# Backflows in AGNs

#### Self-regulation of accretion and of jet emission

V. A.-D. , U. Becciani J. Silk S. Cielo

C. Tortora A. Macciò C. Norman A. Babul INAF-Catania Johns Hopkins/Univ. P.M. Curie MPIA, Heidelberg (made also the movies!) ETH MPIA, Heidelberg Johns Hopkins Univ. Victoria

GN10 - University Rome 3, September 13, 2012

## Backflows in AGNs

### Self-regulation of accretion and of jet emission

V. A.-D. , U. Becciani J. Silk S. Cielo

C. Tortora A. Macciò C. Norman A. Babul INAF-Catania Johns Hopkins/Univ. P.M. Curie MPIA, Heidelberg (made also the movies!) ETH MPIA, Heidelberg Johns Hopkins Univ. Victoria

V. A.-D. & Silk, MN 389, 1750 (2008) Tortora et al., MN 396, 61 (2009) V. A.-D. & Silk, MN 405, 1303 (2010) Tortora et al., MN 411, 627 (2011) Crockett et al., MN 412, 1603 (2012) Silk et al., arxiv1209.1175

#### Backflows: theory

Mizuta et al. (ApJ 709, L83, 2010): 2D simulations of relativistic jets - *Backflows along relativistic jets*V. A.-D. & Silk (MN 405, 1303, 2010): 2D simuls. of jet prop. inrealistic E's models *With cooling and BH's radiation field*

#### Backflows: observations

-Neumeyer et al. (ApJ 671, 1329, 2007): SiVI line within ~ 100 pc of Cen A – *Redshifted gas in NE part* 



AGN10 - University Rome 3, September 13, 2012

- Laing and Bridle (MN 424, 1149, 2012): Counterflows detected in 2 FRI's –  $V_{bck}$  ~ -700 km/sec (5" ~ 3.7 kpc)



Figure 9. Predicted brightness distributions for the outflowing and backflowing parts of the model for 0206+35. (a) outflow; (b) backflow. Counter jet gas streaming along the bow shock

## Dynamics of jet propagation into host galaxy



## Dynamics of jet propagation into host galaxy



- Jet/cocoon system,  $n_{coc} T_{coc} \approx n_{bs} T_{bs} \gg n_{env} T_{env}$  expands (self-similar model: Falle, 1991)
- Does not determine neither <u>morphology</u> nor <u>internal flows</u>

GN10 - University Rome 3, September 13, 2012

### How does the cocoon expand?

- A *hotspot* develops near the jet's termination
- A high density region develops in < two spots near the meridional plane



Backflow from the HS is expected from Crocco theorem

 $\vec{v} \times \operatorname{curl} \vec{v} = \nabla h - T \nabla S.$ 

Shearing gas gains angular momentum when crossing a gradient in h<sub>0</sub> (*specific stagnation enthalpy*) near the meridional spots and the hotspot .

## Backflows can feed the AGN

Backflows can provide  $\sim 10^{-3} - 1 \text{ M}_{\odot} \text{ yr}^{-1} \text{ over } \sim 10^7 \text{ yrs.} \rightarrow Self-feeding AGN}$ (V. A.-D. & Silk, 2010)

2D Simulations: 2modes of backflow













 No meridional circulation along the bow shock → flow is directly reflected from the hotspot

Similar velocity field in simulations of heavy  $(\rho_j / \rho_{ism} = 10^{-1})$ , adiabatic, relativistic simulations

Mizuta et al., ApJ 709, 1083 (2010)



## *3D* simulations of jet propagation

- FLASH 3.3, Adapt. Mesh Refin.
- <u>Rad. cooling</u>, Z=0.5  $Z_{\odot}$ , incl. pair prod.( $10^2 \le T \le 10^{12} \text{ K}$ )
- 8 ref. Levels, L<sub>b</sub> = 80 kpc,
   1<sub>min</sub> = 78.125 pc
- Rad. field from the central BH (heating)
- Same parameters as in
   V.A.-D & Silk 2010 (2D)

