AGN 10 Rome, September 2012

BLAZARS: do we really understand them ?

Luigi Costamante

Dept. of Physics, Universita` di Perugia

Leptonic scenarios

FIG. 2.—Geometry of the source. The radiating region, denoted by short cylinder of dimension *a*, moves along the jet with pattern Lorentz factor Γ_p . Underlying flow moves with Lorentz factor Γ , which may be different.

Sikora et al. 1994

The Main Plane of Blazars

Jet non-thermal properties SED peak frequency

High-peaked Low Compton dominance

Low-peaked High Compton dominance

Accretion/Thermal properties

Radiatively inefficient disk, Absent/weak emission lines Low accretion rate ADAF?

Radiatively efficient disk, Strong broad emission lines Blue bump, high accretion rate Shakura-Sunyaev disk

The Main Plane of Blazars

The Main Plane of Blazars

Origin of Blazar Sequence: problem of many Fermi BL Lacs with no redshift

Physical ?

Selection bias ?

Focus of the talk:

Synchrotron peak frequencies

HBL = - standard HBL (peak UV-softX)
- Extreme BL (peak > few keV)

Compton peak frequencies

Two types of HBL as well !

"GBL"

~100 GeV-peaked HBL objects (bright and easily detected in Fermi-LAT)

Abdo et al. (LAT coll) 2009, 2010a, 2010b, 2011

"TBL": TeV-peaked BL Lacs

Intrinsic $\Gamma_{\text{VHE}} < 2$ (typically 1.5-1.7), with any EBL intensity (even lowest one). \Rightarrow **Compton peak** \geq **3-20 TeV**

Extremely difficult to model with one-zone SSC models, due to Klein-Nishina effects at high energies.

Tavecchio et al 2009

New type of BL Lac objects: TBL

How many ? 9/29: ~1/3 HBL

Relation Extreme-X — Extreme-TeV ? No...

How can be explained ?

Relation X-TeV ? Not very clear:

We cannot predict GBL/TBL from SED or Fermi spectrum!

How to make very hard spectra (even <1.5) with one-zone SSC ?

comprehensive discussion in recent paper: Lefa et al 2011

- Low-energy cutoff at high energies (Katarzynski 2007)

- Maxwellian distribution (Henri et al 2002)

How to make very hard spectra with one-zone SSC ?

But, if cooling is dominated by synchrotron, SED goes quickly back to "usual" (broad-band and softer spectrum)

Lefa et al. 2011

How to make very hard spectra with one-zone SSC ?

To keep the hard features.

Lefa et al. 2011

Hard spectra without invoking hard particle distributions: internal absorption on Planckian spectrum

But Fermi data seem now to exclude this...

But it might work in some Fermi-bright BL Lacs:

Also example of proton-synchrotron model

Jet non-therma SED peak fi	al properties requency	
High-peaked Low Compton dominance		
Low-peaked High Compton dominance		FSRQ Accretion/Thermal properties
Radiatively inefficient disk, Absent/weak emission lines Low accretion rate ADAF?		Radiatively efficient disk, Strong broad emission lines Blue bump, high accretion rate Shakura-Sunyaev disk

Basic 0th-order assumptions/approximations:

a) R ~ as above

c) BlackBody spectrum @9eV (0.2 eV)

b) isotropic field (shell)

d) reprocessing factor n~ 10% (20-30%)

(e.g. Ghisellini et al. 2009 Sikora et al. 2009) **Broad Line Region (UV**, Ly α , CIV, Mg II) or **Hot Dust (IR)** photons are used as target for External Compton mechanism. These same photons cause huge internal $\gamma - \gamma$ absorption !

(Ghisellini et al 2009, Sikora et al 2009)

Two (opposite) lines of interpretation (on same data...)

I) Marscher et al. : dissipation > 10-20 pc

2) Tavecchio, Poutanen et al: dissipation < 0.1 pc

example: 3C 454.3

Radio-Gamma Correlation:

Simultaneous flares

Jorstad 2011, Marscher et al 2011-2012

Radio/Gamma Co-spatial, transparent to radio Flares: 43 positives, 13 negatives (34 Fermi blazars)

But Gamma region compact ! varability seen down to the shortest timescales allowed by statistics (0.1-1 GeV)

Not transparent to radio

Compact but large ? different filling volumes cell-in-jet, recollimation shock Komissarov & Falle 97 Nalowaika & Silkorn 08

