

Università degli Studi di Firenze

Black hole masses and their relations with host galaxies

Alessandro Marconi

Department of Physics and Astronomy University of Florence, Italy

ACTIVE GALACTIC NUCLEI 10 Dall'orizzonte degli eventi all'orizzonte cosmologico 10-13 settembre 2012, Roma

Scaling Relations in Normal Galaxies

☆ BH Mass Estimates in Active Galaxies

Scaling Relations in Active Galaxies & their redshift evolution

Scaling Relations in Normal Galaxies

☆ BH Mass Estimates in Active Galaxies

Scaling Relations in Active Galaxies & their redshift evolution

Importance of BH-galaxy relations

🙀 Co-evolution of BHs and their host galaxies

☆ Physical link probably from BH (AGN) feedback on host galaxy (→Fabrizio's talk)

Demography of supermassive BHs in nearby galaxy nuclei

$\rho_{BH}\simeq 3.5\text{-}5.5\times10^5~M_\odot~Mpc^{\text{-}3}$

Salucci +99, Yu & Tremaine 02, Marconi +04, Shankar +04, Tamura+06, Tundo +07, Hopkins +07, Graham +07, Shankar +08, Vika+09 et many al.

Comparison with accreted mass function from AGN (Soltan's argument and continuity equation)

$L/L_{Edd} \sim 1$ and $\epsilon \sim 0.1$

Yu & Tremaine 02, Marconi +04, Shankar+04, Merloni 04, Shankar +08, Merloni & Heinz 2009, Cao 10, Shankar+12, et many al.

BH fundamental plane

- \gtrsim Correlation of M_{BH} with virial bulge mass (~ R_eσ²) suggests that M_{BH} might correlate with combination of R_e, σ
- \approx Indeed residuals of M_{BH}- σ (weakly) correlate with R_e (Marconi & Hunt 2003)
- Weight Hopkins et al. (20007a,b) propose a "fundamental plane" for M_{BH} found both in data and models (Barway & Kembhavi 07, Aller & Richstone 07, Feoli & Mancini 09).

BH fundamental plane?

☆ Graham 08 shows

- Barred galaxies are systematically offset from M_{BH} - σ relation
- If the need of FP is driven by "barred" galaxies. The bar affects σ and a combination of σ , R_e gives a tighter relation.
- \overleftrightarrow Hu 08 notices the offset nature of "pseudobulges" (from mostly barred galaxies) in $M_{\rm BH}$ - σ relation

A. Marconi

AGN X, Roma, 2012

Pseudobulges

- Do pseudobulges or barred galaxies define a different correlation or no correlation at all?
- What is the origin of the offset nature? Different BH growth?

M_{BH}-σ & M_{BH}-L: high mass end?

McConnell+2011

BHs in Brightest Cluster Galaxies

predicted by correlations (McConnell+2011, 2011a, 2012) \Rightarrow BCGs are deviant from fundamental plane of BH activity (M_{BH}-L_X-L_R) unless M_{BH}-L_K underestimate M_{BH} by ~10 (Hlavacek-Larrondo+12) \Rightarrow BCGs in cool core clusters should have M_{BH} > 10¹⁰ M_☉ to follow the FP.

☆ Scaling Relations in Normal Galaxies

BH Mass Estimates in Active Galaxies

Scaling Relations in Active Galaxies & theis redshift evolution

BH Mass measurements

 $\stackrel{}{\propto}$ motions or kinematics of test particles (stars, gas clouds)

Galactic Center, ~14 with H₂0 Megamasers in Galaxy Nuclei

spatially resolved gas/stellar kinematics (average kinematics of large volumes)

in principle all galaxies within ~100 Mpc; in practice ~60 galaxies (mostly E/S0)

reverberation mapping (in type 1 AGN: measure sizes from time delays)

- in principle all type 1 AGN; in practice ~50 objects so far
- virial masses (in type 1 AGN: masses from spectral measurements of broad lines)
 - all type 1 AGN at all z; as many objects as many good spectra available

■ gas/stellar kinematics \rightarrow reverberation mapping \rightarrow virial masses

Reverberation mapping

☆ time delay of broad line w.r.t. to continuum light curve is light travel time → R_{BLR}, BLR average distance from BH.

