La matrice CKM: fenomenologie e origine teorica misura dei suoi elementi

Particelle elementari conosciute e scoperte

$$egin{array}{cccc} {oldsymbol v}_e & {oldsymbol v}_\mu & {oldsymbol v}_ au \ e^- & {oldsymbol u}^- & au^- \end{array}$$

U	Pioni	π^{+}	π-	π^0
u	1 10111	10	10	10

d Lattes, Occhialini, Powell 1947 raggi cosmici ad alta quota

 $m{C}$ Scoperta della J/ ψ 1974

S Particelle strane mesoni K e barioni Λ , Σ (1947) raggi cosmici in camera a nebbia.

Scoperta della Y 1974 Fermilab
 E288

t Scoperta del top 1995 CDF

Angolo di Cabibbo 1 (decadimenti dei leptoni)

Decadimenti deboli dei letptoni:

Essendo: $m_e << m_{_{\parallel}} << m_{_{\parallel}}$ il propagatore del W $\frac{1}{q^2 - m_W^2} \sim \frac{1}{m_W^2}$

Sperimentalmente si trova $G^2_{F\tau e} = G^2_{F\tau \mu} = G^2_{F\mu e}$ Universalità leptonica: $g_{\mu} = g_{e} = g_{\tau}$

Angolo di Cabibbo 2 (decadimenti dei mesoni)

Modello a quark e nonetto mesonico

1964 Ipotesi di Cabibbo: l'interazione debole è la stessa per quarks e leptoni: $g_{ud}^2 + g_{us}^2 = g_u^2 = g^2$

Universalità:
$$g_{ud}^2 + g_{us}^2 + g_{ub}^2 = 1$$

 $g_{cd}^2 + g_{cs}^2 + g_{cb}^2 = 1$
 $g_{td}^2 + g_{ts}^2 + g_{tb}^2 = 1$

Decadimenti deboli

τ- Transizioni leptoniche

Angolo di Cabibbo e variazione di sapore in corrente neutra.

 $\Delta S = \Delta Q$ (dello stato adronico)

In corrente carica un decadimento debole di particelle con sapore è sempre accompagnato da variazione di sapore.

Tuttavia processi in corrente neutra con cambio di sapore possono avvenire ad 1 loop:

Br(
$$K^0 \rightarrow \mu^+ \mu^-$$
) = 10⁻⁹ $\Delta S = -1$, $\Delta Q = 0$
 g_{us}
 $W^ v_{\mu}$
 g_{ud}
 $\mu^ g_{cd}$
 μ^-

Nel limite $m_u < m_c << m_w$

Possiamo avere una cancellazione se:

$$g_{ud}^*g_{us} = -g_{cd}^*g_{cs}$$

Matrice di Cabibbo:

$$egin{pmatrix} g_{ud} & g_{us} \\ g_{cd} & g_{cs} \end{pmatrix}$$
 Universalità:

Universalità:
$$\begin{vmatrix} g_{ud} & g_{us} \\ g_{cd} & g_{cs} \end{vmatrix}$$
Universalità:
$$\begin{vmatrix} g_{ud}^2 + g_{us}^2 = 1 \\ g_{cd}^2 + g_{cs}^2 = 1 \end{vmatrix}$$

$$g_{ud} + g_{us}^2 = 1 \Rightarrow g_{ud} = \cos\theta_c \quad g_{us} = \sin\theta_c \quad g_{cd} = \sin\theta_x \quad g_{cs} = \cos\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \cos\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \cos\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \sin\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \cos\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \sin\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \cos\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \cos\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \cos\theta_x \quad g_{cd} = \sin\theta_x \quad g_{cs} = \sin\theta_x \quad g_{cd} = \sin\theta_x \quad g_{$$

(Flavour Changing in Neutral Currents)

$$egin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

Condizioni di ortogonalità della matrice.

$$\mathsf{R}^{\star}\mathsf{R}^{\intercal} = \mathbf{1} \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ca + db & c^2 + d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

4 parametri, 3 condizioni → dipendenza da un solo parametro.

Formulazione lagrangiana:

L'hamiltonanina deve essere Hermitiana, quindi deve contenere anche termini $J^{\mu+}$

$$\begin{split} J^{^{\mu +}} &= \left[(\bar{u} \, \bar{c} \, \bar{t}) \frac{\gamma^{^{\mu}} (1 - \gamma^5)}{2} V_{^{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \right]^{^{+}} = (d \, s \, b)^{^{+}} \frac{(1 - \gamma^5)^{^{+}} \gamma^{^{\mu +}}}{2} V_{^{CKM}}^{^{+}} \begin{pmatrix} u \\ c \\ t \end{pmatrix} = d^{^{+}} \frac{(1 - \gamma^5)^{^{+}} \gamma^{^{\mu +}}}{2} V_{^{ud}}^{^{*}} \bar{u}^{^{+}} + \dots = d^{^{+}} \frac{(1 - \gamma^5) \gamma^{^{\mu +}}}{2} V_{^{ud}}^{^{*}} (u^{^{+}} \gamma^0)^{^{+}} + \dots = d^{^{+}} \frac{(1 - \gamma^5) \gamma^{^{\mu +}} \gamma^0}{2} V_{^{ud}}^{^{*}} \gamma^0 u + \dots = \bar{d} \frac{\gamma^{^{\mu}} (1 - \gamma^5)}{2} V_{^{ud}}^{^{*}} \gamma^0 u + \dots = (\bar{d} \, \bar{s} \, \bar{b}) \frac{\gamma^{^{\mu}} (1 - \gamma^5)}{2} V_{^{CKM}}^{^{+}} \begin{pmatrix} u \\ c \\ t \end{pmatrix} \end{split}$$

Universalità:

$$g_{ud}^{2} + g_{us}^{2} + g_{ub}^{2} = 1$$

 $g_{cd}^{2} + g_{cs}^{2} + g_{cb}^{2} = 1$
 $g_{td}^{2} + g_{ts}^{2} + g_{tb}^{2} = 1$

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

$$|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1$$

$$|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 = 1$$

Soppressione di FCNC

$$V_{ud}^*V_{us}^* + V_{cd}^*V_{cs}^{*} + V_{td}^*V_{ts}^* = 0$$

Richidendo che la soppressione valga per tutte le famiglie: $D^0 \to \mu^+\mu^-$, $B^0 \to \mu^+\mu^-$, $B^0 \to \mu^+\mu^-$

$$V_{ub}^*V_{ud}^* + V_{cb}^*V_{cd}^* + V_{tb}^*V_{td}^* = 0$$

$$V_{ub}^*V_{us}^* + V_{cb}^*V_{cs}^* + V_{tb}^*V_{ts}^* = 0$$

I mesoni BS = 0

I mesoni B strani

$$B_s^0$$
 (sb) B_s^0 (sb)

I mesoni C strani

$$D_s^+$$
 (cs) D_s^- (cs)

I mesoni B charmati

$$B_{C}^{+}$$
 (cos) B_{C}^{-} (cos)

CKM e unitarietà

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$\begin{aligned} |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 &= 1\\ |V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 &= 1\\ |V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2 &= 1 \end{aligned}$$

