KLOE EMC SIMULATION WITH FLUKA

B. Di Micco

Università degli Studi di Roma Tre I.N.F.N sezione di Roma III

for the FLUKA-in-KLOE group (B. Di Micco, A. Ferrari, A. Passeri, V. Patera)

B. Di Micco

FLUKA meeting

The KLOE calorimeter

The KLOE calorimeter

Calorimeter module

24 barrel modules Trapezoidal section (52 – 59)x23 cm² length: 430 cm

Pb/Sci fibres structure 200 layers, lead foils + glue + fibres

B. Di Micco

FLUKA meeting

Working principle

(1) Scintillating fiber (1mm diameter) [emitting in the blue-green region ($\lambda_{peak} \sim 460 \text{ nm}$)]

(2) Lead: 0.5mm grooved layers (95% Pb and 5% Bi)

(3) Glue: Bicron BC-600ML (72% Epoxy resin, 28% Hardener)

n(core=**polystirene**) = **1.6** n(cladding=**PMMA**) = **1.49** Only ~**3%** of photons produced are trapped in the fiber But :

- (a) ~ uni-modal propagation at $21^\circ \rightarrow$ small transit time spread
- (b) Small attenuation ($\lambda \sim 4-5 \text{ m}$)
- (c) Cladding light removed by optical contact with glue n(glue) ~ n(core)

Fibers used: Kuraray SCSF-81 Pol.Hi.Tech. 00046

15.000 km of fibers

(fully tested: A.Antonelli et al., NIM A370 (1996) 367)

FLUKA meeting

Material simulation and compounds

Active material (fibres+cladding)

Polystyrene C_2H_3 homogeneous material average density between cladding and core

 $\rho = 1.044 \text{ g/cm}^3$

Passive material

Lead foils: 95% Pb 5 % Bi homogeneous compound

72% Epoxy resin C_2H_4O ($\rho = 1.14 \text{ g/cm}^3$)Glue:28% Hardener
($\rho = 0.95 \text{ g/cm}^3$)Polyoxypropylediamine
Triethanolamine $C_7H_{20}NO_3$
 $C_6H_{15}NO_3$ 90%
7%
7%
1.5%ObjectiveAminoethylpiperazine
Diethylenediamine $C_6H_{15}N_3$
 $C_4H_{10}N_2$ 1.5%
1.5%

B. Di Micco

FLUKA meeting

Calorimeter module structure

Transversal section

Low attenuation length

The image at one side of the module is projected through the fibres on the opposite side.

Fibres structure is visible

FLUKA meeting

Structure simulation

Old simulation: Lead–Sci-fibres layers GEANT3

FLUKA simulation

Using lattice tool the fibre structure can be easily designed.

Can we use combinatorial geometry to design a trapezoidal structure?

B. Di Micco

FLUKA meeting

Read out system

Plexiglas light guides (n=1.6, 20 cm length [Winston cone]) glued on both sides (after milling) \rightarrow 4.4 X 4.4 cm² granularity:

Fine-mesh photomultipliers (1.5') Hamamatsu R5960 Working in B=0.1-0.2T and $0 < \theta < 30^{\circ}$ (Q.E.~25% , G~5 x10⁶)

Overlap series

B. Di Micco

FLUKA meeting

Geometry simulation status

simulated module readout scheme 5.8 cm 4.55 cm 4.55 cm 4.45 cm

Preliminary study full simulation of the whole calorimeter in program

B. Di Micco

FLUKA meeting

Energy deposits in the fibres

depth

FLUKA meeting

Granularity study for merging effect evaluation

Cluster merging effect: the $\eta \rightarrow \pi^0 \gamma \gamma$ decay

After cutting on the kinematic fit χ^2 in the $\phi \rightarrow \eta \gamma \rightarrow \pi^0 \gamma \gamma \gamma$ hypothesis, a huge background survives, entirely due to $\eta \rightarrow 3\pi^0$ decays with double merged clusters.

Due to the merging of two couple of photons the topology of $\eta \rightarrow 3\pi^0$ becomes equal to the $\eta \rightarrow \pi^0 \gamma \gamma$. The invariant mass of the four

photons peaks as the signal. The two plots are scaled according the real branching ratios:

By integrating only the mass peak region we get

$$\frac{signal}{background}$$
=0.35

B. Di Micco

FLUKA meeting

Granularity study for merging effect evaluation

B. Di Micco

FLUKA meeting

Granularity study for merging effect evaluation

B. Di Micco

FLUKA meeting

COMPARISON WITH DATA - PHOTON RESPONSE

Energy response

linearity response well reproduced

The curve is the known detector resolution, dots FLUKA simulation

B. Di Micco

FLUKA meeting

CLUSTER POSITION – longitudinal resolution

B. Di Micco

FLUKA meeting

Milano, 27-02-06

The curve is the known

e.m. shower penetration depth

Conclusions

 we are using FLUKA to simulate the spaghetti structure of the KLOE calorimeter in order to perform optimization study;

the response to EM shower seems very good, no fine tuning of parameters was needed in order to reproduce energy and cluster position resolution;

 \sim the response to π , μ is under study;

 \sim we plan to simulate the whole KLOE calorimeter and test also the K_L interaction.

B. Di Micco

FLUKA meeting

π^+/μ^+ response

B. Di Micco

FLUKA meeting