Broad Absorption Line Quasars
from Radio to NIR band

Gabriele Bruni
IRAM, IRA-INAF

Collaborators:
Karl-Heinz Mack, Daniele Dallacasa, José Ignacio González-Serrano, Chris Benn, Ruth Carballo, Joanna Holt, Francisco Montenegro-Montes, Florencia Jimenez-Lujan

AGN 10: dall’orizzonte degli eventi all’orizzonte cosmologico
Roma, 10-13/09/2012
How many? ~20%

Broad absorption towards the blue wings of some UV emission lines, shifted up to ~ 0.2 c

- Most probably intrinsic
- Al III, Mg II, Si IV, C IV
- HiBALs, LoBALs, FeLoBALs.
Elvis (2000)

1) Orientation Scenario

2) Evolutionary Scenario: Young or recently refueled quasars
 (Briggs et al. 1984; Lipari and Terlevich 2006)
Sample selection

SDSS QSO catalogue IV + FIRST catalogue

> 30 mJy @ 1.4 GHz
1.7 < z < 4.7

536 RL QSOs

25 RL BAL QSOs (AI>100 in CIV)
34 non-BAL RL QSOs (Comparison)
Observational campaign

- Radio continuum & polarization (Effelsberg, VLA, GMRT)
- Morphology & orientation (EVN, VLBA)
- Dust detection: (IRAM 30-m, APEX)
- Infrared spectroscopy: central BH mass estimation (TNG)
I
Radio continuum & polarization
Observations

Effelsberg 100-m dish
- Polarisation and continuum at 2.6, 4.8, 8.3, 10.4 GHz
- 25 RL BAL QSOs + 34 non-BAL QSOs

Very Large Array
- Observations performed in July 2009
- Polarisation and continuum at 1.4, 4.8, 8.4, 22, 43 GHz
- 25 RL BALs + 34 non-BAL QSOs
1) Morphology

- 8 resolved source with the VLA: 4 BAL + 4 non-BAL QSOs (16% vs 12%)
- Linear sizes from 20 to 400 kpc for both
- Similar morphologies
2) Variability

- Calculation of the flux-density variability (4.8 and 8.4 GHz; Var > 20%; $\sigma_{\text{var}} > 4$)

- 1 BAL vs 3 non-BAL QSOs present variability

- Results confirmed by the variability study of the RBQ sample (20% vs 14%)
 (Salerno et al. 2012, in prep.)

- Polar orientation is not preferred
3) Fit of the spectra

- Both for non-BAL and BAL sample
- Determination of the peak frequency
 - **GPS:** 32% BAL QSOs
 - 23% non-BAL QSOs
- Evidence of low-frequency components in some cases
 - (12% BAL QSOs, 18% comparison QSOs)

Bruni et al. 2012a
Results

4) Spectral characteristics

- Spectral index: steep
 - 68% BAL QSOs
 - 50% non-BAL QSOs
- Wide range of orientations
5) Polarimetry

- Polarisation percentage: \(\sim 1-10\% \) Similar to non-BAL QSOs
- Rotation Measure: \(800 < |RM| < 3500 \text{ rad/m}^2 \), 1 outlier

\[
RM = 8.1 \times \int (n_e \cdot B_v) dL \text{ [rad \cdot m}^2]\]

Benn et al. (2005) \((-18350 \pm 570 \text{ rad/m}^2\))

Bruni et al. 2012a

![Histogram of RM values]
II
Morphology at high angular resolution
VLBI observations

VLBA
- First 6 brightest sources of the sample
- 4.8 and 8.4 GHz observations

EVN
- Second 5 brightest sources of the sample
- 4.8 GHz observations
Results
- 4 core-jet
- 2 doubles
- 3 symmetric
- 2 unresolved (18%)
- $10 < L_S < 100$ pc

Bruni et al. 2012b
Results

- 82% of sources are resolved at pc-scale
- Different morphologies imply different possible orientations
- Missing flux in some cases, possibly due to extended components.
- Linear sizes up to 200 kpc from previous VLA observations: not all sources are young/compact.
III
Dust detection
Observations

IRAM 30-m
- Observations during 2010
- Continuum at 250 GHz
- 11/25 RL BAL QSOs

APEX
- Observations performed during 2010,
- scheduled for next fall
- Continuum at 850 GHz
- 6 equatorial sources of the sample (8/25)
- 7% with clear evidence of dust emission (1/14)
- 26% found from Omont et al. (2003) in the dust emission study of QSOs with z~2
- More statistic with new data (APEX)

Bruni et al. 2012b
IV
BH mass estimation
Why are RL BAL QSOs rare?

- BAL QSOs are 4 time less common among QSOs with $R^*>2$ (Stocke et al. 1992)
- FR II BAL QSOs found by Gregg et al. (2006) with strong anticorrelation between Radio-Loudness and BAL strength

Evolutionary track?

