 10−5

Table 4.4: Systematic error summary.

The systematic error are resumed in tab. (4.4), the overall systematic error
is obtained by summing in quadrature the three contributions.
The final result taking into account the considerations on the systematic is:

Br(η → π0γγ) = (7.7 ± 2.7(stat.) ± 0.8(syst.)) × 10−5

4.6 Comparison with previous results.

In fig. (4.7) we compare the previous experimental results with the Branch-
ing ratio measured here. This result is discrepant with the GAMS value and
is marginally in agreement with Crystal Ball.
In fig. (4.8) we report the KLOE measured value with several theoretical
predictions.
As we can see all the predictions are quite high, the old theoretical estimate

of ChPT at O(p6) with vector resonance saturation is in good agreement with
the present result. So this result seems to confirm that the η → π0γγ is well
understood at O(p6). The NJL estimate of p6 contribution is in agreement
as well, while the inclusion of scalar meson contribution (a0) such as in the
ENJL model gives too high values.
The pure VMD estimate and the all order estimates give a too high value.
As we have seen in chapter 1 the p2 contribution vanishes while the p4 con-
tribution is suppressed by G-parity violation and the kaon mass in the prop-
agator. So one expects that the main contribution to the η → π0γγ comes
from O(p6) terms. The all order estimate give a value that is at least double
of O(p6). This is quite strange, in fact no reason for such high contribution
has been found. If this was the case the coefficient of higher order operators
would be unnaturally high and this would be a trouble for a perturbation
theory.
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Chapter 5

Upper limit on the η → γγγ
decay.

In this chapter we describe the analysis performed to search for the C-
violating decay η → γγγ in the data collected in the years 2001 and 2002.
The signal is searched in events with 4 photons in the final state. The spec-
trum of the most energetic photon is used to search for the signal. The
background is evaluated from data itself.

5.1 Introduction

The η meson is an even eigenstate of the charge coniugation operator C (see
sec. 1.9), while a photon is an odd C eigenstate. So any decay of the η meson
into a final state with an odd number of photons violates the C symmetry.
In the Standard Model, the C symmetry is exactly conserved in both strong
and electromagnetic decays, but it is violated in weak decays due to the V-A
structure of the weak couplings. In the framework of the Standard Model
the decay rate of the π0 → 3γ has been evaluated [45], and generalizing this
result to the η meson [46], one obtains Br(η → 3γ) < 10−12.
For this reason the discovery of a larger decay rate would be a clear signal
of SM violation. At the moment all predictions of alternative models are
far below the experimentally achievable limits [47]. From the experimental
point of view the only published result is that of the GAMS2000 experiment,
which has obtained the upper limit 5 × 10−4 at 90 % C.L. [8].
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5.2 Background

The signal in this analysis is φ → γη(→ 3γ) → 4γ, the cross section corre-
sponding to the GAMS upper limit is very low: < 0.02 nb, calculated taking
σφ=3.1 µb. So, background studies have to cover all possible neutral pro-
cesses. Relevant physical processes which give 4 photons in the final state
include e+e− → ωγ with ω → π0γ but also more important are processes
with less or more than 4 photons due to background which mimic 4 photons
events. The agreement with MC in the background description is very hard
to obtain due to the effects themselves that induce background: cluster split-
ting, cluster merging, accidental cluster due to machine background. These
effects are very difficult to reproduce, so in this case we have estimated the
background directly from data and used the MC only to evaluate the detec-
tion efficiency of the signal.

5.3 Preselection

The selection criteria are based on a sample of 120000 Monte Carlo φ→ γη,
η → γγγ events where the η meson decay is described by pure phase space
(since its matrix element is unknown).

To the events is applied a ’recovery splitting’ procedure (applied both to
data and MC). To suppress split clusters, it is required that every cluster
don’t have an association with a DC track.
The preselection criteria are described here:

1. We require 4 prompt clusters in the calorimeter (see sec. 3.2 for the
prompt cluster definition). Photons of a signal event come from the
I.P.(interaction piont), must have t-r/c within a time window of 5 times
the calorimeter time resolution σt, see tab. (5.1) for the time resolution
used.

