Baldi et al. 12, submitted to ApJ

SPECTRAL ENERGY DISTRIBUTION OF LOW-LUMINOSITY RADIO GALAXIES AT z ~1-3: A HIGH-z VIEW OF THE AGN-HOST CONNECTION Ranieri D. Baldi Marco Chiaberge, Alessandro Capetti

mercoledì 12 settembre 12

RADIO GALAXIES IN THE LOCAL UNIVERSE

Zirbel & Baum 95

Massive Early-type galaxies host RG
FRI in rich environment, FRII in galaxy group

mercoledì 12 settembre 12

HIGH-Z RADIO GALAXIES

 Our knowledge of RG at high z is exclusively
 based on studies of FRII

Dunlop & Peacock 90, Condon+02,

Gendre, Best, Wall 10

• The missing piece of the puzzle? study of FRI at high z.

FRIATHIGHZ

- a few FRI in 7C sample (Heywood + 07) and two possible FRI in HDF (Snellen & Best 01)
- Chiaberge + 09 selected the first sizeable sample of 37 FRI candidates at z≥1 in the COSMOS field.
- 4-steps selection criteria: radio/optical, independent of photo-z

mercoledì 12 settembre 12

FRI CANDIDATES VLA-COSMOS

• Extended and compact radio sources

• 1< z < 2, Ilbert + 09, Mobasher + 07

• Host: no clear spirals and one QSO (Prescott + 06)

A BROAD PROJECT

- The AIM of the projet is to analyze the properties of this sample of low-luminosity radio galaxies located at high z: possible progenitors of local FRI population?
- METHOD: SED, host type, nuclear properties, dust in comparison with local and distant RGs
- SAMPLE: 34 FRI candidates (we exclude 3 obj)
 DATA: COSMOS survey, NVSS and FIRST catalog

COSMOS SURVEY

 COSMOS survey provides multiwavelenth imaging and spectroscopy from radio to X-ray, covering a 2 deg².

It includes HST,
 Subaru, GALEX,
 Spitzer data

COSMOS catalog: i < 25

COSMOS broad bands and their properties.

Filter	Telescope	λ_{eff}	FWHM	sensitivity
FUV	GALEX	1538.6Å	230.8Å	25.7
NUV	GALEX	2315.7\AA	789.1\AA	26.0
u^*	CFHT	3911.0Å	538.0Å	26.5
B_J	Subaru	4439.6Å	806.7Å	27.0
g^+	Subaru	4728.3Å	1162.9Å	27.0
V_J	Subaru	5448.9Å	934.8Å	26.6
r^+	Subaru	6231.8Å	1348.8Å	26.8
i^*	CFHT	7628.9\AA	1460.0\AA	24.0
i^+	Subaru	$7629.1 { m \AA}$	1489.4\AA	26.2
F814W	HST	8037.2Å	1539.0\AA	27.2
z^+	Subaru	9021.6Å	9021.6Å	25.2
J	UKIRT	$12444.1 { m \AA}$	1558.0\AA	23.7
K_S	NOAO	21434.8Å	3115.0Å	21.6
K	CFHT	21480.2Å	3250.0Å	23.7
IRAC1	Spitzer	35262.5Å	7412.0Å	23.9
IRAC2	Spitzer	44606.7\AA	10113.0Å	23.3
IRAC3	Spitzer	56764.4\AA	13499.0\AA	21.3
IRAC4	Spitzer	77030.1Å	28397.0\AA	21.0
MIPS1	Spitzer	$23.68 \mu m$	$4.7 \mu \mathrm{m}$	29.6

Capak+ 07, 08 and Taniguchi+ 08 Koekemoer + 07, Sanders + 07

COUNTERPART IDENTIFICATION

Subaru iSubaru zUKIRT JCFHT KSubaru iSubaru zUKIRT JCFHT KSubaru iSubaru iSubaru iSubaru iRAC 3.6 micronRAC 4.5 micronRAC 5.8 micronRAC 8.0 micronImage: Subaru iImage: Subaru iImage: Subaru iImage: Subaru iSubaru iSubaru iImage: Subaru iImage: Subaru

 Counterpart identification: 29 correctly identified in i band.

• We perform our 3"-aperture photometry on the mis-identified counterparts.

SPECTRAL ENERGY DISTRIBUTION

- SEDs from FUV to MIR bands.
- Stellar Templates: Bruzual & Charlot
 03, 09 and
 Maraston+ 05

• E(B-V)=0-3

SED FITTING

Hyperz (Bolzonella+ 00)

composite stellar population with single SF history

2SPD

Two stellar population (OSP and YSP) and dust component(s)

RESULTS: PHOTO-Z

The photo-z of the sample range from 0.7 to 3.
Agreement with previous photo-z derivation and spectro-z (Ilbert+09, Lilly + 07, Trump + 07).

mercoledì 12 settembre 12

RESULTS: RADIO DISTRIBUTION

- K-corrected Radio
 distribution straddling
 the FRI/FRII break:
 LP and HP sources
- $L_{FIRST} \sim 10^{40.7-42.3} \text{ erg/s}$
- FRI-FRII? frequency?

RESULTS: STELLAR POP

- Stellar masses: 10^{10.5-11.5} M_☉.
- SEDs are red and dominated by OSPs.
- OSP: $1-3 \times 10^9$ yr.
- YSP: 1-30 Myr and
 ≲1% mass contribution.

RESULTS: MIR & UV

MIR and UV excesses with respect to OSP

RESULTS: MIR & UV

T range ~300-850 K; radio-IR relation: AGN origin
L_{dust} ~10^{43.5-45.5} erg s⁻¹

RESULTS: MIR & UV

- T range ~300-850 K; radio-IR relation: AGN origin
 L_{dust} ~10^{43.5-45.5} erg s⁻¹
- $L_{UV} \sim 10^{42-44} \text{ erg s}^{-1}$

• radio-UV no relation, IR-UV relation: SF or AGN?

- Radio distribution: similar FRI, but broad
- host: red massive galaxies
- environment (see Castignani's talk)
- MIR: L_{MIR} larger than local FRI
- UV: L_{UV} larger than local FRI

• Radio distribution: similar FRI, but broad

- host: red massive galaxies
- environment (see Castignani's talk)
- MIR: L_{MIR} larger than local FRI
- UV: L_{UV} larger than local FRI

• Radio distribution: similar FRI, but broad

• host: red massive galaxies

environment (see Castignani's talk)

- MIR: L_{MIR} larger than local FRI
- UV: L_{UV} larger than local FRI

- Radio distribution: similar FRI, but broad

• host: red massive galaxies

• environment (see Castignani's talk)

- MIR: L_{MIR} larger than local FRI
- UV: L_{UV} larger than local FRI

- Radio distribution: similar FRI, but broad

- host: red massive galaxies
- environment (see Castignani's talk)
- MIR: L_{MIR} larger than local FRI
- UV: L_{UV} larger than local FRI

• Radio distribution: similar FRI, but broad host: red massive galaxies • environment (see Castignani's talk) • MIR: L_{MIR} larger than local FRI • UV: L_{UV} larger than local FRI

CONCLUSIONS

- Redshift range: 0.7 < z < 3
- low radio power, red massive host: FRI
- UV and MIR excesses in several sources: FRII?

• Future: host (color, type) and nuclear (radio and X-ray) properties