Universalità

$$V_{ud}^*V_{us}^* + V_{cd}^*V_{cs}^* + V_{td}^*V_{ts}^* = 0$$

 $V_{ub}^*V_{ud}^* + V_{cb}^*V_{cd}^* + V_{tb}^*V_{td}^* = 0$ FCNC suppression

 $V_{ub}^*V_{us}^* + V_{cb}^*V_{cs}^* + V_{tb}^*V_{ts}^* = 0$

$$V_{CKM}^{+} V_{CKM} = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}^{+} \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix} = \begin{vmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{ud}^{*} & V_{cd}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{vmatrix} \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{us} & V_{cb} \\ V_{ub} & V_{cb}^{*} & V_{tb}^{*} \end{vmatrix} = \begin{vmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{tb}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{vmatrix} = \begin{vmatrix} V_{ud}^{*} & V_{ud}^{*} & V_{us} & V_{ub} \\ V_{ud}^{*} & V_{us}^{*} & V_{tb}^{*} \\ V_{td}^{*} & V_{ts}^{*} & V_{tb}^{*} \end{vmatrix} = \begin{vmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{ud}^{*} & V_{ud}^{*} & V_{ub} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{vmatrix} = \begin{vmatrix} V_{ud}^{*} & V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \end{vmatrix} = \begin{vmatrix} V_{ud}^{*} & V_{ud}^{*} & V_{ud}^{*} & V_{ud}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} \end{vmatrix} = \begin{vmatrix} V_{ud}^{*} & V_{ud}^{*} & V_{ud}^{*} & V_{ud}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} \\ V_{ud}^{*} & V_{ub}^{*} & V_$$

$$= \begin{vmatrix} |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 & V_{ud}^* V_{us} + V_{cd}^* V_{cs} + V_{td}^* V_{ts} & V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb} \\ V_{us}^* V_{ud} + V_{cs}^* V_{cd} + V_{ts}^* V_{td} & |V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 & V_{us}^* V_{ub} + V_{cs}^* V_{cb} + V_{ts}^* V_{tb} \\ V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} & V_{ub}^* V_{us} + V_{cb}^* V_{cs} + V_{tb}^* V_{ts} & |V_{ub}|^2 + |V_{cb}|^2 + |V_{cb}|^2 \end{vmatrix}$$

$$egin{aligned} V_{ud}^* \, V_{us} + V_{cd}^* \, V_{cs} + V_{td}^* \, V_{ts} \ |V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 \ V_{ub}^* \, V_{us} + V_{cb}^* \, V_{cs} + V_{tb}^* \, V_{ts} \end{aligned}$$

$$\begin{vmatrix} |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 & V_{ud}^* V_{us} + V_{cd}^* V_{cs} + V_{td}^* V_{ts} & V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb} \\ V_{us}^* V_{ud} + V_{cs}^* V_{cd} + V_{ts}^* V_{td} & |V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 & V_{us}^* V_{ub} + V_{cs}^* V_{cb} + V_{ts}^* V_{tb} \\ V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} & V_{ub}^* V_{us} + V_{cb}^* V_{cs} + V_{tb}^* V_{ts} & |V_{ub}|^2 + |V_{cb}|^2 + |V_{cb}|^2 \end{vmatrix}$$

$$=\begin{vmatrix} |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 & V_{ud}^* V_{us} + V_{cd}^* V_{cs} + V_{td}^* V_{ts} & V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb} \\ V_{us}^* V_{ud} + V_{cs}^* V_{cd} + V_{ts}^* V_{td} & |V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 & V_{us}^* V_{ub} + V_{cs}^* V_{cb} + V_{ts}^* V_{tb} \\ V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} & V_{ub}^* V_{us} + V_{cb}^* V_{cs} + V_{tb}^* V_{ts} & |V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 \end{vmatrix} = 0$$

$$egin{aligned} V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb} \ V_{us}^* V_{ub} + V_{cs}^* V_{cb} + V_{ts}^* V_{tb} \ |V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 \end{aligned} =$$

$$= \begin{vmatrix} |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 & (V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^*)^* & (V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^*)^* \\ V_{us}^*V_{ud} + V_{cs}^*V_{cd} + V_{ts}^*V_{td} & |V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 & (V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^*)^* \\ V_{ub}^*V_{ud} + V_{cb}^*V_{cd} + V_{tb}^*V_{td} & V_{ub}^*V_{us} + V_{cb}^*V_{cs} + V_{tb}^*V_{ts} & |V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 \end{vmatrix} = \begin{vmatrix} |V_{ud}V_{ub}^*|^2 + |V_{cb}V_{cd} + V_{tb}^*V_{td} & V_{ub}^*V_{us} + V_{cb}^*V_{cs} + V_{tb}^*V_{ts} & |V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 \end{vmatrix}$$

$$= \begin{vmatrix} |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 & 0 & 0 \\ 0 & |V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 & 0 \\ 0 & 0 & |V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 \end{vmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Universalità nel settore dei quark d

Misurabile (in principio) in interazione di

 $V_{\text{\tiny CKM}}$ è unitaria, di quanti parametri abbiamo bisogno per descriverla?

Matrice a elementi complessi 3 X 3, 9 parametri complessi , 18 parametri reali Tuttavia

Parametri della CKM

$$J^{\mu} = (\bar{u}\,\bar{c}\,\bar{t}\,)\frac{\gamma^{\mu}(1-\gamma^{5})}{2}V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \left(\bar{u}\,\frac{\gamma^{\mu}(1-\gamma^{5})}{2}V_{ud}^{CKM}d + \ldots\right)$$

I campi sono definiti a meno di una fase: $d \! o \! de^{i\phi_d}$, $u \! o \! ue^{i\phi_u}$

$$\bar{u} \frac{\gamma^{\mu}(1-\gamma^5)}{2} V_{ud}^{CKM} d + ... \rightarrow \bar{u} \frac{\gamma^{\mu}(1-\gamma^5)}{2} V_{ud}^{CKM} e^{i(\phi_d - \phi_u)} d$$

Possiamo scegliere le fasi in modo da rendere reali gli elementi di matrice, abbiamo 6 campi, fissata la fase di uno, possiamo scegliere quella degli altri 5 per rendere reali 5 parametri.

In generale per N doppietti abbiamo:

N² parametri complessi 2N-1 parametri possono essere resi reali.

Numeri parametri reali 2N-1

Numeri parametri complessi N²-(2N-1)

Numeri parametri necessario per la descrizione completa

 $2(N^2-(2N-1)) + 2N-1 = 2N^2 - (2N-1)$

L'unitarietà impone N² condizioni, quindi il numero di parametri è N² - (2N-1)

Una matrice unitaria reale è una matrice ortogonale

$$VV^+=1 \rightarrow VV^{*T}=1 \rightarrow VV^T=1$$

Condizioni di ortogonalità

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ca + db & c^2 + d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 3 condizioni

In generale per una matrice di ordine N le condizioni si applicano solo alla triangolare alta che ha N elementi di traccia + (N²-N)/2 del triangolo quindi il numero di parametri e':

$$N^2 - N - N^2/2 + N/2 = N^2/2 - N/2 = N(N-1)/2$$

Pertanto la V_{CKM} avra': $N^2 - (2N-1) - N(N-1)/2 = 1/2(N-1)(N-2)$ fasi

Nel caso di N = 2 (u,d,s,c) non ci sono fasi, la matrice e' reale (Matrice di Cabibbo) Nel caso N = 3 c'e' una sola fase e 3(3-1)/2 3 parametri reali.