2. We require 4 “good” photons. Where a good photon is defined in the
following way: the cluster energy is greater than 30 MeV, the angle
respect the beam line is such that |cosθ| < 0.93. Cluster energy cut
rejects fake clusters and split clusters, the polar angle interval 21.6◦-
158.4◦ excludes the blind region around the beam-pipe where a lot of
machine background and bhabha background is present.

3. We require that the total energy of prompt clusters be greater than
800 MeV and the total momentum of prompt clusters < 200 MeV to
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reject kaons and charged events background. These last two cuts , as
in the η → π0γγ case, reject multi photons events with a number of
photons greater than 4, which give background if some photons are lost.

At the end of the preselection we have 71865 preselected events in 2001 data
and 118180 in 2002 data.

5.4 Selection

The events that pass the preselection are stored and to them are applied the
following additional cuts:

1. θγγ>15◦, θγγ is the minimum angle between two photons, to further
reject split clusters, which mainly come from 3γ final states.
Fig. (5.1) shows the distribution of the minimum angle between two
photons for φ→ π0γ → 3γ, φ→ η(→ γγ)γ → 3γ, φ→ η(→ 3γ)γ → 4γ
final states (the distributions are taken from Monte Carlo without ac-
cidental cluster simulation) and 2001 data. The peak around 10◦ in the
data distribution is clearly due to residual split clusters.

2. Emin > 50 MeV, |cosθ| < 0.91; these cuts further reject accidental
clusters and QED background, see fig. (5.2) and fig. (5.3).

5.4.1 Kinematic fit procedure

At this point a kinematic fit procedure is applied to the four photons to
improve the energy resolution. The input variables of the fit are the following:

• X,Y,Z coordinates of the cluster;

• E energy of the cluster;

• t time of the cluster;

• X,Y,Z of the interaction vertex (only data, 0 0 0 for MC);

• E,Px,Py,Pz of the φ (obtained run by run from bhabha analysis for
DATA, (1019.413, -12.7,0.,0.) MeV for MC);



114 Upper limit on the η → γγγ decay.

θγγ

θγγ θγγ

θγγ

ev
en

ts
/(

0.
8 

de
gr

ee
s)

ev
en

ts
/(

0.
8 

de
gr

ee
s)

Figure 5.1: θγγ for the following samples: MC π0γ → 3γ, MC ηγ → 3γ, MC
Signal η → 3γ, 2001 DATA.
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Figure 5.2: cosθ distribution for: up 2001 DATA, down MC signal.
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Figure 5.3: Minimum energy of the four photons for: up 2001 DATA, down
MC signal

The fit is made according to the Lagrange’s multipliers method, minimizing
the following χ2:

χ2 =
∑

i

(xi − µi)
2

σ2
i

+
∑

j

λjFj(µk) (5.1)

with 27 free parameters where the Fj(µk) represent the energy, momentum
and time constraints.
The errors used for the fitted variables, different for DATA and Monte Carlo,
are reported in tab. (5.1). The χ2 of the kinematic fit is used to reject
background using the cut χ2

min > 25 (see fig. 5.4). At this point the main
source of background is given by the channel e+e− → ω(→ π0γ)γ where
a photon comes from initial state radiation. To see it, we procede in the
following way. First we do a kinematic fit with the hypothesis of a π0γγ
final state, choose the combination with the mimimum χ2, then we plot the
variable mπ0γ, choosing the most energetic photon between the two photons
that aren’t linked to the π0 (see fig. 5.5).
Events with a π0 in the final state are a very large fraction of background,
they come also from φ→ f0γ → π0π0γ, φ→ a0γ → ηπ0γ and φ→ π0γ final
states. So we reject events containing a π0 by cutting on the invariant mass
built from any couple of photons, mγγ . This variable is plotted in fig. (5.6)
both for 2001 DATA and MC signal. The cut chosen is 90 MeV/c2 < mγγ <
180 MeV/c2.
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Variable σMC σDATA

E
(

0.05/
√

E (GeV)
)

