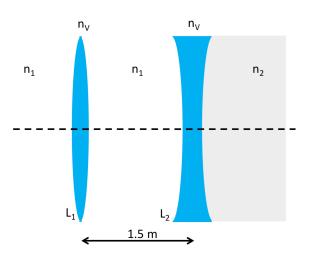

Esame scritto di Fisica Generale 2 - Sessione Estiva - Primo Appello

16 Giugno 2020

1 Esercizio 1 (15 punti)


Il circuito mostrato in figura è costituito da un generatore di forza elettromotrice del valore di 10 V, dall'interruttore T1, dalle resistenze $R_1=2K\Omega,\,R_2=1K\Omega$ e dall'induttanza L. L'interruttore T1 è inizialmente aperto, ad un certo istante l'interruttore T1 viene chiuso:

- 1. si determini la legge temporale della corrente I_2 che attraversa la resistenza R_2 ;
- 2. dopo un tempo di 1 μs dalla chiusura dell'interruttore T1 si misura la differenza di potenziale ai capi della resistenza R_2 che risulta essere di 1 V, determinale il valore dell'induttanza L;
- 3. l'induttanza è un solenoide di lunghezza 10 cm, raggio 1 mm e costituito da 200 spire, al suo interno è posto un materiale omogeneo di permeabilità magnetica relativa μ_r , dterminare il valore di μ_r ;
- 4. dopo un certo tempo il circuito raggiunge condizioni stazionarie, determinare il valore del campo magnetico H e del campo di induzione magnetica B sull'asse del solenoide.

2 Esercizio 2 (15 punti)

Un sistema ottico (vedi figura) è costituito da due lenti sottili L_1 ed L_2 . La lente L_1 ha raggi di curvatura $R_1=+1$ m ed $R_2=-2$ m, la lente L_2 ha raggi di curvatura $R_1=-1$ m ed $R_2=+1$ m. Le due lenti sono poste ad una distanza di 1.5 m l'una dall'altra. La lente L_1 è immersa in un mezzo di indice di rifrazione $n_1=1$. Lo stesso mezzo è presente a sinistra della lente L_2 mentre alla sua destra è posta una sostanza di indice di rifrazione $n_2=1.2$. Entrambe le lenti sono costituite da vetro di indice di rifrazione $n_V=1.5$. Determinare la posizione dell'immagine di un oggetto posto a sinistra della lente L_1 ed a grande distanza da essa, si determini inoltre l'ingrandimento lineare del sistema in questa configurazione.