Rappresentazione della CKM.

Matrice unitaria con 3 parametri reali e una fase:

- 1) il prodotto di due matrici unitarie e' una matrice unitaria;
- 2) il prodotto di una matrice ortogonale per una matrice unitaria e' una matrice unitaria.

Consideriamo il prodotto di tre rotazioni lungo tre assi 1,2,3 (gli assi possono essere considerati come 1 rotazione nelle prime due famiglie, 2 rotazione nella seconda e terza famiglia, 3 rotazione nella prima e terza famiglia:

$$V_{CKM} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{vmatrix} \begin{vmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{vmatrix} \begin{vmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{vmatrix}$$

La fase puo' essere spostata ridefinendo le fasi dei quarks. Ad esempio b->be^{ið}

$$\begin{vmatrix}c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta}\\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13}\\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}\end{vmatrix} \rightarrow \begin{vmatrix}c_{12}c_{13} & s_{12}c_{13} & s_{13}\\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13}e^{i\delta}\\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}e^{i\delta}\end{vmatrix}$$

Violazione di CP Consideriamo il processo quark scattering ab \rightarrow cd es. us \rightarrow dc

- 1) la teoria viola CP se e solo se le ampiezze sono diverse. Cio' avviene solo se la matrice CKM e' complessa;
- 2) Il modello a quattro quark non puo' comportare violazione di CP (V e' reale);
- 3) Violazione di CP osservata -> Kobayashi Maskawa ipotizzano l' esistenza della terza famiglia (b,t);
- 4) La violazione di CP e' difficilmente osservabile. Se ilprocesso e' descritto da un solo diagramma di Feyman (complicato quanto si vuole) $M \sim V_{12}V_{23}V_{13}V_{12}^*$

Ma $\Gamma \sim |M|^2$ quindi non riceve contributi dalle fasi.

Esempio

$$\mathsf{K}^{\scriptscriptstyle{+}} \to \mu^{\scriptscriptstyle{+}} \nu \stackrel{\mathsf{CP}}{-\!\!\!\!-\!\!\!\!-} \mathsf{K}^{\scriptscriptstyle{-}} \to \mu^{\scriptscriptstyle{-}} \overline{\nu}$$

Tuttavia

Stesso ragionamento per B^{\pm} e D^{\pm}

Per osservare violazione di CP bisogna avere l'interferenza tra due diagrammi: l'ampiezza totale deve essere descritta come somma di due termini. Violazione di CP possibile nell'interferenza.

$$CP |K^{0}\rangle = |\bar{K}^{0}\rangle \qquad CP |\bar{K}^{0}\rangle = |K^{0}\rangle$$

$$|K_{2}\rangle = \frac{|K^{0}\rangle - |\bar{K}^{0}\rangle}{\sqrt{2}} \qquad |K_{1}\rangle = \frac{|K^{0}\rangle + |K^{0}\rangle}{\sqrt{2}}$$

Se CP è conservata oscillazioni $K_1 \rightarrow K_2$ sono proibite

Transizioni $K_1 \rightarrow K_2$ nel modello standard:

$$\langle K_{2}|H|K_{1}\rangle = \frac{1}{2}(\langle K^{0}|-\langle \bar{K}^{0}|)H(|K^{0}\rangle + |\bar{K}^{0}\rangle) =$$

$$= \frac{1}{2}(\langle K^{0}|H|K^{0}\rangle - \langle \bar{K}^{0}|H|\bar{K}^{0}\rangle - \langle \bar{K}^{0}|H|K^{0}\rangle + \langle K^{0}|H|\bar{K}^{0}\rangle)$$

0 per simmetria di crossing

(Anche CPT, che vale per ogni teoria di campo Lorentz invariante e locale, con un potenziale dotato di minimo)

$$\langle ar{K}^{\mathrm{o}}|H|K^{\mathrm{o}}
angle - \langle K^{\mathrm{o}}|H|ar{K}^{\mathrm{o}}
angle$$

$$M \sim V_{us}^2 V_{ud}^* - V_{us}^* V_{ud}^2 = 2iIm(V_{us}^2 V_{ud}^*)$$

$$M \sim V_{cs}^2 V_{cd}^* - V_{cs}^* V_{cd}^2 = 2iIm(V_{cs}^2 V_{cd}^*)$$

$$V_{\mathit{CKM}} = \begin{vmatrix} V_{\mathit{ud}} & V_{\mathit{us}} & V_{\mathit{ub}} \\ V_{\mathit{cd}} & V_{\mathit{cs}} & V_{\mathit{cb}} \\ V_{\mathit{td}} & V_{\mathit{ts}} & V_{\mathit{tb}} \end{vmatrix} \qquad \text{Possiamo misurare i moduli di tutti gli elementi e le fasi}$$

decadimenti leptonici e semileptonici

misura delle oscillazioni di sapore nei K,B,D

Stato dell'arte:

$$V_{\mathit{CKM}} = \begin{vmatrix} 0.97419 \pm 0.00022 & 0.2257 \pm 0.0010 & 0.00359 \pm 0.00016 \\ 0.2256 \pm 0.0010 & 0.97334 \pm 0.00023 & 0.0415 \pm 0.0011 \\ 0.00874^{+0.00026}_{-0.00037} & 0.0407 \pm 0.0010 & 0.999133 \pm 0.000044 \end{vmatrix}$$

Misura in decadimenti leptonici: V_{IIS}

A causa dell'interazione forte la corrente di quark non e' facilmente calcolabile. Tuttavia:

1) invarianza di Lorentz;
$$\langle K ig| J^{\mu} ig| 0 ig
angle = f(p^2) \, p^{\mu}$$

K spin 0 Unico quadrivettore a disposizione

Funzione di quantita' Lorentz invarianti.

ma
$$p^2 = m_K^2 - f(m_K^2) = f_K$$

$$\Gamma(K^{\pm} \to \mu^{\pm} \nu) = \frac{G^2 |V_{us}|^2}{8\pi} f_K^2 m_K m_{\mu}^2 \left(1 - \frac{m_{\mu}^2}{m_K^2} \right)^2$$

Abbiamo fattorizzato la parte adronica e la parte leptonica Sicuro che la fattorizzazione e' possibile?