| run                                                                                 | $\sigma_{\rm v}$                                                                                                                             | M<br>(M                                                                             | v                                                                                      | $\rho_{\rm c}$                                                                                                          | $M_{bh}$                                                                                                                                             | $P_k$                                                                                                                                 |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                     | (KIII SEC )                                                                                                                                  | (111)                                                                               | <u>ر</u>                                                                               | (cm)                                                                                                                    | (11)                                                                                                                                                 | (ergs. sec )                                                                                                                          |
| s100av                                                                              | 100                                                                                                                                          | $3.23 \cdot$                                                                        | 1011                                                                                   | 2.20                                                                                                                    | $8.92 	imes 10^6$                                                                                                                                    | $2.29\times10^{44}$                                                                                                                   |
| s100p1                                                                              | "                                                                                                                                            | $6.44 \cdot$                                                                        | $10^{11}$                                                                              | 7.74                                                                                                                    | >>                                                                                                                                                   | 22                                                                                                                                    |
| s100m1                                                                              | "                                                                                                                                            | $1.62 \cdot$                                                                        | $10^{11}$                                                                              | 0.746                                                                                                                   | >>                                                                                                                                                   | 22                                                                                                                                    |
| s200av                                                                              | 200                                                                                                                                          | $2.57 \cdot$                                                                        | $10^{12}$                                                                              | 2.68                                                                                                                    | $1.2 	imes 10^8$                                                                                                                                     | $1.06	imes10^{45}$                                                                                                                    |
| s200p1                                                                              | "                                                                                                                                            | $5.68 \cdot$                                                                        | $10^{12}$                                                                              | 13.26                                                                                                                   | >>                                                                                                                                                   | 22                                                                                                                                    |
| s200m1                                                                              | "                                                                                                                                            | $1.16 \cdot$                                                                        | $10^{12}$                                                                              | 0.893                                                                                                                   | >>                                                                                                                                                   | 22                                                                                                                                    |
| s300av                                                                              | 300                                                                                                                                          | 8.62 ·                                                                              | $10^{12}$                                                                              | 3.04                                                                                                                    | $5.49	imes10^8$                                                                                                                                      | $2.61 	imes 10^{45}$                                                                                                                  |
| s300p1                                                                              | >>                                                                                                                                           | $2.03 \cdot$                                                                        | 1013                                                                                   | 11.69                                                                                                                   | "                                                                                                                                                    | 22                                                                                                                                    |
| s300m1                                                                              | "                                                                                                                                            | 3.66 ·                                                                              | $10^{12}$                                                                              | 0.98                                                                                                                    | "                                                                                                                                                    | >>                                                                                                                                    |
|                                                                                     |                                                                                                                                              |                                                                                     |                                                                                        |                                                                                                                         |                                                                                                                                                      |                                                                                                                                       |