· E
(

0.057/
√

E(GeV) + 0.006
)

· E
X 1.2 cm 1.2 cm

Y (barrel) Z (end-cap) 1.2 cm 1.2 cm
Z (barrel) Y (end-cap) 0.85cm√

E(GeV)
1.4cm√

E (GeV)

t 0.05/
√

E (GeV) ps

√

(0.15)2 + (0.054)2

E (GeV)
ps

Table 5.1: Resolutions used in the kinematic fit
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Figure 5.4: χ2 of kinematic fit distribution for: up DATA, down MC signal.
Events with χ2 > 25 are rejected.
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Figure 5.5: mπ0γ distribution, a clear peak is visible around the ω mass.
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Figure 5.6: mγγ distribution for: up 2001 DATA, down MC signal. Events
in the 90 - 180 MeV mass window are rejected.
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5.5 DATA - MC comparison on mγγ

To test the agreement of the data with MC distribution, we have chosen two
samples of events, one with 3γ final state and one with 7γ final state. The
two samples are: φ → π0γ and φ → ηγ → 3π0γ. In fig. (5.7) and fig. (5.8)
mγγ is shown for DATA and MC. A small discrepancy can be seen for both
samples. The discrepancy reflects the difference between MC and DATA en-
ergy resolution, well known for the old MC generator. To demonstrate this,
we have smeared the energy of every photon with a gaussian distribution
whose sigma is: σsmear =

√

σ2
DATA − σ2

MC and rebuilt the mγγ variable. The
result is in the lower plots, which show a better agreement. Therefore to
evalutate the efficiency of the cut we have used the smeared data.
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Figure 5.7: mγγ distribution for φ → π0γ sample, the solid line is the MC
distribution while the points are 2001 DATA, the two distributions are nor-
malized in the range shown in the plot. Up: unsmeared distribution, down:
smeared distribution (MC only)

5.6 Spectrum of the most energetic photon

To search for η → 3γ events, we look for a peak in the distribution of the
energy Emax of the most energetic photon evaluated in the φ reference frame.
This is the recoil photon of the φ→ ηγ decay for the majority of the events.
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Figure 5.8: mγγ distribution for φ → ηγ → 3π0γ sample, the solid line is
the MC distribution while the points are 2001 DATA, the two distributions
are normalized in the range shown in the plot. Up: unsmeared distribution,
down: smeared distribution (MC only)

Its energy is 362.7 MeV. In fig. (5.9) the distribution for MC, 2001 and 2002
DATA is shown. The two distributions for 2001 and 2002 overlap very well.
A Kolmogorov test gives a compatibility probability of 26%, so we use the
whole sample. From the distribution is clear that there isn’t a narrow peak
in Emax, so we don’t see any evidence of η → 3γ events. For this reason we
evaluate an upper limit on the Br(η → 3γ) using this distribution.

5.7 Upper limit evaluation

To evaluate the upper limit we proceed in the following way. We choose as
signal region (the region where there is the main part of the signal) the range
[350,379.75] MeV (17 bins, 1.75 MeV wide). We assume that there isn’t a
signal out of this range or it is negligible and doesn’t affect the shape of the
background distribution. Then we fit the distribution of the DATA in the
domain [280,350] MeV ∪ [379.75,481.25] MeV with a fifth degree polynomial.
The fit is good (χ2/n.d.o.f = 78/92); the fitted parameters are reported in
tab.(5.2) and fig. (5.10). We use the result to obtain the expected number
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Figure 5.9: Energy of the most energetic photon in the φ reference frame:
left: 2002 DATA (continuous line), 2001 DATA (dot); right: MC signal
η → 3γ
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Figure 5.10: Emax distribution for 2001+2002 DATA, the interval used for
background estimation is shown.
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Parameter Value
a1 -8636 ± 5
a2 278.592 ± 0.019
a3 -1.64141 ± 0.00005
a4 4.74211 · 10−3 ± 0.00013 · 10−3

a5 −6.6872 · 10−6 ± 0.0003 · 10−6

a6 3.6756 · 10−9 ± 0.0005 · 10−9

χ2/n.d.o.f = 78/92 Prob(χ2 > 78) = 85%

Table 5.2: Fitted parameters with errors and χ2 of the fifth degree polynomial
fit:Pol(x) = a1 + a2 · x+ a3 · x2 + a4 · x3 + a5 · x4 + a6 · x5

of background events in each bin, N b
i in the signal region [350,379.75].