Misura in decadimenti leptonici: V_{ud}

A causa dell'interazione forte la corrente di quark non e' facilmente calcolabile. Tuttavia:

1) invarianza di Lorentz ;
$$\langle \pi | J^{\mu} | 0
angle = f(p^2) p^{\mu}$$

K spin 0 Unico quadrivettore a disposizione

Funzione di quantita' invarianti di Lorentz.

ma
$$p^2 = m_{\pi}^2$$
 $f(m_{\pi}^2) = f_{\pi} = 132 \pm 2 \text{ MeV}$

$$\Gamma(\pi^{\pm} \to \mu^{\pm} \nu) = \frac{G^2 |V_{ud}|^2}{8\pi} f_{\pi}^2 m_{\pi} m_{\mu}^2 \left(1 - \frac{m_{\mu}^2}{m_{\pi}^2} \right)^2$$

$$\frac{\Gamma(K^{\pm} \to \mu^{\pm} \nu)}{\Gamma(\pi^{\pm} \to \mu^{\pm} \nu)} = \frac{\frac{G^{2} |V_{us}|^{2}}{8 \pi} f_{K}^{2} m_{K} m_{\mu}^{2} \left(1 - \frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{2} \left(1 + \frac{\alpha}{\pi} C_{K}\right)}{G^{2} |V_{ud}|^{2}} = \frac{|V_{us}|^{2} f_{K}^{2} m_{K} \left(1 - \frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{2} \left(1 + \frac{\alpha}{\pi} C_{K}\right)}{|V_{ud}|^{2} f_{\pi}^{2} m_{\pi} m_{\mu}^{2} \left(1 - \frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)^{2} \left(1 + \frac{\alpha}{\pi} C_{\pi}\right)} = \frac{|V_{us}|^{2} f_{K}^{2} m_{K} \left(1 - \frac{m_{\mu}^{2}}{m_{K}^{2}}\right)^{2} \left(1 + \frac{\alpha}{\pi} C_{K}\right)}{|V_{ud}|^{2} f_{\pi}^{2} m_{\pi} \left(1 - \frac{m_{\mu}^{2}}{m_{\pi}^{2}}\right)^{2} \left(1 + \frac{\alpha}{\pi} C_{\pi}\right)}$$

 $f_{\rm K}/f_{\pi}$ = 1.189 ± 0.007 (0.6%) l'errore sul rapporto e' meno della meta' dell'errore sui singoli termini. Questo perche' alcune sistematiche si cancellano (in particolare gli effetti di volume finito)

La misura di $|V_{us}|/|V_{ud}|$ e' molto precisa.

Come si misura

$$\Gamma\left(K^{\pm}\!\to\!\mu^{\pm}\,\nu\right)\!=\!Br\left(K^{\pm}\!\to\!\mu^{\pm}\,\nu\right)\Gamma\left(K^{\pm}\right)\!=\!Br\left(K^{\pm}\!\to\!\mu^{\pm}\,\nu\right)\frac{h}{\tau_{K^{\pm}}}$$

$$\Gamma\!=\!\hbar\!/\!\tau$$

Dobbiamo misurare Br e vita media

Produzione di K a DAFNE

OZI FORBIDDEN

e-

OZI FORBIDDEN

 \overline{u} ,d,s,c $m_{_{
m Y}}$ = 10000 MeV $\Gamma_{_{
m Y}}$ = 32 keV $m_{_{
m B}}$ = 5200 MeV $2m_{_{
m B}}$ = 10400 MeV

$$m_{\phi} = 1019.6 \text{ MeV}$$

 $\Gamma_{\phi} = 4 \text{ MeV}$
 $m_{K+} = 493.677 \text{ MeV}$

$$p_{\kappa} = 130 \text{ MeV}$$

$$m_{_{
m p}}$$
= 770 MeV

$$\Gamma_{\rm o}$$
 = 149 MeV

$$m_{\pi^+} = 140 \text{ MeV}$$

$$p_{\pi} = 360 \text{ MeV}$$

$$\Gamma \propto \frac{p}{M^2}$$

$$m_{\text{J/}\psi} = 3100 \text{ MeV}$$

$$\Gamma_{\vartheta/\Psi} = \text{keV}$$

$$m_D = 1800 \text{ MeV}$$

$$2m_{_{D}} = 3600 \text{ MeV}$$

KLOE

Detector scheme

Cylindrical Drift Chamber

Stereo wires structure to reconstruct longitudinal position

52140 wires - 12582 drift cell 90% He 10% iC₄H₁₀

 $\sigma_{\text{vtx}} = 1 \text{ mm}$ $\sigma_{\text{pt}} / p_{\text{t}} = 0.5\%$

 $\sigma_{r,\phi}$ =200 μ m

 $\sigma_z = 2 \text{ mm}$

Magnetic yoke before installation.

Small angle calorimeter

Efficiency $20 - 90 \% E_{ne} 26-125$ MeV $\sigma_{t} = 240 \text{ ps/}\sqrt{\text{E (GeV)}}$

0.5 T magnetic field Cryogenic coil working at 4.2 °K Coil current 2300 A

Barrel

End-cap half module

- 1 barrel + 2 end-caps
- Barrel 24 modules
- End-caps 30 modules
- 98% solid angle coverage

Calorimeter size

m

$$\sigma_{E}/E = 5.7\% / E(GeV)$$

$$\mathbf{\sigma}_{t} = 54 ps / \mathcal{L}(GeV) \oplus 140 ps$$

Ricostruisco il K $^+$ in due corpi, ma devo tener conto di fondi ed efficienze. Nel sistema del K il μ e' monocromatico.

$$p_{\mu}^{*} = 235 \text{ MeV}$$

Ricostruisco un vertice a due tracce e identifico il K⁻, pertanto so che dall'altra parte c'e' un K⁺

$$Br(K^+ \rightarrow \mu^+ \nu) = \frac{N_{K^+ \rightarrow \mu^+ \nu}}{N_{K^-} \epsilon}$$

Br(K⁺
$$\rightarrow \mu^+ \nu$$
) = 0.6366 ±0.0009_{stat} ±0.0015_{syst}

Misura della vita media.

Determiniamo la lunghezza di traccia.

 $\tau_{_{\rm K}}$ = 12.38 ns $c\tau = 3.7$ m

 $\Lambda_{LAB} = \beta \gamma c \tau$

$$p_{_{\rm K}}$$
 = 110 MeV $~\beta\gamma$ = p/E = 110/505 = 0.22 $~\Lambda_{_{\rm LAB}}$ = 0.8 m

Determiniamo la lunghezza di traccia. Correggiamo per perdite di energia dE/dx.

Dalla lunghezza di traccia ricaviamo il tempo.

$$\tau = 12.347 \pm 0.030 \text{ ns}$$

$$\frac{\Gamma(K \rightarrow \mu \nu \gamma)}{\Gamma(\pi \rightarrow \mu \nu \gamma)} = \frac{m_K \left(1 - \frac{m_\mu^2}{m_K^2}\right)^2}{m_\pi \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2} \frac{|V_{us}|^2}{f_\pi^2} \frac{f_K^2}{1 + \alpha / \pi C_\kappa} \frac{\Gamma(K \rightarrow \mu \nu \gamma)}{\Gamma(\pi \rightarrow \mu \nu \gamma)} = \frac{Br(K \rightarrow \mu \nu \gamma)}{T_K} \frac{\tau_\pi}{Br(\pi \rightarrow \mu \nu \gamma)}$$

$$\left|\frac{V_{us}}{V_{ud}}\right|^2 = 0.05211 \pm 0.00016 \pm 0.00019 \pm 0.00117$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
correzioni radiative QCD reticolo sperimentale

Decadimenti semileptonici.

$$|K_2\rangle = \frac{|K^0\rangle - |\bar{K}^0\rangle}{\sqrt{2}}$$
 $|K_1\rangle = \frac{|K^0\rangle + |\bar{K}^0\rangle}{\sqrt{2}}$

