A Mesoporous Pattern Created by Nature in Siliceous Spicules from Marine Sponges.

G. Croce, D. Viterbo, M. Milanesio, H. Amenitsch

£ DISTA, Univ. del Piemonte Orientale, Via V. Bellini 25 G, I-15100 Alessandria, Italy
$ Inst. of Biophysics, Austrian Acad. of Science, Schmiedlstr. 6, A-8043 Graz, Austria

mailto: gianluca.croce@mfn.unipmn.it
http://materialchemistry.dista.unipmn.it/

VIII Scuola SNLS – Frascati 10-21 Ottobre 2005
Section: 20

Lenght: 2-2.5 mm
Section: 20 μm
• Calcareous or siliceous material
• Cellular secretion due to specialized cells (Sclerocytes)
• Two kinds of spicules:
 • Megascleres (sponge skeleton)
 • Microscleres (ancillary function)
• Presence of a channel along the elongation axis of megasclere spicules
• Spicules generally contain an organic filament inside their cavity
• Silicateins are the proteins in the filament and are important for the bioprocessing of silica

Characterization

EDS Analysis
reveals the inorganic envelope

TGA and FTIR Analyses
reveal the organic matter
SAXS Experiments

Bundle of oriented Spicules

“Powder” of non oriented Spicules

Single Spicule

Temperature Dependence
Temperature Dependence

- Spots too sharp for a fibre!
- The arrangement must be more ordered and complex…
Temperature Dependence (II)

25°C

250°C
♦ Conclusion

• A high degree of order is present in the organization of the protein units (known as Silicatein) forming the central filaments.

• The protein units, hosted inside the spicule cavities, have different packing in spicules from different sponge families.

• The arrangement of the Silicatein units is similar to that of the pores in highly ordered siliceous mesoporous materials.

• Silicatein units act as SDA for the formation of an highly organized inorganic nanostructure.