|                                                                                     |                                                                                                                                              |                                                                                     |                                                                                        |                                                                                                                         |                                                                                                                                                      |                                                                                                                                       |
|                                                                                     | ()                                                                                                                                           | Б                                                                                   | 0                                                                                      | м                                                                                                                       | 1                                                                                                                                                    | D /D                                                                                                                                  |
| run                                                                                 | $\langle \mathbf{v} \rangle_j$                                                                                                               | $\Gamma_j$                                                                          | $\beta_j$                                                                              | $M_{nr}$                                                                                                                | h <sub>j</sub>                                                                                                                                       | $P_h/P_k$                                                                                                                             |
| run                                                                                 | $\langle \mathbf{v} \rangle_j$<br>(km·sec <sup>-1</sup> )                                                                                    | $\Gamma_j$                                                                          | $\beta_j$                                                                              | $M_{nr}$                                                                                                                | $h_j$ (10 <sup>-16</sup> ergs· s                                                                                                                     | $P_h/P_k$ sec <sup>-1</sup> ) -                                                                                                       |
| run<br>s100av                                                                       | $\langle \mathbf{v} \rangle_j$<br>(km·sec <sup>-1</sup> )<br>217.4                                                                           | Γ <sub>j</sub><br>-<br>6.74                                                         | $\beta_j$ - 0.989                                                                      | M <sub>nr</sub><br>-<br>11.55                                                                                           | $h_j$ (10 <sup>-16</sup> ergs. s<br>22.83                                                                                                            | $\frac{P_h/P_k}{-}$                                                                                                                   |
| run<br>s100av<br>s100p1                                                             | $ \begin{array}{c} \langle \mathbf{v} \rangle_j \\ (\mathrm{km \cdot sec^{-1}}) \end{array} \\ \begin{array}{c} 217.4 \\ 143.0 \end{array} $ | $\Gamma_j$<br>-<br>6.74<br>3.65                                                     | $\beta_j$<br>-<br>0.989<br>0.961                                                       | M <sub>nr</sub><br>-<br>11.55<br>6.08                                                                                   | $h_j$<br>(10 <sup>-16</sup> ergs. s<br>22.83<br>80.1                                                                                                 | $(P_h/P_k) = \frac{P_h/P_k}{-}$                                                                                                       |
| run<br>s100av<br>s100p1<br>s100m1                                                   | $\langle v \rangle_j$<br>(km·sec <sup>-1</sup> )<br>217.4<br>143.0<br>312.8                                                                  | $     Γ_j     $ 6.74     3.65     11.55                                             | $\beta_j$<br>-<br>0.989<br>0.961<br>0.996                                              | M <sub>nr</sub><br>-<br>11.55<br>6.08<br>19.93                                                                          | $\begin{array}{c} h_j \\ (10^{-16} \text{ ergs. s} \\ 22.83 \\ 80.1 \\ 7.72 \end{array}$                                                             | $(P_h/P_k) = \frac{P_h/P_k}{-}$<br>0.029<br>0.108<br>0.010                                                                            |
| run<br>s100av<br>s100p1<br>s100m1<br>s200av                                         | $\langle v \rangle_j$<br>(km·sec <sup>-1</sup> )<br>217.4<br>143.0<br>312.8<br>340.7                                                         | $\Gamma_j$<br>-<br>6.74<br>3.65<br>11.55<br>13.11                                   | $\beta_j$<br>-<br>0.989<br>0.961<br>0.996<br>0.997                                     | M <sub>nr</sub><br>-<br>11.55<br>6.08<br>19.93<br>22.65                                                                 | $\begin{array}{c} h_{j} \\ (10^{-16} \text{ ergs} \cdot \text{ s} \\ 22.83 \\ 80.1 \\ 7.72 \\ 27.74 \end{array}$                                     | $(P_h/P_k) = \frac{P_h/P_k}{-}$<br>(0.029)<br>(0.010)<br>(0.008)                                                                      |
| run<br>s100av<br>s100p1<br>s100m1<br>s200av<br>s200p1                               | $\langle v \rangle_j$<br>(km·sec <sup>-1</sup> )<br>217.4<br>143.0<br>312.8<br>340.7<br>199.3                                                | $\Gamma_j$<br>-<br>6.74<br>3.65<br>11.55<br>13.11<br>5.93                           | $\beta_j$<br>-<br>0.989<br>0.961<br>0.996<br>0.997<br>0.985                            | $M_{nr}$<br>-<br>11.55<br>6.08<br>19.93<br>22.65<br>10.12                                                               | $\begin{array}{c} h_{j} \\ (10^{-16} \text{ ergs} \cdot \text{ s}) \\ 22.83 \\ 80.1 \\ 7.72 \\ 27.74 \\ 137.3 \end{array}$                           | $(P_h/P_k) = \frac{P_h/P_k}{-}$<br>(0.029)<br>(0.108)<br>(0.010)<br>(0.008)<br>(0.039)                                                |
| run<br>s100av<br>s100p1<br>s100m1<br>s200av<br>s200p1<br>s200m1                     | $\langle v \rangle_j$<br>(km·sec <sup>-1</sup> )<br>217.4<br>143.0<br>312.8<br>340.7<br>199.3<br>491.0                                       | $     Γ_j     $                                                                     | $\beta_j$<br>-<br>0.989<br>0.961<br>0.996<br>0.997<br>0.985<br>0.999                   | $\begin{array}{c} {\rm M}_{nr} \\ - \\ 11.55 \\ 6.08 \\ 19.93 \\ 22.65 \\ 10.12 \\ 39.25 \end{array}$                   | $\begin{array}{c} h_{j} \\ (10^{-16} \text{ ergs} \cdot \text{ s}) \\ 22.83 \\ 80.1 \\ 7.72 \\ 27.74 \\ 137.3 \\ 9.25 \end{array}$                   | $(P_h/P_k) = \frac{P_h/P_k}{-}$<br>(0.029)<br>(0.108)<br>(0.010)<br>(0.008)<br>(0.039)<br>(0.003)                                     |
| run<br>s100av<br>s100p1<br>s100m1<br>s200av<br>s200p1<br>s200m1<br>s300av           | $\langle v \rangle_j$<br>(km·sec <sup>-1</sup> )<br>217.4<br>143.0<br>312.8<br>340.7<br>199.3<br>491.0<br>439.2                              | $\Gamma_j$<br>-<br>6.74<br>3.65<br>11.55<br>13.11<br>5.93<br>22.68<br>19.27         | $\beta_j$<br>-<br>0.989<br>0.961<br>0.996<br>0.997<br>0.985<br>0.999<br>0.998          | $\begin{array}{c} {\rm M}_{nr} \\ - \\ 11.55 \\ 6.08 \\ 19.93 \\ 22.65 \\ 10.12 \\ 39.25 \\ 33.33 \end{array}$          | $ \begin{array}{c} h_{j} \\ (10^{-16} \text{ ergs} \cdot \text{ s} \\ 22.83 \\ 80.1 \\ 7.72 \\ 27.74 \\ 137.3 \\ 9.25 \\ 31.44 \end{array} $         | $\begin{array}{c} & P_h/P_k \\ ec^{-1}) & - \\ & 0.029 \\ & 0.108 \\ & 0.010 \\ & 0.008 \\ & 0.039 \\ & 0.003 \\ & 0.004 \end{array}$ |
| run<br>s100av<br>s100p1<br>s100m1<br>s200av<br>s200p1<br>s200m1<br>s300av<br>s300p1 | $\langle v \rangle_j$<br>(km·sec <sup>-1</sup> )<br>217.4<br>143.0<br>312.8<br>340.7<br>199.3<br>491.0<br>439.2<br>281.0                     | $\Gamma_j$<br>-<br>6.74<br>3.65<br>11.55<br>13.11<br>5.93<br>22.68<br>19.27<br>9.84 | $\beta_j$<br>-<br>0.989<br>0.961<br>0.996<br>0.997<br>0.985<br>0.999<br>0.998<br>0.994 | $\begin{array}{c} {\rm M}_{nr} \\ - \\ 11.55 \\ 6.08 \\ 19.93 \\ 22.65 \\ 10.12 \\ 39.25 \\ 33.33 \\ 16.95 \end{array}$ | $\begin{array}{c} h_{j} \\ (10^{-16} \text{ ergs} \cdot \text{ s} \\ 22.83 \\ 80.1 \\ 7.72 \\ 27.74 \\ 137.3 \\ 9.25 \\ 31.44 \\ 121.05 \end{array}$ | $\begin{array}{c} P_h/P_k \\ ec^{-1} \\ 0.029 \\ 0.108 \\ 0.010 \\ 0.008 \\ 0.039 \\ 0.003 \\ 0.004 \\ 0.014 \end{array}$             |