BAL QSOs → RL QSOs
Infrared observations

- TNG spectroscopic observations of 21 RL + 23 RQ BAL QSOs optically bright (r<19)
- Low resolution (R~50)
Mass of the BH from FWHM of MgII and H$_\beta$

\[M_{\text{BH}} [M_\odot] = 10^{6.86} \left(\frac{\text{FWHM(MgII)}}{1000 \text{ km s}^{-1}} \right)^2 \left(\frac{\lambda L_\lambda(3000 \text{ Å})}{10^{44} \text{ erg s}^{-1}} \right)^{0.50} \]

Vestergaard et al. 2006

\[M_{\text{BH}} [M_\odot] = 10^{6.91} \left(\frac{\text{FWHM(H}\beta)}{1000 \text{ km s}^{-1}} \right)^2 \left(\frac{\lambda L_\lambda(5100 \text{ Å})}{10^{44} \text{ erg s}^{-1}} \right)^{0.50} \]

Vestergaard & Osmer 2009

![Graphs showing distribution of BH masses](image-url)
Eddington ratio and BLR radius

\[\frac{L_{bol}}{L_{Edd}} \approx 0.13 \left(\frac{\lambda L_\lambda(5100 \, \text{Å})}{10^{44} \, \text{ergs s}^{-1}} \right)^{0.5} \]

Kaspi et al. 2000

\[R_{BLR} = A \cdot \left[\frac{\lambda L_\lambda(5100)}{10^{44} \, \text{erg s}^{-1}} \right]^{0.5} \, \text{lt} - \text{days} \]

Kaspi et al. 2000, 2005
Bentz et al. 2006

- Similar values for Eddington ratios:
 1. all super-Eddington (selection effect)
 2. mean values of 2.52 vs 2.80

- Similar values for BLR: 481±142 vs 433±198 light-days
Results from the SDSS DR7 QSO catalogue

- 69 RL vs 3369 RQ BAL QSOs
- 3650 BAL vs 79650 non-BAL QSOs
- means within ±1 sigma for RL vs RQ BAL QSOs
Results from the SDSS DR7 QSO catalogue

Excess of super-Eddington objects among BAL QSOs:

- 13% vs 2% for BALs vs non-BALs
- 26% vs 13% for RL BALs vs RQ BALs

- High accretion rates required to trigger the BAL phenomenon?
- BH mass is not responsible for the rarity of RL BAL QSOs
Conclusions

- No particular orientation, only steep-spectrum majority
- Both GPS and low frequency peaked, old components in some cases
- Some resolved, different morphologies, sizes from ~ 10 pc to ~ 200 kpc
- No more dust-abundant than the QSO population (not so young)
- No higher BH masses than normal QSOs
- Tentative evidences of an excess of super-Eddington objects
The BALs are most probably produced by outflows, but:

① with different possible orientations (recollimated outflows?)

② Present in different evolutionary stages of the QSO

③ Probably as an intermittent phenomenon
BROAD ABSORPTION LINE DISAPPEARANCE ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

N. Filiz Ak1,2,3, W. N. Brandt1,2, P. B. Hall4, D. P. Schneider1,2, S. F. Anderson5, R. R. Gibson5, B. F. Lundgren6, A. D. Myers7, P. Petitjean8, Nicholas P. Ross9, Yue Shen10, D. G. York11, and D. Bizyaev12, J. Brinkmann12, E. Malanushenko12, D. J. Oravetz12, K. Pan12, A. E. Simmons12, B. A. Weaver13

\textbf{Draft version August 7, 2012}

\textbf{ABSTRACT}

We present 21 examples of $\text{C}\,\text{IV}$ Broad Absorption Line (BAL) trough disappearance in 19 quasars selected from systematic multi-epoch observations of 582 bright BAL quasars ($1.9 < z < 4.5$) by the Sloan Digital Sky Survey-I/II (SDSS-I/II) and SDSS-III. The observations span 1.1–3.9 yr rest-frame timescales, longer than have been sampled in many previous BAL variability studies. On these timescales, $\approx 2.3\%$ of $\text{C}\,\text{IV}$ BAL troughs disappear and $\approx 3.3\%$ of BAL quasars show a disappearing trough. These observed frequencies suggest that many $\text{C}\,\text{IV}$ BAL absorbers spend on average at most a century along our line of sight to their quasar. Ten of the 19 BAL quasars showing $\text{C}\,\text{IV}$ BAL disappearance have apparently transformed from BAL to non-BAL quasars; these are the first reported examples of such transformations. The BAL troughs that disappear tend to be those with small-to-moderate equivalent widths, relatively shallow depths, and high outflow velocities. Other non-disappearing $\text{C}\,\text{IV}$ BALs in those nine objects having multiple troughs tend to weaken when one of them disappears, indicating a connection between the disappearing and non-disappearing troughs, even for velocity separations as large as 10000–15000 km s$^{-1}$. We discuss possible origins of this connection including disk-wind rotation and changes in shielding gas.

\textit{Subject headings:} galaxies: quasars: absorption lines
Thank you!