Virial Masses

Apply virial theorem to estimate M_{BH}: $V = V_{BLR} = \sigma(\text{rms spectrum})$

$$M_{BH} = f \frac{V^2 R}{G}$$

$$R = R_{\rm BLR} = c\Delta \tau$$
$$f = ?$$

The use of rms spectra

 \overleftrightarrow rms spectra isolate the variable (reverberating part) of the line \overleftrightarrow rms line usually broader than mean line

Park+12

Calibration of virial MBH: RM

$$M_{BH} = f \frac{V^2 R}{G}$$

f factor is unknown.

Consider RM data and calibrate "average" f with M_{BH} - σ [Onken+2004]

Find f which provides the best agreement between RM $M_{\rm BH}$ and $M_{\rm BH}$ - σ relation.

 $< f > = 5.5 \pm 1.8$ if V is velocity dispersion of r.m.s. spectrum

A. Marconi

AGN X, Roma, 2012

Calibration of virial MBH: RM

Scatter of $M_{BH}(RM)$ - σ similar to $M_{BH}(\sigma)$

Single Epoch Virial BH Masses

M_{BH} from reverberation mapping (→R_{BLR}) does not depend on distance ...

BUT is

very demanding in terms of telescope time;

difficult at high L and high z (small ΔF/F, long ΔT, cosmological time dilation ...).

Radius - Luminosity relation (Kaspi+2000,2005, Bentz+09): can estimate BLR size from continuum luminosity!

Single Epoch (SE) M_{BH}: combine line widths (FWHM) with continuum luminosity

A. Marconi

AGN X, Roma, 2012

Calibration of virial MBH: SE

M_{BH} for objects with RM (reverberation mapping) data are known from previous calibrations.

Consider many SE (single epoch) spectra of the same sources, measure FWHM and L_{cont} and find f' which calibrates SE MBH

☆ V from FWHM of line

 $\stackrel{\scriptstyle }{\propto}$ R from radius-luminosity relation R~L^a

r.m.s. of log M_{BH}(SE)/M_{BH}(RM) is 0.4 dex

SE M_{BH} can be wrong even up to a factor 10, but are ok in a statistical sense.

 $\log[M_{BH}(H\beta,L_{\lambda},Calib)/M_{BH}(Rev)]$

Vestergaard & Peterson 2006

$$M_{BH} = f' \left(\frac{FWHM(H\beta)}{1000 \,\mathrm{km \, s^{-1}}}\right)^2 \left(\frac{\lambda L_{\lambda}(5100)}{10^{44} \,\mathrm{erg \, s^{-1}}}\right)^{0.5} \quad \log f' = 6.91 \pm 0.02$$

A. Marconi

AGN X, Roma, 2012

The BH mass ladder (Peterson 2002)

Open issues

 \approx We are missing a R_{BLR}-L for MgII and CIV (high z extension).

 \approx The physical origin of the R_{BLR}-L relation

 χ Accuracies of M_{BH}(RM) and M_{BH}(SE)

🙀 Reliability of CIV-based masses

🙀 Effect of non-virial (e.g. outflow motions) in the BLR

 $\stackrel{\scriptstyle }{\propto}$ Effect of radiation pressure

Accuracy of MBH based on SE

Correct L for host galaxy contamination

 χ From M_{BH}(RM) to M_{BH}(SE) uncertainties from:

continuum and line variability ~0.05 dex

scatter of R-L and systematic on f ~0.45 dex

Much of the scatter is due to the non-linear relations FWHM(SE)-FWHM(rms) and σ (SE)- σ (rms)

FWHM^{SE} 3.5 5

3.0

0.3

log

😭 These are only empirical corrections, no physical reason behind.