## 3D simulations of jet propagation

- FLASH 3.3, Adapt. Mesh Refin.
- DM halo:  $\sigma_v = 150 250$  km/sec, NFW profile
- Hot ISM:  $T = 10^7 \text{ K}$ ,  $\Omega_{b} = 0.013$ , truncated isothermal distribution
- Jet/ISM/Halo/BH: parameters determined by observed scaling distributions (as in V.A.-D & Silk, 2010)

## Initial setup:

Scaling relations between  $M_{BH}$ ,  $P_{jet}$ ,  $\rho_{0lism}$ - DM halo virial mass  $M_v \propto \sigma_{200}^{2.99\pm0.15}$  (*Lintott, Ferreras & Lahav, 2006*)

-  $M_{BH} = (1.2 \pm 0.2) * 10^8 \sigma_{200}^{3.57 \pm 0.15} M_{\odot}$  (Ferrarese & Merritt 2000)

•  $\log(P_{jet}) = -0.22 + 0.59 * \log(M_{BH}) + 40.48$  (cgs, *Liu*, *Jiang and Gu* 2006)

• Diffuse Interstellar Medium: embed an isothermal halo in (appr.) equilibrium within the host NFW halo (central density  $\rho_{0lism}$ , *Hester, 2006*)

# North-west: backflow (v opposite to jet) → green/yellow/red South-east: contours trace jet







X Velocity (cm/s)