A causa della violazione di CP possiamo avere oscillazioni $K_1 \leftrightarrow K_2$ Gli autostati di massa rappresentano i mesono che si propagano. Essi sono

$$\begin{split} \left|K_{L}\right\rangle &= \frac{\epsilon \left|K_{1}\right\rangle + \left|K_{2}\right\rangle}{\sqrt{1 + \left|\epsilon\right|^{2}}} \\ \left|E\right| &= (2.229 \pm 0.012) \times 10^{-3} \\ \tau_{L} &= (51.16 \pm 0.20) \text{ ns} \\ m_{\text{KI}} &= 497.614 \pm 0.024 \text{ MeV} \end{split} \qquad \begin{split} \left|K_{S}\right\rangle &= \frac{\left|K_{1}\right\rangle - \epsilon^{*} \left|K_{2}\right\rangle}{\sqrt{1 + \left|\epsilon\right|^{2}}} \\ \text{Noi trascureremo } \epsilon. \\ K_{L} &= K_{2} \quad K_{S} = K_{1} \\ \tau_{S} &= (0.08953 \pm 0.00005) \text{ ns} \\ m_{KS} &= 497.614 \pm 0.024 \text{ MeV} \end{split}$$

$$|K_{L}\rangle \approx |K_{2}\rangle = \frac{|K^{0}\rangle - |\overline{K}^{0}\rangle}{\sqrt{2}}$$

$$K_{L} \rightarrow l^{+} \pi^{-} \nu_{l} \qquad K_{L} \rightarrow l^{-} \pi^{+} \overline{\nu}_{l}$$

$$K_{L} \rightarrow l^{+} \pi^{-} \nu_{l} \qquad K_{L} \rightarrow l^{-} \pi^{+} \overline{\nu}_{l}$$

$$K_{L} \rightarrow l^{+} \pi^{-} \nu_{l} \qquad K_{L} \rightarrow l^{-} \pi^{+} \overline{\nu}_{l}$$

$$K_{L} \rightarrow l^{+} \pi^{-} \nu_{l} \qquad K_{L} \rightarrow l^{-} \pi^{+} \overline{\nu}_{l}$$

$$K_{L} \rightarrow l^{+} \pi^{-} \nu_{l} \qquad K_{L} \rightarrow l^{-} \pi^{+} \overline{\nu}_{l}$$

$$K_{L} \rightarrow l^{+} \pi^{-} \nu_{l} \qquad V_{l} \qquad$$

La corrente adronica non collega uno pseudoscalare al vuoto.

La transizione e' $0^- \rightarrow 0^-$, quindi solo la parte vettoriale contribuisce. In prima approssimazione l'interazione forte non e' sensibile al sapore, quindi K e π sono lo stesso stato. L'elemento di matrice e' 1 in prima approssimazione.

Conservazione di isospin nelle interazioni forti

$$L = i (\bar{u} \, \bar{d} \, \bar{c} \, \bar{s} \, \bar{t} \, \bar{b}) \, \gamma^{\mu} \, \partial \begin{vmatrix} u \\ d \\ c \\ s \\ t \\ b \end{vmatrix} - g (\bar{u} \, \bar{d} \, \bar{c} \, \bar{s} \, \bar{t} \, \bar{b}) \, \gamma^{\mu} T_a \begin{vmatrix} u \\ d \\ c \\ s \\ t \\ b \end{vmatrix} G_{\mu}^a - (\bar{u} \, \bar{d} \, \bar{c} \, \bar{s} \, \bar{t} \, \bar{b}) \begin{vmatrix} m_u \\ m_d \\ m_c \\ m_s \\ m_t \\ m_b \end{vmatrix} \begin{vmatrix} u \\ d \\ c \\ s \\ t \\ b \end{vmatrix}$$

Invarianti per rotazioni nello spazio del sapore.

Non e' invariante se le masse sono diverse.

Restringiamoci al caso di 3 guarks:

$$\begin{vmatrix} m_u \\ m_d \\ m_s \end{vmatrix} = \frac{(m_u + m_d)/2 + m_s}{2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + \frac{m_s - m_u/2 - m_d/2}{2} \begin{vmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + \frac{m_u - m_d}{2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

SU(3)_F invariante SU(3) breaking SU(2) breaking

L'entita' della rottura si valuta rispetto agli effetti di tutta la lagrangiana. Una scala tipica e' la massa delle particelle. $m_{ij} = 1.5 \text{ MeV } m_{d} = 3.5 \text{ MeV } m_{s} = 104 \text{ MeV}$ $\Lambda_{\rm OCD}$ = 350 MeV

Teorema di Ademollo Gatto

Nelle correnti vettoriali (valutate a zero impulso trasferito) le correzioni di SU(3) compaiono al second'ordine nella differenza di massa dei quark.

Elemento di matrice della corrente adronica:

$$\langle K|J^{\mu}|\pi\rangle = f_{+}(p_{K}+p_{\pi})^{\mu}+f_{-}(p_{K}-p_{\pi})^{\mu}=f_{+}(p_{K}+p_{\pi})^{\mu}+f_{-}(p_{l}+p_{\nu})^{\mu}$$

funzione di invarianti di lorentz

contratto con la corrente leptonica fornisce termini proporzionali a m

possibili invarianti
$$(p_{K} + p_{\pi})^{2} (p_{k-} p_{\pi})^{2}$$

 $(p_{K} + p_{\pi})^{2} = m_{K}^{2} + m_{\pi}^{2} + 2p_{K} \cdot p_{\pi}$
 $(p_{K} - p_{\pi})^{2} = m_{K}^{2} + m_{\pi}^{2} - 2p_{K} \cdot p_{\pi}$
 $(p_{K} - p_{\pi})^{2} + (p_{K} + p_{\pi})^{2} = 2m_{K}^{2} + 2m_{\pi}^{2}$
 $(p_{K} + p_{\pi})^{2} = 2m_{K}^{2} + 2m_{\pi}^{2} - (p_{K} - p_{\pi})^{2}$
 $f_{+} = f_{+}(t) \quad t = (p_{K} - p_{\pi})^{2}$
 $f_{+} = f_{+}(0)f(t) \quad f(0) = 1$
Sperime

Sperimentalmente misurabile

$$M \! = \! J_{\textit{hadron}}^{\mu} \, J_{\textit{\mu lepton}}^{+} \! = \! \dots (p_{l} \! + \! p_{\nu})^{\mu} \, \overline{l} \, \gamma_{\mu} (1 \! - \! \gamma^{5}) \nu = \overline{l} \, (p_{\overline{l}} \! + \! p_{\overline{\nu}}) (1 \! - \! \gamma^{5}) \nu$$

$$|M|^{2} = M M^{+} = \overline{l} (p_{\overline{l}} + p_{\overline{v}}) (1 - y^{5}) v v^{+} (1 - y^{5}) (p_{l\mu} y^{\mu +} + p_{vv} y^{v +}) y^{0} l$$

$$\overline{l} \left(p_{\overline{l}} + p_{\overline{\nu}} \right) \left(1 - y^5 \right) \nu \nu^+ y^0 \left(1 + y^5 \right) \left(p_{l\mu} y^{\mu} + p_{\nu\nu} y^{\nu} \right) y^0 y^0 l = \\
= \overline{l} \left(p_{\overline{l}} + p_{\overline{\nu}} \right) \left(1 - y^5 \right) \nu \overline{\nu} \left(1 + y^5 \right) \left(p_{\overline{l}} + p_{\overline{\nu}} \right) l$$