N b
i = a1 + a2 · xi + a3 · x2

i + a4 · x3
i + a5 · x4

i + a6 · x5
i

The total number of observed events in the signal window is 1513 while from
integration of the polynomial we obtain 1518 events in the same region.

In this range we assume to have both background and signal and build a
χ2 function in this way:

F =
∑

i

(Ni −N b
i )

2

N b
i

,

where Ni is the number of observed counts in the ith bin, and the sum is over
bins in the signal region.
To extract an upper limit we use the Neyman’s construction procedure [48].
We obtain the distribution function for F for various values of the number
of signal counts s as follows. First, we construct the values Ni by sampling a
Poisson distribution with mean 〈Ni(s)〉 = N b

i +s×fi, where fi is the fraction
of signal events (

∑

i fi = 1, see fig. 5.9, left) in the ith bin, and evaluate F .
Repeating this procedure 106 times for each value of s we obtain the complete
p.d.f., which is numerically integrated to obtain the 90% and 95% contours
in Neyman’s construction. These countours are shown in fig. (5.11). We
then evaluate F using the observed Ni. We find F = 13.45, from which we
obtain

Nη→3γ ≤ 63.1 @ 90% C.L. ≤ 80.8 @ 95% C.L.

5.8 Selection efficiency

Here we report the summary of the efficiency for all the cuts.
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Figure 5.11: 90% and 95% CL upper limits on signal count. The observed
value of F is indicated.

Selection cut (filter) MC events ε∗r
FILFO 113775/120000 0.9481 ± 0.0006
EVCL 95307/113775 0.8377 ± 0.0011

Ntime = 4 84665/95307 0.88340 ± 0.0010
N(Good photons) = 4 75195/84665 0.8883 ± 0.0011

θγγ > 15◦ 72880/75195 0.9692 ± 0.0006
Etot > 800 ∗∗MeV 72880/72880 1

Total momentum < 200 ∗∗MeV 72879/72880 1
Emin > 50MeV 67676/72979 0.9273 ± 0.0010
|cosθ| < 0.91 61327/67676 0.9062 ± 0.0011
χ2

min < 25 59048/61327 0.9628 ± 0.0008
90 MeV/c2 < mγγ < 180 MeV/C2 29968/59048 0.508 ± 0.002

350 MeV < Emax < 390 MeV 24360/29968 0.813 ± 0.002
Overall 24360/120000 0.2030 ± 0.0012

∗ evaluated respect to the previous cut, ∗∗ these cuts are in EVCL yet
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5.9 DATA-MC comparison and systematic er-

rors evaluation

In this section we evaluate various systematic effects, especially those which
may arise from differences in the data/MC distributions used in the analysis.

5.9.1 Systematics due to the χ2cut

We evaluate the systematics due to possible differences in the χ2 distribution
between data and MC by comparing a data control sample with MC. The
chosen control sample is the channel e+e− → ω(→ π0γ)γ → 4γ that is
the only channel with four photons that we have in our selection. Because
the kinematic fit requires only the energy-momentum conservation, we can
compare its χ2 distribution directly to that of the channel η → 3γ from MC.
The selection of the control sample is done in the following way.

• We do a kinematic fit under quadrimomentum conservation hypothesis.
We build the mγγ variable for any pair of photons and select as mπ0

the closest value to the π0 mass;

• we do a kinematic fit under π0 and quadrimomentum conservation hy-
pothesis and select the combination that minimize the χ2, then we build
the variable mπ0γ, using as γ the most energetic of the remaining two
γ not associated to the π0.

