Quasar feedback in the early Universe: SDSS J1148+5251

Rosa Valiante

Osservatorio Astronomico di Roma

with: Raffaella Schneider, Stefania Salvadori, Simone Bianchi, Roberto Maiolino

AGN 10 10-13 Sept. 2012

OUTLINE

- A model for the formation and evolution of high-z quasars: GAMETE/QSODUST
- A pilot study: SDSS J1148 at z=6.4
- Model results: chemical evolution of J1148
- Implications for Quasar feedback

GAMETE/QSOdust

A semi-analytical hierchical model for the formation & evolution of high-z quasars RV, Schneider, Salvadori, Bianchi 2011

> extensive parameter space exploration → Investigation of several QSO evolutionary scenarios:

• several merger histories of the given host dark matter halo

- different plausible SFHs: star formation in quiescent and/or merger-driven bursts
- different properties of the stellar populations (IMFs): standard and/or "top-heavy"
- BH growth via gas accretion and mergers
- BH feedback → Energy driven galactic scale wind
- chemical enrichment (metals and dust) on the stellar characteristic timescales

 dust formation in both the main stellar dust sources: AGB stars & SNe (RV, Schneider, Bianchi, Andersen 2009)
dust destruction by SN shocks and grain growth in molecular clouds

Quasar & SN driven gas outflow

Valiante et al. 2011, 2012

Energy-driven galaxy scale winds

$$dM_{ej}(t)/dt = dM_{ej,SN}(t)/dt + dM_{ej,AGN}(t)/dt,$$

$$\frac{dM_{\rm ej,AGN}}{dt} = 2\epsilon_{\rm w,AGN}\epsilon_{\rm r} \left(\frac{c}{v_{\rm e}}\right)^2 \dot{M}_{\rm accr}$$

$$\frac{dM_{\rm ej,SN}}{dt} = \frac{2\epsilon_w E_{\rm SN}}{v_{\rm e}^2} R_{\rm SN}(t),$$

A pilot study: SDSS J1148 at z=6.4

The model can be contrained using the properties observed or inferred from observations:

- BH mass $M_{BH} = (2 6) \times 10^9 M_{sun}$ (Willot et al. 2003; Barth et al. 2003)
- Gas mass M_{H2} = 1.6×10¹⁰ M_{sun} (Walter et al. 2004)
- Dynamical mass M_{dyn} ~ 5.5×10¹⁰ M_{sun} (Walter et al. 2004)
- Stellar mass $M_{star} = M_{dyn} M_{H2} \sim 3.9 \times 10^{10} M_{sun}$ (Walter et al. 2004)
- Metallicity **Z/Z**_{sun} = **1.32**^{+1.57}_{-1.10} (Matsuoka et al. 2009)
- Dust mass $M_{dust} = (2-5) \times 10^8 M_{sun}$ (Bertoldi et al. 2003; Beelen et al. 2006; Valiante et al. 2011)

• SFR $\sim (180 - 3 \times 10^3) M_{\odot}$ /yr (Bertoldi et al. 2003; Maiolino et al. 2005,Dwek et al. 2007, Li et al. 2007)

A pilot study: SDSS J1148 at z=6.4

The model can be contrained using the properties observed or inferred from observations:

- BH mass $M_{BH} = (2 6) \times 10^9 M_{sun}$ (Willot et al. 2003; Barth et al. 2003)
- Gas mass M_{H2} = 1.6×10¹⁰ M_{sun} (Walter et al. 2004)
- Dynamical mass $M_{dyn} \sim 5.5 \times 10^{10} M_{sun}$ (Walter et al. 2004)
- Stellar mass M_{star} = M_{dyn} M_{H2}~ 3.9×10¹⁰ M_{sun} (Walter et al. 2004)
- Metallicity Z/Z_{sun} = 1.32^{+1.57}-1.10 (Matsuoka et al. 2009)
- Dust mass $M_{dust} = (2-5) \times 10^8 M_{sun}$ (Bertoldi et al. 2003; Beelen et al. 2006; Valiante et al. 2011)
- SFR $\sim (180 3 \times 10^3) M_{\odot}$ /yr (Bertoldi et al. 2003; Maiolino et al. 2005, Dwek et al. 2007, Li et al. 2007)