Komissarov & Falle 97 Nalewajko & Sikora 08 Bromberg & Levinson 09

Marscher et al 2011-12

For 2010 flare of 3C 454.3: 1/60 jet

I/60 jet cross-section

Two (opposite) lines of interpretation

I) Marscher et al. : dissipation > 10-20 pc

2) Tavecchio, Poutanen et al: dissipation < 0.1 pc

Compactness = closer to the BH (where jet cross-section is small)

Stratified BLR: High and Low excitation lines R_H~0.2-0.3 R₀ R_L~3-5 R₀

Poutanen and Stern 2010-2012

Fast gamma-ray variability + Breaks ~3-4 GeV = R_{diss} < R_[high ionization BLR]

Poutanen and Stern 2011

Problem with BLR-absorption interpretation:

Data from Poutanen 2011

If $\tau_{He} > I \implies \tau_H > 100 \times \tau_{He}$

We do not see such strong cutoffs

Fermi-LAT results on several FSRQ: NO evidence of strong BLR cut-offs !

Sermi

Gamma-ray Space Telescope

LC, Tramacere, Tosti (LAT coll) 2011, Fermi Symp.

Even among the most powerful objects !

Characterized by strong Disk emission and large BLRs

Examples assuming no intrinsic steepening (case most favorable to absorption): power-law fits up to ~4 GeV extrapolated at higher energies, with (dashed lines) or without BLR absorption.

PKS 1454-354:

Sermi

Gamma-ray Space Telescope

PMN J1016+0512:

BZQ J2056-471:

 $L_{disk} \sim 5 \times 10^{46} erg/s , R_{blr} \sim 7 \times 10^{17} cm$ if R_{diss} ~2×10¹⁷ \Rightarrow T_{BLR} > 30 !
$$\begin{split} & \mathsf{L}_{\mathsf{disk}} \thicksim 9 \times 10^{45} _{\mathsf{erg/s}}, \ \mathsf{R}_{\mathsf{blr}} \thicksim 3 \times 10^{17} _{\mathsf{cm}} \\ & \text{if } \mathsf{R}_{\mathsf{diss}} \sim 2.5 \times 10^{17} \implies \mathsf{T}_{\mathsf{BLR}} > 16 \ ! \end{split}$$

 $L_{disk} \sim 4 \times 10^{46} erg/s$, $R_{blr} \sim 6 \times 10^{17} cm$ if R_{diss} ~2×10¹⁷ \Rightarrow T_{BLR} > 30 !

Values of $R_{diss} \ L_{disk} \ R_{blr}$ used in Ghisellini et al 2009

Rdiss **2** RBLR LC,

LC, Tramacere, Tosti (LAT coll) 2011, Fermi Symp. Abdo et al. 2012 (in prep.)

Some objects compatible with mild BLR absorption

Log-parabolic fits to the data only up to \sim 3-4 GeV, and extrapolated at higher energies

Gamma-ray Space Telescope

LAT spectra: original, observed ; BLR de-absorbed

LC, Tramacere, Tosti (LAT coll) 2011, Fermi Symp.

Further evidence: ermi VHE detections of 4C 21.35 and PKS 1510-08 Gamma-ray Space Telescope Rdiss > RBLR 4C +21.35 z=0.435 Magic (EBL corr.) -9 Aleksic et al. 2011 (MAGIC coll) Problem? again, IR photons Í∎∓ absorb VHE gamma-rays. LAT data 47

46 ₋

erg

Log vL

45

-10

-11

-12

 s^{-1}]

[erg cm⁻²

Log νF_{ν}

MAGIC fundamental discovery on 4C 21.35: fast variability !

2) $R_{diss} > 1-10 \text{ pc} \Rightarrow a$ larger region, mm-transparent

b) variability ~days-week

Aleksic et al. 2011 (MAGIC coll)

Fermi-LAT + Cherenkov Tel data so far:

There seems to be no evidence of radiative interaction of Jet with BLR !

- No External Compton on BLR
- BLR does not determine the color of the SED

```
Jet - disk/BLR connection
```


Conclusions

We do not understand/explain TBL. (extreme/different particle acceleration? emission mechanism?)

BLR does not influence the jet directly (it's a proxy of the disk).
 (rethink EC on BLR, and all parameters derived from SED fitting)

Back-up slides

Fermi does <u>NOT</u> detect all type of blazars: misses at the two ends of SED sequence

MeV-blazar

Hard TeV BL Lac

New, hard, transient components emerging at high energies ??

Mkn 501 (only a hint..)

Constraints on the Intergalactic Magnetic field

Lower limit from absence of Y-Y cascade emission

Neronov et al. 2010, Dermer et al 2011, Vovk et al. 2011