0 -100 -200 -300 -400

# South-east: backflow (v opposite to jet) → red/yellow/green North-west: contours trace jet



## Circumnuclear disc from early backflow



Lobe's expansion drives matter towards the meridional plane

## Formation of a circumnuclear disc

A circumnuclear, high density gaseous disc forms from the combination of backflow and compression from the lobes



Circumnuclear discs are very frequent in nearby Ellipticals (Kawata, Cen and Ho, 2007; Davies et al., 2007) *CN discs can thus arise also in absence of mergers, due to the cocoon dynamics* 

## Formation of a circumnuclear disc

A circumnuclear, high density gaseous disc forms from the combination of backflow and compression from the lobes



#### Enhanced SF within circumnuclear discs

HCN gas around AGNs' nuclei (Hsieh et al., 2008; Kohno et al., 2008)
 Scales larger than Davies et al.: ~

500 pc

Line ratios:

 $R_{HCN/CO} = 0.39$  $R_{HCN/HCO+} = 1.9$  enhanced SF?

Excess gas around the circumnucl.
region -> accreting gas, in excess of hydr. equil. (Hsieh et al. 2008)
This gas can only be accounted for if it is accreting from a larger region



Evidence for backflowing gas within the cocoon

## What controls cocoon's morphology?



<u>Both runs</u>:  $P_j = 10^{45} \text{ erg/sec}, M_{gas} \simeq 2.34 \times 10^{11} M_{\odot}, T_g = 10^7 \text{ K}$ 

In which parameter do they differ?

## What controls cocoon's morphology?



Both runs:
$$P_j = 10^{45} \text{ erg/sec}, M_{gas} \simeq 2.34 \times 10^{11} M_{\odot}, T_g = 10^7 K$$
 $h_j = e + p + v^2/2$ stagnation enthalpy

## What controls cocoon's morphology?



#### <u>Both runs</u>: $P_j = 10^{45} \text{ erg/sec, } M_{gas} \simeq 2.34 \times 10^{11} M_{\odot}, T_g = 10^7 \text{ K}$

FRI morphology  $\rightarrow$  low internal enthalpy  $\rightarrow$  Diagnostics of the accretion/BAL region

### A possible explanation of the $L_{bol}/L_{Edd}$ – age connection



#### Detailed modelling of gas+stellar discs with external backflow

Davies et al. (2007): older starburst are associated with brighter AGNs - Model: high  $P_j \rightarrow$  higher  $p_{bck} \rightarrow$ faster suppression of SF in the disc AND higher  $T_{disc} \rightarrow$  higher  $L_{bol}$ 

$$\Omega(r) = \Omega_{\rm K}(r) = \left(\frac{GM_{\rm BH}}{r^3} + \frac{2\sigma^2}{r^2}\right)^{1/2},$$
  

$$\dot{\Sigma}_{\star} = \Sigma_g \Omega \eta,$$
  

$$p_{\rm gas} + \epsilon \dot{\Sigma}_{\star} c \left(\frac{1}{2}\tau_V + \xi\right) = \rho h^2 \Omega^2,$$
  

$$p_{\rm gas} = \rho k_{\rm B} T/m_p,$$
  

$$T^4 = \frac{3}{4} T_{\rm eff}^4 \left(\tau_V + \frac{2}{3\tau_V} + \frac{4}{3}\right),$$
  

$$\tau_V = \kappa \Sigma_g/2,$$
  

$$\Sigma_g = 2\rho h,$$
  

$$\dot{M} = 4\pi R h \rho V_r = 4\pi R h \rho m c_s = 4\pi R h^2 \rho \Omega m$$
  

$$\dot{M} = \dot{M}_{\rm ext} - \int_{-\infty}^{r} 2\pi r \dot{\Sigma}_{\star} dr.$$

 $= \dot{M}_{\rm out} - \int_{R_{\rm out}}^{r} 2\pi r \dot{\Sigma}_{\star} \, dt$ 

#### *Future* work

- VHE  $\gamma$ 's from Hot Spot  $T > 10^{11} K, n_{hs} \sim 10^{-3} - 10^{-1} cm^{-3}$ 

# Cold, star-forming clouds Feedback: positive vs. negative





10





Laing et al., MNRAS 417, 2789 (2011)