Fundamental free parameters:

- star formation efficiency
- BH Bondi accretion efficiency
- BH feedback efficiency

Control the shape of the SFH

A pilot study: SDSS J1148 at z=6.4

The model can be contrained using the properties observed or inferred from observations:

- BH mass $M_{BH} = (2 6) \times 10^9 M_{sun}$ (Willot et al. 2003; Barth et al. 2003)
- Gas mass M_{H2} = 1.6×10¹⁰ M_{sun} (Walter et al. 2004)
- Dynamical mass $M_{dyn} \sim 5.5 \times 10^{10} M_{sun}$ (Walter et al. 2004)
- Stellar mass M_{star} = M_{dyn} M_{H2}~ 3.9×10¹⁰ M_{sun} (Walter et al. 2004)
- Metallicity Z/Z_{sun} = 1.32^{+1.57}-1.10 (Matsuoka et al. 2009)
- Dust mass $M_{dust} = (2-5) \times 10^8 M_{sun}$ (Bertoldi et al. 2003; Beelen et al. 2006; Valiante et al. 2011)
- SFR $\sim (180 3 \times 10^3) M_{\odot}$ /yr (Bertoldi et al. 2003; Maiolino et al. 2005, Dwek et al. 2007, Li et al. 2007)

Fundamental free parameters:

- star formation efficiency
- BH Bondi accretion efficiency
- BH feedback efficiency

Control the shape of the SFH

J1148: testing different scenarios

• SFH \rightarrow SFR(z) = $f_* M_{gas}(z)$ quiescent vs bursted $f_* = (\varepsilon_q + \varepsilon_b) / \tau_{dyn}$ ($\varepsilon_b = 0$) ($\varepsilon_b > 0$)

• Increasing SF eff. : $low-f_* \rightarrow intermediate-f_* \rightarrow high-f_*$

• IMF $\rightarrow \varphi(m) \propto m^{-1.35} exp(-m_{ch}/m)$ standard VS top-heavy (m_{ch} = 0.35 M_{sun}) (m_{ch} = 5.0 M_{sun})

Results: The M_{BH} – M_{star} relation

The $M_{BH} - M_{star}$ relation

Marconi & Hunt 2003

Quiescent SFH models

Q1 \rightarrow low-f_{*} (top-heavy IMF) Q2 \rightarrow intermediate-f_{*}

Bursted SFH models

B1 → low-f_{*} (top-heavy IMF) B3 → high-f_{*}

RESULTS: The chemical evolution

Quiescent (Bursted) SFHs with a standard IMF reproduce the observed dust mass if <u>a factor</u> of ~ 3 (10) larger stellar mass is produced

Quiescent and bursted low-f_{*} models reproduce the mass of metals and dust ONLY with a <u>top-heavy IMF</u> ($m_{ch} = 5 M_{sun}$)

- J1148: Quasar-driven gas outflow at z>6

RV, Schneider, Maiolino, Salvadori, Bianchi 2012

- J1148: Quasar-driven gas outflow at z>6

RV, Schneider, Maiolino, Salvadori, Bianchi 2012

Massive outflow rate > 3500 M_{sun}/yr in J1148 (Maiolino et al 2012)

Quasar-dominated gas outflow

Conclusions

Models aimed at interpreting the observed dynamical (M_{BH} , M_{star}) and chemical (M_{met} , M_{dust}) properties of QSOs at z>6 predict that:

- Large outflows are launched during the latest \sim (100 200) Myr of the evolution independently of the SF efficiency and IMF
- The gas outflow rate is in good agreement with the > 3500 M_{sun}/yr rate inferred for J1148 by Maiolino et al. (2012)
- The gas outflow is dominated by QSO feedback leading to a down-turn in the star formation rate at z < 7 8
- Supernova explosions give a negligible contribution to the observed winds at z= 6.4