Esplicitiamo gli indici di spin e le componenti degli spinori e sommiamo su tutti gli spin

$$|\bar{M}|^2 = \sum_{s'} \bar{l}_{\alpha}^{\bar{s}'} \left[(p_{\bar{l}} + p_{\bar{\nu}}) (1 - y^5) \right]_{\alpha\beta} \sum_{s} v_{\beta}^{s} \bar{v}_{\gamma}^{\bar{s}} \left[(1 + y^5) (p_{\bar{l}} + p_{\bar{\nu}}) \right]_{\gamma\delta} l_{\delta}^{s'}$$

$$\begin{array}{lll} \mathcal{Y}^{5+} = \mathcal{Y}^{5} & \text{Teoremi di traccia} \\ \mathcal{Y}^{\mu+} = \mathcal{Y}^{0} \mathcal{Y}^{\mu} \mathcal{Y}^{0} & \mathcal{P}^{\pm} \mathcal{Y}^{\mu} \\ \mathcal{Y}^{5} \mathcal{Y}^{\mu} + \mathcal{Y}^{\mu} \mathcal{Y}^{5} = 0 & Tr(ab) = 4a \cdot b \\ \mathcal{Y}^{5} \mathcal{Y}^{\mu} + \mathcal{Y}^{\mu} \mathcal{Y}^{5} = 0 & Tr(\mathcal{Y}^{5}) = 0 \\ \mathcal{Y}^{\mu} \mathcal{Y}^{\nu} + \mathcal{Y}^{\nu} \mathcal{Y}^{\mu} = 2g^{\mu\nu} & Tr(abed) = 4[(a \cdot b)(c \cdot d) - (a \cdot c)(b \cdot d) + (a \cdot d)(b \cdot c)] \\ \mathcal{Y}^{5} \mathcal{Y}^{2} = 1 & Tr(abed) = 4[(a \cdot b)(c \cdot d) - (a \cdot c)(b \cdot d) + (a \cdot d)(b \cdot c)] \\ \mathcal{Y}^{5} \mathcal{Y}^{2} = 0 & Tr(\mathcal{Y}^{5} \mathcal{Y}^{\mu} \mathcal{Y}^{\mu} \mathcal{Y}^{\mu}) = 0 \\ \mathcal{Y}^{5} \mathcal{Y}^{\mu} \mathcal{Y}^{\nu} + \mathcal{Y}^{\nu} \mathcal{Y}^{\mu} = 2g^{\mu\nu} & Tr(abed) = 4[(a \cdot b)(c \cdot d) - (a \cdot c)(b \cdot d) + (a \cdot d)(b \cdot c)] \\ \mathcal{Y}^{5} \mathcal{$$

$$\begin{split} &|\bar{M}|^{2} = \sum_{s} l_{\alpha}^{\bar{s}'} \left[(p_{l} + p_{\overline{\nu}})(1 - y^{5}) \right]_{\alpha\beta} \sum_{s} v_{\beta}^{s} v_{y}^{\bar{s}} \left[(1 + y^{5}) (p_{l} + p_{\overline{\nu}}) \right]_{y\delta} l_{\delta}^{s'} = \\ &= \sum_{s} l_{\delta}^{s'} l_{\alpha}^{\bar{s}'} \left[(p_{l} + p_{\overline{\nu}})(1 - y^{5}) \right]_{\alpha\beta} \sum_{s} v_{\beta}^{s} v_{y}^{\bar{s}} \left[(1 + y^{5}) (p_{l} + p_{\overline{\nu}}) \right]_{y\delta} = \\ &= (p_{l} + m_{l})_{\delta\alpha} \left[(p_{l} + p_{\overline{\nu}})(1 - y^{5}) \right]_{\alpha\beta} (p_{\overline{\nu}})_{\beta\gamma} \left[(1 + y^{5}) (p_{l} + p_{\overline{\nu}}) \right]_{y\delta} = \\ &= Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(1 - y^{5})(p_{\overline{\nu}})(1 + y^{5}) (p_{l} + p_{\overline{\nu}}) \right] = \\ &= Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(1 + y^{5})(1 + y^{5}) (p_{l} + p_{\overline{\nu}}) \right] = \\ &= 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(1 + y^{5})(p_{l} + p_{\overline{\nu}}) \right] = \\ &= 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})(p_{l} + p_{\overline{\nu}}) \right] + 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})y^{5}(p_{l} + p_{\overline{\nu}}) \right] = \\ &= 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})(p_{l} + p_{\overline{\nu}}) \right] + 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})y^{5}(p_{l} + p_{\overline{\nu}}) \right] = \\ &= 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})(p_{l} + p_{\overline{\nu}}) \right] + 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})y^{5}(p_{l} + p_{\overline{\nu}}) \right] = \\ &= 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})(p_{l} + p_{\overline{\nu}}) \right] + 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})y^{5}(p_{l} + p_{\overline{\nu}}) \right] = \\ &= 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})(p_{l} + p_{\overline{\nu}}) \right] + 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})y^{5}(p_{l} + p_{\overline{\nu}}) \right] = \\ &= 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})(p_{l} + p_{\overline{\nu}}) \right] + 2Tr \left[(p_{l} + p_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})y^{5}(p_{l} + p_{\overline{\nu}}) \right] = \\ &= 2Tr \left[(p_{l} + m_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})(p_{l} + p_{\overline{\nu}}) \right] + 2Tr \left[(p_{l} + p_{l})(p_{l} + p_{\overline{\nu}})(p_{\overline{\nu}})(p_{\overline{\nu}})y^{5}(p_{l} + p_{\overline{\nu}}) \right] + 2Tr \left[(p_{l} + p_{l})(p_{l} + p_{\overline{\nu}})(p_{l})(p_{l} + p_{l})(p_{l} + p_{l})(p_{l} + p_{l}) \right] + 2Tr \left[(p_{l} + p_{l$$

 $=2Tr\left[(p_{l}+m_{l})(p_{l}+p_{v})(p_{v})(p_{l}+p_{v})\right]=2Tr p_{l} p_{v} p_{v} p_{l}+2Tr p_{l} p_{v} p_{v} p_{l}+$ $+2Tr p_{l} p_{l} p_{v} p_{v}+2Tr p_{l} p_{v} p_{v} p_{v} +2m_{l} Tr p_{l} p_{v} p_{v} p_{l}+2m_{l} Tr p_{v} p_{v} p_{v} p_{l}$ $+2m_{l} Tr p_{v} p_{v} p_{v} p_{v}$

$$=2 \operatorname{Tr} \left[(p_{\overline{l}} + m_{l}) (p_{\overline{l}} + p_{\overline{v}}) (p_{\overline{v}}) (p_{\overline{l}} + p_{\overline{v}}) \right] = 2 \operatorname{Tr} p_{\overline{l}} p_{\overline{l}} p_{\overline{v}} p_{\overline{l}} + 2 \operatorname{Tr} p_{\overline{l}} p_{\overline{v}} p_{\overline{v}} p_{\overline{l}} + 2 \operatorname{Tr} p_{\overline{l}} p_{\overline{v}} p_{\overline{v}} p_{\overline{v}} p_{\overline{v}} + 2 \operatorname{Tr} p_{\overline{l}} p_{\overline{v}} p$$