The plot of the two dimensional distribution (mπ0γ, mπ0) is reported in fig.
(5.12). There can be seen a peak due to the ωγ process. We plot the projec-
tion along mπ0 in fig. (5.13) and select the range 128 < mπ0 < 145 MeV/c2.
For these events we plot mπ0γ, shown in the same figure, and select the range
760 < mπ0γ < 815MeV/c2.

The events that pass this selection are the ωγ candidates. In fig. (5.14)
we have reported the χ2 distribution of the kinematic fit, under energy-
momentum conservation hypothesis, for the selected ωγ sample and for MC
η → 3γ sample. The upper plot is the χ2 distribution, the lower plot is the
fraction of events that survives to a given χ2 cut, normalized to the range
shown in figure. For χ2

cut = 25 the DATA-MC discrepancy is about 3% (in
fact being the kinematic fit done only requiring total energy-momentum con-
servation the two χ2 distributions should be the same. This is the systematic
error that we assume for this cut.
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Figure 5.12: Two dimensional distribution of mπ0γ versus mγγ .
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Figure 5.13: up distribution of mγγ closest to the true value of π0 mass;
down distribution of mπ0γ after the selection on mγγ (see text). In both
figures the lines indicate the selected range.
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Figure 5.14: (Up) χ2 distribution for MC η → 3γ, continuous line, and ωγ
selected sample (see text), dashed line.

5.9.2 Systematic due to photon detection efficiency

The MC doesn’t simulate with full accuracy the photon detection efficiency.
Using a sample of φ → π+π−π0 the efficiency has been evaluated directly
from DATA as a function of the energy and cos(θ) of the photon, the ratio
w = εdata/εMC has been evaluated. For this reason, we have evaluated the
quantity:

Weight =
4∏

i=1

wi “i” runs on the four photons.

for each event. The sum of the weights gives the effect of this discrepancy
on the efficiency. The results are:

unweighted events 24360/120000 (20.3 %)
weighted events 24012/120000 (20.0 %)

∆ε/ε 1.5 %

The same effect is seen in the η → 3π0 that we will use to evaluate the upper
limit. The effect on the ratio of the efficiencies ε(η → 3π0)/ε(η → 3γ) is
below 1 %.
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Figure 5.15: Energy distribution of photons in the φ → η(→ γγ)γ sample.
Each event enters three times in the histogram, one for each photon. Both
MC (continuous line) and DATA (points) are shown. To the energy value
has been subtracted 361.68 MeV for MC and 362.707 MeV for DATA to take
in account the wrong η mass value that is in the MC generator.

5.9.3 Systematics due to the shapes of signal and back-

ground

To test if the kinematic fit introduces a bias in the photon energy that is
different for DATA and MC, we have analyzed a sample of 3γ events (φ →
η(→ γγ)γ) and compute the energy of each photon. This energy is plotted
in fig. (5.15) both for DATA and MC. After having taken into account the
wrong η mass that we have in MC generator (mη = 548.8 MeV instead of
547.3 MeV) the two distributions overlap very well, so we don’t quote the
systematics on this variable.
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5.9.4 Other systematics.

The stability of the upper limit versus the background estimate has been
checked by comparing the results of polynomials of different degree for fit-
ting the E(γhi) distribution outside the signal region. A 3rd order polynomial
doesn’t describe the background shape well. A 4th order polynomial gives a
lower value for the signal yield, while a 6th order polynomial gives the same
result. We have also checked the stability of the result by changing the win-
dow chosen for evaluation of the upper limit obtaining a maximum variation
of 11%.
Also the systematics coming from the assumption of a flat phase space dy-
namic of the three bodies decays has been checked by using the matrix ele-
ment determined by Dicus for the π0 → 3γ case [45] and we find a value 5%
lower.

All the systematic contributions are summarized in tab. (5.3)

Contributions to the systematic error
χ2

cut 3 %
ε(η → 3π0)/ε(η → 3γ) 1 %

Polynomial degree and window variation 11 %
Theoretical model 5 %

Table 5.3: Summary of the contributions to the systematic error

5.10 Final result

We have evaluated the number of η in the data sample through the study of
the decay channel η → 3π0 as in the η → π0γγ case (see sec. 4.4).
Then we evaluate the ratios of the two branching ratios:

Br(η → 3γ)

Br(η → 3π0)
≤ NUp εη→3π0

Nη→3π0 εη→3γ

being ε(η → 3γ) = 20.0 ± 0.01(stat.) ± 0.02(syst.) ± 0.006(χ2
cut), we obtain:

Br(η → 3γ)

Br(η → 3π0)
≤ 6.3 · 10−5 95 % C.L.