## Backflows: 2D vs. 3D Mass flow around a 20pc sphere centred on the BH



2D:  $T \sim 2 \times 10^7$  yrs., independent of central density

 3D: early inflow phase (T~ 10<sup>5</sup> yrs.), indep. of central density

AGN10 - University Rome 3, September 13, 2012

### Backflow and the circumnuclear disk



### Backflow and the circumnuclear disk



0755+37, 4"/1.3"



Laing et al., MNRAS 417, 2789 (2011)

 Jets are relativistic (β>0.92), even far away (~few kpc) from the BH



M84,

0755+37, 4"/1.3"



Laing et al., MNRAS 417, 2789 (2011)

 Jets are relativistic (β>0.92), even far away (~few kpcs) from the BH

-  $P_{v} \sim v^{-\alpha}$ , spectral index  $\alpha$ steepens  $\perp$  jet (MFs)



M84, 4"/1.3"

0755+37, 4"/1.3"



Laing et al., MNRAS 417, 2789 (2011)

 α flat along the jet, and clumpy (jet-cold clouds interactions?)  Jets are relativistic (β>0.92), even far away (~few kpcs) from the BH

-  $P_{\nu} \sim \nu^{-\alpha}$ , spectral index  $\alpha$ steepens  $\perp$  jet (MFs)



M84, 4"/1.3"

- Relativistic jet propagating into the ISM:  $<n_e > ~10^{-3}-1 \text{ cm}^{-3}$ , T ~  $10^8-2*10^{11} \text{ K}$  cocoon V. A.-D. and J. Silk, MN 389, 1750 (2008)
- Global expansion: self-similar, r<sub>hs</sub> ~ t<sup>2/5</sup>
   (Falle, 1991)



AGN10 - University Rome 3, September 13, 2012

- Relativistic jet propagating into the ISM:  $<n_e> ~10^{-3}-1 \text{ cm}^{-3}$ , T ~  $10^8-2*10^{11} \text{ K}$  cocoon V. A.-D. and J. Silk, MN 389, 1750 (2008)
- Global expansion: self-similar, r<sub>hs</sub> ~ t<sup>2/5</sup>
   (Falle, 1991)
- A global circulation arises within the cocoon, with a regular flow along the bow shock



GN10 - University Rome 3, September 13, 2012

#### Adaptive Mesh refinement 2D simulations $\sigma_v = 100, t=6.8 \times 10^6 \text{ yrs.}$



A global backflow circulation develops – abt. ~ 2-10\*10<sup>-3</sup> of the jet's gas flows back towards the BH

# • At t~1.6x10<sup>7</sup> yrs. the recoll. shock is <u>destroyed</u> $\rightarrow$ the meridional circulation disappears







## • If $P_{jet}$ exceeds by $2\sigma$ the fiducial value the backflow disappears

 $P_{jet} = 2.3 * 10^{45}$ erg s<sup>-1</sup> in model sm200av (V. A.-D. & Silk, 2010)



AGN10 - University Rome 3, September 13, 2012

## • If $P_{jet}$ exceeds by $2\sigma$ the fiducial value the backflow disappears





The environment "seen" by the relativistic jet when it first enters ISM has an impact on the global structure of the cocoon

#### Mass backflow in a 10 pc circumnuclear region



For given P<sub>j</sub>, n<sub>ism</sub> strongly affects mass flow rates and backflow energetics compression → starburst
 NOTE: the backflow contributes L<sub>z</sub> ~0

 dM/dt ~ 0.32 - 0.76 M<sub>sun</sub> yr<sup>-1</sup>, peak values ~ 0.6 - 1.3 M<sub>sun</sub> yr<sup>-1</sup>
 τ ~ 2-4x10<sup>7</sup> yrs.
 Accr. rates needed: 10<sup>-5</sup> M<sub>sun</sub> yr<sup>-1</sup>



## Feedback of the backflow ON the circumnuclear disk





Phase 2

- Enhanced SF from compression

Effects of feedback from backflow:

Stores more L<sub>z</sub> ~ 0 gas into the accr. disc → higher P<sub>j</sub>
Line indices: shocks + starbursts (*Mazzuca et al.*, 2006; Sarzi et al., 2007)



• Morphology of the cocoon in simulations is seen to depend on jet's lightness (  $\rho_i / \rho_{ism}$  ), or equivalently the ratio  $h_i / p_{ism}$ 