$$=2\operatorname{Tr} \frac{p_l}{p_l} \frac{p_{\overline{\nu}}}{p_{\overline{\nu}}} \frac{p_l}{p_{\overline{\nu}}} + 2\operatorname{Tr} \frac{p_l}{p_{\overline{\nu}}} \frac{p_{\overline{\nu}}}{p_{\overline{\nu}}} \frac{p_{\overline{\nu}}}{p_{\overline{\nu}}} + 2\operatorname{Tr} \frac{p_l}{p_{\overline{\nu}}} \frac{p_{\overline{\nu}}}{p_{\overline{\nu}}} \frac{p_{\overline{\nu}$$

$$8(m_{l}^{2}p_{v}\cdot p_{l}-p_{l}\cdot p_{v}m_{l}^{2}+m_{l}^{2}p_{l}\cdot p_{v})+8((p_{l}\cdot p_{v})^{2}-(p_{l}\cdot p_{v})^{2}+m_{l}^{2}m_{v}^{2})+8(-(p_{l}\cdot p_{v})^{2}+(p_{l}\cdot p_{v})^{2})=8m_{l}^{2}p_{l}\cdot p_{v}$$

$$=2\operatorname{Tr}\left[\left(p_{l}+m_{l}\right)\left(p_{l}+p_{\overline{\nu}}\right)\left(p_{\overline{\nu}}\right)y^{5}\left(p_{l}+p_{\overline{\nu}}\right)\right]=2\operatorname{Tr}\left(p_{l}p_{l}p_{\overline{\nu}}y^{5}p_{l}+2\operatorname{Tr}\left(p_{l}p_{\overline{\nu}}p_{\overline{\nu}}y^{5}p_{\overline{\nu}}\right)\right)$$
$$+2\operatorname{Tr}\left(p_{l}p_{\overline{\nu}}p_{\overline{\nu}}y^{5}p_{\overline{\nu}}+2\operatorname{Tr}\left(p_{l}p_{\overline{\nu}}p_{\overline{\nu}}p_{\overline{\nu}}y^{5}p_{\overline{\nu}}\right)\right)$$

$$= 2\operatorname{Tr} y^{5} p_{l} p_{l} p_{v} p_{l} + 2\operatorname{Tr} y^{5} p_{l} p_{v} p_{v} + 2\operatorname{Tr} y^{5} p_{l} p_{v} p_{v} p_{v} + 2\operatorname{Tr} y^{5} p_{v} + 2\operatorname{Tr} y$$

$$\Gamma(K_L \to e^- \pi^+ \bar{\nu}) = \frac{G_F^2 M_K^5}{192 \pi^3} S_{EW} |V_{us}|^2 |f_+(0)|^2 I(1 + \delta^{EM})$$

It is customary to analyze the spin-averaged decay distribution $\rho(y,z)$ for $K_{\ell 3}$. It depends on two variables, for which we choose:

$$z = \frac{2p_{\pi} \cdot p_K}{M_K^2} = \frac{2E_{\pi}}{M_K}, \quad y = \frac{2p_K \cdot p_{\ell}}{M_K^2} = \frac{2E_{\ell}}{M_K}, \quad (3.3)$$

where E_{π} (E_{ℓ}) is the pion (charged lepton) energy in the kaon rest frame, and M_{K} indicates the mass of the decaying kaon. Alternatively one may also use two of the Lorentz invariants

$$t = (p_K - p_\pi)^2$$
, $u = (p_K - p_\ell)^2$, $s = (p_\pi + p_\ell)^2$. (3.4)

Then the distribution (without radiative corrections) reads

$$\rho^{(0)}(y,z) = \mathcal{N} \Big[A_1^{(0)} |f_+^{K\pi}(t)|^2 + A_2^{(0)} f_+^{K\pi}(t) f_-^{K\pi}(t) + A_3^{(0)} |f_-^{K\pi}(t)|^2 \Big], \tag{3.5}$$

$$\mathcal{N} = C^2 \frac{G_F^2 |V_{us}|^2 M_K^5}{128\pi^3}, \quad \Gamma = \int_{\mathcal{D}} dy \, dz \, \rho^{(0)}(y, z).$$

Integrale sullo spazio delle fasi di f(t).

$$\Gamma(K_{L} \to e^{-}\pi^{+}\bar{\nu}) = Br(K_{L} \to e^{-}\pi^{+}\bar{\nu})\Gamma_{K_{L}} = \frac{Br(K_{L} \to e^{-}\pi^{+}\bar{\nu})\hbar}{\tau_{K_{L}}}$$

La statistica di Bose impedisce che un vettore possa decadere in una coppia di pseudoscalari identici.

 $\phi \rightarrow$ PP II momento angolare orbitale deve essere 1. Per scambio cambia segno, quindi la funzione d'onda e' antisimmetrica.

$$\Lambda_{K_{\rm L}} = 0.22 \, \tau_L c = 3.4 \, m$$
 II K_s decade vicino al punto di interazione $\Lambda_{K_{\rm c}} = 0.22 \, \tau_S c = 6 \, mm$ II K_L nella camera a deriva.

Decadimenti dominanti

$$K_S \rightarrow \pi^+\pi^ CP = + 1$$

 $K_S \rightarrow \pi^0\pi^0$

$$K_L \rightarrow \pi^+\pi^-\pi^0 \quad CP = -1$$
 $K_L \rightarrow \pi^0\pi^0\pi^0$

Decadimenti semileptonici

Impulso del K_L dato da quello misurato del K_S

$$\begin{split} p_{K_L} &= p_l + p_{\pi} + p_{\nu} \\ E_{miss} &= E_{\nu} = E_{K_L} - \sqrt{P_1^2 + m_1^2} - \sqrt{P_2^2 + m_2^2} \\ P_{miss} &= \left| \vec{p}_{K_L} - \vec{P}_1 - \vec{P}_2 \right| \\ \Delta_{12} &= E_{miss\,12} - P_{miss} = E_{K_L} - \sqrt{P_1^2 + m_1^2} - \sqrt{P_2^2 + m_2^2} - P_{miss} \end{split}$$

Dati due impulsiposso associare il leptone, ad esempio muone, ad 1 ed il pi al secondo e vice versa. La combinazione corretta mi da' zero. Pertanto scelgo la combinazione con il valore assoluto piu' piccolo

Il fit a queste distribuzione fornisce il numero di eventi Ke3.

Poiche' l'efficienza di selezione dipende da quanti K_L decadono nel volume di rivelazione esiste una relazione tra efficienza e vita media del K_L

$$BR(K_L \to f)/BR_0(K_L \to f) = 1 + 0.0128 \text{ ns}^{-1} (\tau_L - \tau_{L,0}),$$

$$\tau_{L,0} = 51.54 \text{ ns}$$

BR(Ke3) = 0.4049(21)

Misura della vita media del K_L

usiamo decadimenti $K_{_{L}} \rightarrow 3\pi^{_{0}}$ $\pi^{_{0}} \rightarrow \gamma\gamma$

Figure 6: Proper-time distribution for K_L $3\pi^0$ decays.

misura del fattore di forma Ke3

L'assegnazione $e\pi$ e' effettuata sulla base del tempo di volo, in modo da non influenzare la misura deimomenti.