Accuracy of CIV-based MBH

🙀 CIV-based masses are deemed unreliable because

- line is blueshifted compared to MgII (e.g. Shen+10)
- Ine width is not well correlated with MgII and Hbeta (Baskin & Laor 2005; Netzer +2007; Sulentic +2007; Shen & Liu 2012)

Accuracy of CIV-based Мвн

- \overleftrightarrow Comparison of *rms* and mean spectra:
 - non-variable component responsible for a large part of the discrepancies (not in Hβ!)
 - bias in CIV mass depends on profile shape (S=FWHM/sigma)
 - empirical correction (M_{BH}~ FWHM^{0.4} $\sigma^{1.6}$) reduces M(CIV)/M(Hβ) scatter from 0.36 to 0.22 dex
 - Non variable component possibly originates in an orientation dependent outflow from BLR or ILR (inner extension of NLR)

The effect of radiation pressure

Reclouds are photoionized

☆ Radiation pressure on BLR clouds is an unavoidable physical effect

Corrected mass estimator:

$$M_{BH} = \int \frac{V^2 R}{G} + g \lambda L_{\lambda}$$

f (H β), g (H β) calibrated assuming AGN lie on M_{BH}- σ/L

A simple model for a physical interpretation of g

→ BLR clouds optically thick to ionizing photons

[Marconi+08,09]

Direct calibration of SE virial MBH

calibrated directly using (true) MBH estimated from MBH-o/L from Bentz+09

[Marconi+08, Marconi+09, Marconi+12]

Second Second

☆ BH Mass Estimates in Active Galaxies

Scaling Relations in Active Galaxies & their redshift evolution

M_{BH}-galaxy relations for AGN at z=0

- \approx M_{BH}-σ relation for local AGN from RM database (Peterson+2004) and new RM observations at low L (LAMP)
- determine *f*, in agreement with earlier determinations (Onken+2004).
 IMPORTANT: normalizations are imposed to be same but slope and scatter are not!

- Relation is also surprisingly tight (intrinsic scatter ~0.4 dex, similar to quiescent galaxies);
- Slope is 3.6 ± 0.6 compared to 4.2-0.4 of quiescent galaxies (Gultekin+09); consistent within the large errors
- Virial products are scaled by ~5.2 (similar to Onken+2004)
- $\stackrel{}{\simeq}$ Quasars are missing (difficult to measure σ

A. Marconi

AGN X, Roma, 2012

NLSy1 galaxies ON MBH-o/L

which will be a straight of the straight o

NLSy1 bulges are mostly pseudo-bulges (Orban de Xivry+11, Mathur+11)
 When M_{BH} corrected for radiation pressure, consistent with relation and pseudo-bulge hosts.

M_{BH}-galaxy relations at low z (<1)

Treu et al. find evidence for evolution of M_{BH} - σ/L zero point since z~0.5 (e.g. Bennert+11). Intrinsic scatter (constant with z) is ~0.3 dex). With high z objects (see later) evolution is as

$$\frac{M_{\rm BH}}{L_{\rm sph}} \sim \frac{M_{\rm BH}}{M_{\rm sph}} \sim (1+z)^{1.4\pm0.2}$$

Intriguingly no evolution when considering Total host luminosity.

BH Mass & Radio Loudness

When BH mass estimates for samples of radiogalaxies and quasars are carefully checked ...

☆ it turns out that there is no genuine radio-loud source with M_{BH} < 10⁸ M_☉ ☆ large spin is not the only condition for radio loudness, there is also condition on BH mass (M_{BH} > 10⁸ M_☉)

Chiaberge & Marconi 11

At high z ...

M_{BH}-galaxy relations at high z (>1)

 $M_{BH} [M_{\odot}]$

log

Decarli+2009: ~100 quasars with HST imaging (~R band rest frame), and host galaxies classified as ellipticals.

- As in previous studies, evolution is found *after* accounting for passive evolution.
- At z~3 M_{BH}/M_{sph} is ~7 times larger than at z=0
- Also McLure +03, Peng +06, Schramm +08, Salviander +07, Targett +12 ...