- Morphology of the cocoon in simulations is seen to depend on jet's lightness (  $\rho_i / \rho_{ism}$  ), or equivalently the ratio  $h_i / p_{ism}$
- Thermalization of the jet with the environment can modify h<sub>j</sub>
   Most likely, a rel. jet "sees" a clumpy, two-phase ISM medium when it emerges from the accr. disc

- Morphology of the cocoon in simulations is seen to depend on jet's lightness (  $\rho_i / \rho_{ism}$  ), or equivalently the ratio  $h_i / p_{ism}$
- Thermalization of the jet with the environment can modify h<sub>j</sub>
   Most likely, a rel. jet "sees" a clumpy, two-phase ISM medium when it emerges from the accr. disc
- Jet-clouds interaction can modify also the cocoon

# Thermal energy of the cocoon can be utilized in evaporating cold, star-forming clouds → SF feedback Tortora et al., MN 396, 61 (2009)







time = 1.62e-04 (units of  $t_0$ ) number of blocks = 531876AMR levels = 6

# Thermal energy of the cocoon can be utilized in evaporating cold, star-forming clouds → SF feedback Tortora et al., MN 396, 61 (2009)



 SFR is damped, AFTER an initial enhancement (positive feedback)





time = 1.62e-04 (units of  $t_0$ ) number of blocks = 531876 AMR levels = 6

- Morphology of the cocoon in simulations is seen to depend on jet's lightness (  $\rho_i / \rho_{ism}$  ), or equivalently the ratio  $h_i / p_{ism}$
- Thermalization of the jet with the environment can modify h<sub>j</sub>
   Most likely, a rel. jet "sees" a clumpy, two-phase ISM medium when it emerges from the accr. disc
- Jet-clouds interaction can modify also the cocoon
- Thermalization of the jet affects the evolution of the cocoon

### Thermodynamics of a relativistic jet

- Rel. jet-ISM/stars interactions: Relativistic Thermodynamics How does T transform in Special Relativity? Ans: depends on the thermometer (Touschek, 1968; Israel, 1986; van Kampen, 1974, ....)
- Non ideal relativistic fluid: T<sup>ab</sup> explicitly includes thermal conduction (Eckart, 1974):

$$T^{ab} = eu^{a}u^{b} + \Pi^{ab}_{(0)} + q^{a}u^{b} + u^{a}q^{b} - \frac{q^{a}q^{b}}{e+p}$$

where:

$$\Pi^{ab}_{(0)} = p(g^{ab} + u^a u^b).$$

Thermodynamics of a relativistic jet (contd.)

- Here  $q^a$  is the *thermal conduction 4-vector* ( $q^a u_a = 0$ ) Relation with T (Vàn, arxiv:0712.1437, eq. 26):

$$q^{a} = -\frac{\eta}{T^{2}} \Delta^{ab} \left( \partial_{b} T + T \dot{u}_{b} + \frac{T \dot{q}_{b}}{e} \right)$$

where:

$$\Delta^{ab} = \delta^{ab} - u^a u^b$$
 projection operator

 $\dot{q}_b = u^a \nabla_a q^b$  convective derivative

#### Rel. thermal conduction law:

$$\frac{1}{T} \left(\frac{\eta}{e}\right) \dot{q}^a + q^a = -\frac{\eta}{T^2} \Delta^{ab} \left(\partial_b T + T \dot{u}_b\right)$$

## Thermodynamics of a relativistic jet (contd.)

• Define 
$$\lambda^a = q^a + eu^a$$

Energy-momentum conservation:

$$\nabla_a T^{ab} = 0$$

We get: 
$$\partial_a \lambda^a + p \partial_a u^a - q^a \dot{u}_a - \frac{q^a q^b}{e+p} \partial_b u_a = 0$$

Note that:

$$a\dot{u}_a = (q^a u_a) - u_a \dot{q}^a =$$

$$= -u_a \left[ -\frac{e}{\eta} T q^a - \frac{e}{T} \Delta^{ab} \left( \partial_b T + T \dot{u}_b \right) \right] = 0$$

GN10 - University Rome 3, September 13, 2012

## Thermodynamics of a relativistic jet (contd.)

Thus:

$$\partial_a \lambda^a + p \partial_a u^a - \frac{q^a q^b}{e+p} \partial_b u_a = 0$$

