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Volume composition Fib: Pb: glue =
48 :42:10

( Density ) p~Sgcm™

Rad. Length X%~ 1.2 cm

Light att. Length A ~ 400 cm

Sampling fraction 12 %

Light readout in 4.4x4.4 cm? cells on
both sides via light-guides + fine mesh PMs

Excellent performances :
0. /E =5.7% / VE(GeV)
0,=54 ps / VE(GeV) O 50 ps
PID mostly from TOF
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Motivation

Exploit the KLOE calorimeter homogeneity to build a dense imaging device.
Accurate cluster shape reconstruction would allow:

* efficient PID

* near energy depositions separation

* study details of the energy release process for different particles types
and tune clustering algorithms accordingly.

Example from
detailed FLUKA
simulation:

Note: this idea has started in the KLOE-2 project, but its implementation into an upgrade
of the KLOE calorimeter turned ou to be very difficult. Then it has to be considered
an independent development.
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Standard
readout side

A KLOE calorimeter prototype was available

Standard light readout already present on
one side: 15 cells 4.2 x 4.2 cm? over 5 planes,
each instrumented with a standard 1” PM.

Our project:

* Collect the light with segmented guides

* Detect the light with multianode PMs
1 KLOE cell — 16 pixels

3x54.2x4.2 cm? cells — 240 small cells 1.05x1.05 cm?




The multi-anode PM

Hamamatsu R8900-M16

Window material. Borosilicate glass
Arrangement and Type: 4 x 4 grid

Number of channels: 16 (each 5.7x5.7mm?)
Effective Window Area: 23.5x23.5mm?
Photocathode material. Bialkali

Spectral response range: 300 to 650 nm

Compact design

Operation HV: 800-900 V

A signal with sum of all the 16 last dynodes
is also provided

Up to 30% gain variation between the 16 pixels

We purchased 12 standard R8900
+ 3 with higher quantum efficiency
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Multi anode signal pre-amplification stage

A dedicated 16+1 channel pre-amplification stage has been developed
using simple inverting x10 amplifiers.
Positive signals are needed to be able to use the KLOE electronic chain.
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Multi anode characterization

A ps laser pulse used to
illuminate single pixels and study
the multi-anode response.
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Gain (non) uniformity

For each channel the response has been measured relatively to the one @ 500 V

* Slopes with HV are essentially the same
* Offset is quite different from channel to channel

In[Q(V)/Q(500V)]
In[Q(V)/Q(500V)]
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Gain variation @ 800 V

Two sample cases :

Relative anode response %

Relative anode response %
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Gain non-uniformity measured for all our multianodes.
Similar behaviour always found
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Cross talk

Laser pulse injected in individual pixels,
Charge response measured in all the others.

For each PM we obtain a 16x16 cross talk matrix:

16 || 1
" Electronic cross talk between nearby
channels can be as much as few %

510 )
Non adjacent channels have almost

negligible cross talk

1102
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Light guides

Want to map 16 contiguous cells 1.05x1.05 cm?

into 16 cells 0.53x0.53 cm? each separated by a 0.11 cm dead zone
(multinode cell area is indeed 0.57x0.57 cm2).

UV transparent plexiglass BC800 has been used, to fully match the
R8900 spectral response

Not trivial mechanics:

* all surfaces at different angles

* guides are 6 cm long and touch each other only on the calorimeter surface.
* a small aluminum grid keeps the 16 guides in place at the PM side
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Light guides: final product

No black painting or envelopes on individual guides.
Air/plexiglass surface considered the best compromise.
Optical cross talk will have to be checked out.
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Final assembly in a 3 x 5 matrix

Ready to be glued on the calorimeter surface
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Full mechanical design

Segmented light guides

Multlanode /

electronics

calorimeter
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PM case holds also HV distribution and preamp board

The full case is light tight

P. Branchini
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Prototype mounted on a support that

allows 180° rotation

16
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Finally the optical contact !
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Cross talk : electronic vs optical

We dismantled the opposite side light readout system (later on we reinstalled it).

We injected the ligh pulse on individual fibers on this now free calo side and
study the response of the pixels on the other side:

Single multi anode cross talk The response of the two nearest row
confirms what previously observed: of the adjacent PM show really
few % on nearby channels. Negligible optical cross talk !!!
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Readout and Data acquisition

It is fully made with KLOE electronics:

* signals are first splitted, discriminated
and summed (SDS boards)

* KLOE ADCs and TDCs are then used
to digitize them

* DAQ goes via asyncronous readout
Using 2 custom buses and a chain of
ROCKSs (read out controller for KLOE)

* online CPU is the only new element:
a Motorola MVMEG6100

* Trigger exploits the signal sums provided
By SDS, but it is simply done by NIM
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First cosmic rays !

Calorimeter in auto-trigger on the coincidence of first and last plane of m-anodes:
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Simple event display shows the imaging power of the detector

Interesting topology can be searched for (muon range, muon decay, protons...

P. Branchini

20

A



Looking for MIPs ...

Total energy has nice Landau
shape as also the number of
channels...

Pixel counting at this level is a
good energy esimate !
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Equalization :

Due to gain non-uniformity
HV can be used only to
equalize the full multianode

response.

We used the summ of all
pixels in same PM, and
fixed it around 3000 counts.
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Fitted track and residual distribution

The MIP energy distribution is
clearly visible also on single anode

Residui - risoluzione

x10°

100

80

60

40

20

resehE_px
Entries 10097
Mean 0.008003
RMS 1.039
2 1 ndf 1.082e+05 | 65
Constant 1.022e+05 + 157

Mean 0.001639 + 0.000543

Sigma 0.5027 + 0.0005

=]

P. Branchini

23




MIP energy deposition in 1 Ma PMT

Mip energy deposition on a
single anode of the Ma PMT

P. Branchini 24



A couple of displays from BTF
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Electron energy reconstruction and resolution
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Conclusions

A fine granularity calorimeter prototype has been realized
using a KLOE calorimeter piece with segmented light guides and
Hamamatsu multianode PMs.

The response of individual channels has been studied with a laser pulse
and the cross talk measured. Optical cross talk is negligible.

A full system is now operating. Many cosmics rays have been acquired
and are being analyzed.

A test beam with electron at BTF is now over and data are being analysed
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