M_{BH}-galaxy relations at high z (>1)

Merloni+10 select type 1 AGN with L> $10^{44.5}$ erg/s at 1<z<2 from COSMOS.

9.0 8.0 7.5 Merloni+2010 10.0 10.5 11.0 11.5Log M* [M_{sun}]

Separate AGN and galaxy via SED fitting. Large uncertainties due to assumed galaxy and AGN templates, but more accurate than the use of single band L and direct estimate of *total* M_{star}. They find evolution

$$\frac{M_{BH}}{M_{\star}} \simeq \left(\frac{M_{BH}}{M_{\star}}\right)_{local} (1+z)^{0.68\pm0.12}$$

Red arrows: evolution in M_{BH}-M_{star} plane if L_{AGN} and SFR are maintained for 300 Myr considering AGN duty cycle $\delta(L,z)$ = $\phi_{AGN}(L,z)/\phi_{gal}(L,z)$; convergence toward local relation!

Мвн-galaxy in very high-z quasars

4 < z < 6.4 quasars with M_{sph} estimate from CO and virial M_{BH}. Even reducing to low inclination, very high M_{BH}/M_{sph} compared to local value!

Maiolino 2009, Walter+10, Wang+10 ...

A. Marconi

AGN X, Roma, 2012

SMG galaxies

SMG (SubMm Galaxies, high z analogs of ULIRGs with typical

SFR ~ 1000 M_{\odot} /yr) seem to have smaller BHs compared to host spheroid w.r.t. quasars at similar redshifts.

With typical virial BH masses, $\approx 6 \times 10^7 \text{ M}_{\odot}$, SMGs appear to be in a phase of rapid BH growth.

Alexander+08,+09

M_{BH}-galaxy relations vs z

Quasar at z~6.4 (Willot+03, Walter+09)

Errors or selection effects?

 \Rightarrow Position on M_{BH}-galaxy relations depends on the evolutionary stage (Lamastra+10)

Objects with $M_{BH}>10^9 M_{\odot}$ @z=4: BH growth precedes growth of stellar mass. Objects selected as in Merloni et al. 2010 @1<z<2: BH growth is "stalling". SMG-like galaxies rare evolutionary paths: M_{BH}(final)<10⁹ M_☉ and approach local M_{BH}-M_{star} relation from below.

Errors or selection effects?

- \therefore Difference with observations possibly due to biases (Portinari+12):
 - Quasar host galaxies in peculiar phase of evolution
 - Difficult decomposition in bulge/disk, use all galaxy light
 - Luminous quasars trace overmassive BH for M_{BH}-L relation (Lauer+07)
 - Observational errors on BH masses introduce bias (Shen & Kelly 10)
 - → sample is skewed towards apparently larger masses

 $\propto M_{BH}-L/M_{star}$ relation might show little evolution after all

M_{BH}-σ & M_{BH}-L: high mass end?

McConnell+2011

Summary on MBH-galaxy z evolution

- There seems to be a consensus on the evolution of the M_{BH}/M_{sph} ratio from 0 to high z: at high z M_{BH} is larger than local value for a given M_{sph}
 - NB: possible problems in M_{BH} and measurement of host galaxy
 - M_{sph} is stellar mass: bulge growth in stars is lagging behind BH growth
 - MBH/Mdyn has not been studied yet for obvious difficulties in determining the host galaxy dynamical mass (wait for ALMA!); for 1 (one) object at z~1.3 MBH/Mdyn is roughly equal to the local value (Inskip+2011)
 - Obviously is M_{dyn} which determines the capability of the galaxy to retain its gas under the effect of AGN feedback.
- There are hints that M_{BH}/M_{total} might not vary (Bennert+2009, Jahnke +2009) or vary less (Peng+2006, Merloni+2010) at z<1-1.5 compared to M_{BH}/M_{bulge} ; this is not true at higher redshift (quasars of Peng+2006).
 - Are most stars in AGN hosts formed at z>1.5 during, eg merging processes, and then redistributed to form the bulges through secular processes?

A. Marconi

AGN X, Roma, 2012