Jet flow line interacting with a cloud in pressure equilibrium:
 p<sub>j</sub>=p<sub>c</sub>, thus:

We get:

$$\partial_a(\lambda^a + pu^a) - \frac{q^a q^b}{e+p}\partial_b u_a = 0$$

From here, imposing the <u>thermal equilibrium</u> condition between Jet an cloud, we get:  $T_i \approx \beta \gamma T_c$ 

→ If instead the jet is in eq. With a photon gas (hot stellar corona we get (Israel, 1982):  $T_i \approx \gamma T_s$ 

Thermodynamics of a relativistic jet (end)

- Thus, the temperature structure of a jet emerging from the BH is strongly affected by the local environment within the first few pcs of the AGN
- Detailed modeling requires also to take into account the effects of the backflow on the thermal structure of the jet

## Conclusion

 The thermal structure (enthalpy, lightness) of a relativistic AGN jet is important to determine the structure/morphology of the cocoon

# Conclusion

- The thermal structure (enthalpy, lightness) of a relativistic AGN jet is important to determine the structure/morphology of the cocoon
- Unknown composition of the jet can be constrained by a relativistic thermodynamic of the jet-cloud-coronae interaction

# Conclusion

- The thermal structure (enthalpy, lightness) of a relativistic AGN jet is important to determine the structure/morphology of the cocoon
- Unknown composition of the jet can be constrained by a relativistic thermodynamic of the jet-cloud-coronae interaction
  At higher z (~1-4) more gas-rich AGN hosts, thus the impact of jet's thermalization is potentially higher than in the nearby Universe



#### Discs around AGNs are ALSO stellar

- Evidence for stellar discs on scales 1-100 pc in Sey 2 (SIMFONI, Davies et al., 2007)
- Circumnuclear disc are at most <u>marginally</u>
   <u>stable</u> to grav. inst. (Sloshman & Begelman, 1989; Collin & Zahn, 2008)



NGC 1097 (Davies et al., 2007): HI disc less massive than stellar
 M<sub>bh</sub> = 1.25x10<sup>8</sup> M<sub>sun</sub>



#### Enhanced SF within circumnuclear discs

HCN gas around AGNs' nuclei (Hsieh et al., 2008; Kohno et al., 2008)
 Scales larger than Davies et al.: ~

500 pc

Line ratios:

 $R_{HCN/CO} = 0.39$  $R_{HCN/HCO+} = 1.9$  enhanced SF?

Excess gas around the circumnucl.
region → accreting gas, in excess of hydr. equil. (Hsieh et al. 2008)
This gas can only be accounted for if it is accreting from a larger region



Evidence for backflowing gas within the cocoon

### A possible explanation of the $L_{bol}/L_{Edd}$ – age connection



#### Detailed modelling of gas+stellar discs with external backflow

Davies et al. (2007): older starburst are associated with brighter AGNs - Model: high  $P_j \rightarrow$  higher  $p_{bck} \rightarrow$ faster suppression of SF in the disc AND higher  $T_{disc} \rightarrow$  higher  $L_{bol}$ 

$$\Omega(r) = \Omega_{\rm K}(r) = \left(\frac{GM_{\rm BH}}{r^3} + \frac{2\sigma^2}{r^2}\right)^{1/2},$$
$$\dot{\Sigma}_{\star} = \Sigma_g \Omega \eta,$$
$$p_{\rm gas} + \epsilon \dot{\Sigma}_{\star} c \left(\frac{1}{2}\tau_V + \xi\right) = \rho h^2 \Omega^2,$$
$$p_{\rm gas} = \rho k_{\rm B} T/m_p,$$
$$T^4 = \frac{3}{4} T_{\rm eff}^4 \left(\tau_V + \frac{2}{3\tau_V} + \frac{4}{3}\right),$$
$$\tau_V = \kappa \Sigma_g/2,$$
$$\Sigma_g = 2\rho h,$$
$$\dot{M} = 4\pi R h \rho V_r = 4\pi R h \rho m c_s = 4\pi R h^2 \rho \Omega m$$
$$\dot{M} = \dot{M}_{\rm ext} - \int_{-r}^{r} 2\pi r \dot{\Sigma}_{\star} dr.$$

JRout