conosco la posizione del vertice conosco il β del K posso determinare l'istante di decadimento del K Posso determinare la lunghezza di traccia ed ho il tempo del cluster nel calorimetro. Posso confrontare il tempo del cluster con il tempo atteso per un elettrone ($\beta=1$)

$$\Delta t_{\rm e} = t_{\rm cl} - t_{\rm exp e}$$

$$\Delta t_{\pi} = t_{cl} - t_{exp \pi}$$

 $|\Delta t_{\pi^-} \Delta t_e|$ nelle due ipotesi, identifico il π e e^- trovando la combinazione minima. Dopo l'assegnazione: Fondo rimanente 0.7%

$$f(t) = f(t)_{\text{spaziofasi}} *f_{+}(t)$$

$$\hat{f}_{+}(t) = 1 + \lambda'_{+} \frac{t}{m^{2}} + \frac{1}{2} \lambda''_{+} \left(\frac{t}{m^{2}}\right)^{2} + \cdots$$

$$\lambda'_{+} = (25.5 \pm 1.5_{\text{stat}} \pm 1.0_{\text{syst}}) \times 10^{-3}$$

 $\lambda''_{+} = (1.4 \pm 0.7_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-3}$

$$I = 0.15470 \pm 0.00042$$

$$\Gamma(K_L \to e^- \pi^+ \bar{\nu}) = \frac{G_F^2 M_K^5}{192 \pi^3} S_{EW} |V_{us}|^2 |f_+(0)|^2 I (1 + \delta^{EM})$$

$$|V_{us}||f_{+}(0)|=0.2155(7)$$

reticolo $f_{+}(0) = 0.9644 \pm 0.0049$

$$|V_{us}| = 0.2237 \pm 0.0013$$

$f_{+}(0)$ from UKQCD/RBC '06

 V_{us}/V_{ud} from Br(K $\rightarrow \mu \nu \gamma$)_{KLOE} /Br($\pi \rightarrow \mu \nu \gamma$)

Fit results, no constraint:

$$V_{ud}$$
 = 0.97371(26)
 V_{us} = 0.2252(10)
 χ^2 /ndf = 0.85/1 (36%)

Unitarity constrained at < 7×10⁻⁴ level on |V_{ud}|² + |V_{us}|²

Fit results, unitarity constraint:

$$V_{ud}$$
 = 0.97405(17)
 V_{us} = 0.2263(7)
 χ^2/ndf = 3.8/2 (14.6%)

Agreement with unitarity 1.5 σ

$$\frac{\Gamma(K \to \mu \nu \gamma)}{\Gamma(\pi \to \mu \nu \gamma)} = \frac{m_K \left(1 - \frac{m_\mu^2}{m_K^2}\right)^2}{m_\pi \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)} \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{1 + \alpha/\pi C_K}{1 + \alpha/\pi C_\pi}$$

Misura di V_{ud}

Decadimento beta nucleare:

1) Assenza di altri stati finali: Br = 1, la vita media fornisce direttamente la Γ parziale.

Transizione vettoriale, le correzioni a 1 provengono da rottura di SU(2), molto piu' lieve delle correzioni SU(3).

$$\Gamma = \frac{G^2 |V_{ud}|^2 Q^5}{30 \pi^3} \rightarrow |V_{ud}|^2 = \frac{\hbar 30 \pi^3}{G^2 Q^5 t} = \frac{\hbar 30 \pi^3 \ln 2}{G^2 Q^5 t_{1/2}} = \frac{2984.48(5)}{f t_{1/2} (1 + RC)}$$

Nucleus	ft (sec)	V_{ud}
10		
^{10}C	3039.5(47)	0.97370(80)(14)(19)
^{14}O	3042.5(27)	0.97411(51)(14)(19)
^{26}Al	3037.0(11)	0.97400(24)(14)(19)
^{34}Cl	3050.0(11)	0.97417(34)(14)(19)
^{38}K	3051.1(10)	0.97413(39)(14)(19)
^{42}Sc	3046.4(14)	0.97423(44)(14)(19)
^{46}V	3049.6(16)	0.97386(49)(14)(19)
^{50}Mn	3044.4(12)	0.97487(45)(14)(19)
^{54}Co	3047.6(15)	0.97490(54)(14)(19)
Weighted Ave.		0.97418(13)(14)(19)

Misura di V_{ub} e V_{cb}

Usiamo i decadimenti semileptonici:

 \mathbf{B}^0

d

Adroni senza sapore.

A differenza dei K possiamo produrre qualunque mesone a causa dell'alta energia del quark u. La ricerca in canali esclusivi dipende fortemente dalle funzioni di frammentazione in QCD. Meglio il decadimento inclusivo: guardo solo lo stato leptonico.

tuttavia se guardo solo lo stato inclusivo non distinguo u da c

Poiche' $V_{cb} \sim 10 \ V_{ub}$ la rate in charm e' 100 volte maggiore. Quindi non ho contaminazione da u. Se voglio misurare V_{ub} devo sopprimere il charm. $m_D > 1$ GeV, quindi leptoni di alto impulso solo con u. Tagli in $E_I > 2$ GeV.

Tuttavia devo conoscere le funzioni spettrali.

$$|V_{ub}| = (3.93 \pm 0.36) \times 10^{-3}$$

 $|V_{cb}| = (41.2 \pm 1.1) \times 10^{-3}$

Misura di V_{tb}

Il quark top decade prima di adronizzare. Quindi non esistono mesoni con top. Il top e' al momento studiatosolo a Tevatron (CDF e D0) $m_t = 170$ GeV, energia necessaria per produrre una coppia $t \ \bar{t}$ 340 GeV, LHC a breve

Misura di V_{td} e V_{ts}

Tagging impossibile. K e π prodotti nei jets.

$$\Delta m_b = \langle B_L | H | B_L \rangle - \langle B_H | H | B_H \rangle = \frac{1}{2} (\langle B^0 | - \langle \bar{B}^0 |) H (| B^0 \rangle - | \bar{B}^0 \rangle) - \frac{1}{2} (\langle B^0 | + \langle \bar{B}^0 |) H (| B^0 \rangle + | \bar{B}^0 \rangle)$$

$$=\frac{1}{2}\left(\langle \boldsymbol{B}^{0}|-\langle \boldsymbol{\bar{B}}^{0}|\rangle\boldsymbol{H}\left(|\boldsymbol{B}^{0}\rangle-|\boldsymbol{\bar{B}}^{0}\rangle\right)-\frac{1}{2}\left(\langle \boldsymbol{B}^{0}|+\langle \boldsymbol{\bar{B}}^{0}|\rangle\boldsymbol{H}\left(|\boldsymbol{B}^{0}\rangle+|\boldsymbol{\bar{B}}^{0}\rangle\right)=-\langle \boldsymbol{B}^{0}|\boldsymbol{H}|\boldsymbol{\bar{B}}^{0}\rangle-\langle \boldsymbol{\bar{B}}^{0}|\boldsymbol{H}|\boldsymbol{B}^{0}\rangle$$

assumo
$$|V_{tb}| = 1$$

 $V_{tb}^2 + V_{cb}^2 + V_{ub}^2 = 1$

$$\sim |V_{td}| = (8.1 \pm 0.6) \times 10^{-3}$$

$$\sim |V_{ts}| = (38.7 \pm 2.3) \times 10^{-3}$$

 $|V_{ts}/V_{ts}| = 0.209 \pm 0.001 \pm 0.006$

Misura di V_{cd}

$$\sigma(\nu_{\mu} \rightarrow \mu^{+}\mu^{-}) |V_{cd}|^2 d$$