Br(η → 3γ)

Br(η → 3π0)
≤ 4.9 · 10−5 90 % C.L.
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Using the PDG2002 value for Br(η → 3π0) = (32.51 ± 0.29)% we have:

Br(η → 3γ) ≤ 2.0 · 10−5 95 % C.L.

Br(η → 3γ) ≤ 1.6 · 10−5 90 % C.L.



Conclusions

In this work we have measured the η → π0γγ branching ratio with the KLOE
experiment.
The decay has been searched in 5 γ’s events due to its decay topology:
φ→ η(→ π0γγ)γ.
The background is of three types: 5γ’s events originating by other decay
processes, > 5γ’s events with the loss or the merging of some clusters, < 5γ’s
events with the adjoint of accidental clusters.
The direct 5 γ sources are reduced through cuts on the intermediate particles
mass.
The > 5γ’s events are due mainly to η → 3π0 decay. There are three different
topologies which simulate signal: η → 3π0 with two lost clusters, with one
lost cluster and two merged clusters, and the third with 2 pairs of merged
clusters.
The topologies with lost photons are reduced with dedicated kinematic fit
in the background hypothesis, the third has been reduced with a likelihood
function built using cluster shape variables: position and time.
Background coming from < 3γ events plus accidental has been completely
rejected with a cut on the energy and angle of the photons.
Background coming from kaons decays has been completely rejected using
the time information provided by the calorimeter.
MC has been used to simulate the signal and background. All the selection
variables show a good agreement with the DATA. This agreement has been
studied using some control samples.
The background composition has been determined by fitting the mγγ distri-
bution at an early stage of the analysis and the relative contributions of the
background components have been fixed in the following.
The signal has been extracted by a maximum likelihood fit of the m(π0γγ)
distribution, that shows a significant peak at the η mass. The background
spectrum has been obtained by MC.
Being the available MC sample just 5 times the DATA sample, the statistical
fluctuations of the MC have been included in the fit.
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The signal presence has been established at about 99 % C.L.
The selection efficiency is ∼ 4.6%. To extract the η → π0γγ branching ratio
the number of η → 3π0 decays in the same DATA sample has been deter-
mined with a dedicated analysis requiring 7γ’s.
Using the η → 3π0 branching ratio we find Br(η → π0γγ) = (7.7±2.7)×10−5.
This value is in agreement with Chiral Perturbation Theory prediction at
O(p6) with vector resonance saturation assumption and some NJL model
evaluation of L6 Lagrangian.
The value is in clear disagreement with the GAMS measurement and is com-
patible with the recent Crystal Ball measurement.

In doing this work also another channel has been studied: η → 3γ. This
a C violating decay whose branching ratio is predicted at < 10−12 in the
Standard Model. The work has been recently published by the KLOE col-
laboration [49] and the value obtained is Br(η → 3γ) < 1.6 × 10−5 @90%
C.L. This is the world best limit for this decay and is a factor ∼ 40 lower
than the previously published upper limit.
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[7] E. Oset, J. R. Pelaź and L. Roca, Phys. Rev. D67 (2003) 073013

[8] K. Hagiwara et al. (Particle Data Group), Phys. Rev. D66 (2002) 010001

[9] S. Bellucci and C. Bruno, Nucl. Phys. B452 (1995) 626

[10] J. F. Donoghue, E. Golowich and B. R. Holstein, Dynamics of the Stan-
dard Model, Cambridge (1992)

[11] S. Bellucci, J. Gasser and M. E. Sainio, Nucl. Phys. B423 (1994) 80

[12] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B321 (1989)
311

[13] J. N. Ng and D. J. Peters, Phys. Rev. D46 (1992) 5034

[14] J. N. Ng and D. J. Peters, Phys. Rev. D47 (1993) 4939

[15] J.Bijnens, A. Fayyazuddin and J. Prades, Phys. Lett. B379 (1996) 209

[16] Y. Nemoto, M. Oka and M. Takizawa, Phys. Rev. D54 (1996) 6777

[17] A. A. Belkov, A. V. Lanyov, S. Scherer, J. Phys. G 22 (1996) 1383



132 BIBLIOGRAPHY

[18] The KLOE Collaboration, A. Aloisio et al, Phys. Lett. B541 (2002) 45

[19] G. Di Giugno et al., Phys. Rev. Lett. 16 (1966) 767.

[20] M.N. Achasov et al., Nucl. Phys. B600 (2001) 3

[21] A.A. Wahling, E. Shibata, I. Mannelli, Phys. Rev. Lett. 17 (1966) 221

[22] M. Feldman et al., Phys. Rev. Lett. 18 (1967) 868.

[23] C. Baltay et al., Phys. Rev. Lett. 19 (1967) 1495

[24] S. Buniatov et al., Phys. Lett. 25 B(1967) 560.

[25] F. Jacquet et al, Phys. Lett. 25 B (1967) 574

[26] F. Jacquet, U. Nguyen-Khac, A. Haatfut, A. Halsteinslid, Nuovo Ci-
mento 63 A (1969) 743.

[27] B. Cox, L. Fortney, J. Colson, Phys. Rev. Lett. 24 (1970) 534

[28] M. T. Buttran, M. N. Kreisler, R. E. Mischke, Phys. Rev. Lett. 25 (1970)
1358

[29] S. Devons et al., Phys. Rev. D 1 (1970) 1936

[30] S. Schmitt et al., Phys. Lett. 32 B (1970) 638

[31] Z. S. Strugalski et al., Nucl. Phys. B 27 (1971) 429

[32] A. T. Abrosimov et al., Yad. Fiz. 31 (1980) 371; A. T. Abrosimov et al.,
Sov. J. Nucl. Phys. 31 (1980) 195.

[33] Alde et al., Z. Phys. C25 (1984) 225

[34] N. Knetch et al., Phys. Lett. B589 (2004) 14

[35] A. Aloisio et al., Nucl. Instrum. Meth. A 516 (2004) 288.

[36] R. Brun, et al., GEANT3, CERN-DD/EE/84-1 (1984).

[37] R. Brun, et al., GEANT: Simulation for particle physics experiments,
user guide and reference manual, CERN-DD-78-2-REV (1978).

[38] F. A. Berende, R. Kleiss, Nucl. Phys. B 228 (1983) 537.

[39] C. M. Carloni Calame, et al., The BABAYAGA event generator, hep-
ph/0312014 (2003)



BIBLIOGRAPHY 133

[40] N. N. Achasov, V. V. Gubin, Phys. Rev. D 63 (2001) 094007.

[41] A. Aloisio et al., Phys. Lett. B537 (2002) 21

[42] A. Aloisio et al., Phys. Lett. B536 (2002) 209

[43] A. G. Froedesen, O. Skjeggestad, H. Tøfte, Probability and Statistics in
Particle Physiscs - Universitetsforlaget (Bergen, Oslo, Tromsø)

[44] CERN Program Library Long Writeup Y250
(http://wwwasdoc.web.cern.ch/wwwasdoc/hbook html3/hboomain.html)

[45] D.A. Dicus, Phys. Rev. D12 (1975) 2133

[46] P. Herczeg, Proc. Int. Workshop on Production and Decay of Light

Mesons, P. Fleury ed., Paris, France, (World Scientific, 1988), 16.

[47] B.M.K. Nefkens and J.W. Price, Phys. Scripta, T99 (2002) 114

[48] G.J. Feldman, R.D. Cousins, Phys. Rev. D57 (1998) 3873; J. Neyman,
Phil. Trans. A236 (1937) 333

[49] A. Aloisio et al., Phys. Lett. B591 (2004) 49


