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1 PREFACE

According to the request of the organizers of this school, these lect'tizre notes have
been designed as an introductory course to ordin&ry superconductiﬁty given by one
-~ of us (CDQ). ' | |
Few basic concepts like ordering and its consequences have béeﬂ the guiding
ideas. The specific order (pair condensation) occuring in superconductivity and the
related order parameter have been shown to give rise to all the super effects via
the Landau-Ginzburg formulation of the Landau theory of the second order phase
transitions. |
The condensation criterion for interacting fermions finds its simple formulation
within the density matrix approach. The concept of off-diagonal long range order
(ODLRO) of the two particle reduced density matrix defines naturally the order
parameter for superconductivity. | ' |
The anomalous factorization property of the two particle reduced density matrix
associated to ODLRO gives rise to a generalized Hartree-Fock formulation of the
Bardeén Cooper and Schrieffer iheory. The same approach allows for a simple
~ derivation of the time dependent Landau-Ginzburg equé,tion for the order parameter.
The density matrix approach becomes then the bridging formalism between the
phenomenology and the microscopic theory. '
No high T, superconductivity will be here considered except for few comments

" when we study the limits of validity of the mean field approximation, the order



parameter fluctuations and their precursor effects.

2 PHENOMENOLOGY OF SUPERCONDUCTORS: LONDON
THEORY AND LANDAU CRITERION

In this section we shall briefly recall those experimental aspects of ordinary supercon-
ductors [1] which we believe are important to the discussion of the basic concepts of
the theory. We shall also point out some phenon.!tenologica.l interpretationé of these
experimental facts.

Many metals and alloys below their superconductive transition te,;nperature T.
have a stable flux of charge carriers also in the absence of an external driving field, i.e.
the resistivity approaches zero at the transition. The possibility of having persistent
currents is not true for any magnitude of the current. There exists a critical value of
‘the current above which the superconductivity disappears. Related.to this critical

current there is a critical magnetic field which goes to zero at T, as
HA(T) = Ho(1 - (T/T.)%) (2.1)

with Hy of the order of 102G. The slope of the separation curve at T, is finite and
negative. For ordinary superconductors T, is of the order of few Kelvin and usually
has a crystal ionic mass dependence T, ~ M*/? (isotope effect). |

Infinite conductivity implies that inside a superconductor E = 0 and due to the
Maxwell equation

rolE = ——— (2.2)

the magnetic induction B is constant. This constancy of B would induce a depen-
dence of the final superconductive state in the presence of a magnetic field on the
.history of how this state has been achieved i.e. if the external magnetic field is
varied before or after reducing the temperature below T.. Superconductors however
exhibit the Meissner-Ochsenfeld effect: the magnetic field is expelled from the bulk
of a superconductive sample,thus imposing always B = 0 in the final superconduc-

tive state. Actually B and E are vanishing everywhere but in a thin layer of depth



A at the surface. ) is temperature dependent and goes to infinity at the critical

temperature
A=Al = (T/T)YY% A~ (,\o/é)[l ~T/T)™? for T —T.. (2.3)

Its zero temperature value )o is of the order of a few hundred Angstrom. The
phenomenological conditions for superconductivity are therefore the conductivity
o — oo and B =0. .

Along the phase boundary between the normal and the superconducting phase,
the continuity of the Gibbs free energy implies the analogue of the Clauqius-Clapeyron

equation

dH(T)  S.- S,
T T M- M,

where S,,S,,M,, M, are the entropies and magnetizations per unit volume for nor-

(2.4)

mal and superconducting state respectively. For the normal state we can put M, ~ 0
and because of the Meissner-Ochsensfeld effect, M, = ";(H /4x) ; the entropy differ-

ence between the normal and the superconducting state is then given by

1. dH,
Sn=S,=——HZF (2.5)

Sn — S, is positive for any T < T, except at T. v;vhere the transition is of second
order. The superconducting phase is more ordered, although X-ray experiments
show no structural modifications of the conduction electrons.

The specific heat of a superconductor has two peculiarities: i) It is discontinous
at the transition from normal to superconducting phase [2].

ii)At low temperatures it goes to zero exponentially [3], in contrast to the linear
T behavior of ordinary metals.

The jump AC in the sp~eciﬁc heat is accounted for by taking the derivative with
respect to the temperature of the entropy difference of eq.(2.4) and is given by AC =
L (dH,/dT)?|r=r. > 0. The discontinuity in the specific heat is a common feature

of the second order phase transitions when treated in mean field approximation.



The low temperature exponential decrease of the specific heat gives evidence for
the existence of a temperature dependent gap A(T') in the excitation spectrum as
shown also by infrared transmission and reflection measurements [4] and by tunnel-

ing experiments [5]. Near T., A(T') behaves as
A~ (1-T/T)? (2.6)

The second order phase transitions are charactérised by the existence of an order
parameter 1 specifying the amount of ordering in the low temperature phase, which
goes to zero at the critical point. Within the mean field approximat,i'on the order
parameter goes to zero as the square root of the deviation from the critical tempera-
ture, thus suggesting that A is related to the order parameter of the superconductive
transition, which seems to be well describéd in the mean field approximation.

The phenomenological theory proposed by the brothers F. and H. London (6]
rationalizes the problems arisen by the above listed experimental facts.

The first observation concerns the consequences we can deduce for a system
which has infinite conductivity . If we call v, the velocity of the charge carriers in

the absence of dissipation, the 'equa.tion of motion can be written as

m— = —e'E

dt

where e” is the effective charge. We have assumed here that the carriers have negative
charge having in mind that in metals the electrons are responsible for the electrical

transport. Combining this equation with eq.(2.2) we get

d n,e"

— tJ, B]=0. 2.7

dt (ro + me ) (27)
- Here we have introduced the supercurrent J, = —e*n,v,, n, being the carrier density.

Every static field B satisfies the above equation. Inside a superconductor moreover
B = 0. London showed that this last condition is obtained by introducing the

additional equation

n,e*?

rotJ, + B=0 (2.8)

mc



In fact substituting now in the eq.(2.8) the expression for the current given by the

Maxwell equation J = c/4nrotB, we obtain

VB=A7?B a=_TC_
4rn,e*?

(2.9)

It is easy to show that for & bulk superconductor occupying the half space z > 0,
eq.(2.9) implies for the magnetic induction B exponentially decreasing solutions of

-

the form

B(z) = B(0)e~*/>

and the Meissner effect follows. Here the length ) is called the Londoh penetration
depth and gives a measure of n,. From the temperature d;pendence of A near T,
given by eq.(2.3), we deduce now that n, should behave as the square of A i.e. as
the square of the order parameter. This cbnsideration will be important in building
up a theory of superconductivity. |

A local relation between the current and the field has been implicitly assumed in
the London equation. In fact if we choose the London 'gauge for the vector potential
divA = 0, A, = 0 (A, being the component of A perpendicular to the bound-
ary surface) and consider an isolated simply connectéd superconductor (divJ = 0)

€q.(2.8) implies (
¢
T 4na?

In general, as was first indicated by Pippard [7] and successively shown by the

3, = A. (2.10)

microscopic theory, the current depends on the vector potential through a non local

relation

I(r) = / dr'K(r,r')A(r').

The typical distance over which A and J vary is given by the London penetration
depth ), while the kernel K varies over a characteristic distance o, which from
dimensional analysis is of the order of & ~ kpT/hop .

The superconductors for which § > A are named Pippard or type I superconduc-

tors, while those for which §o < ) are named London or type II superconductors.



A complete diamagnetism is shown for type I superconductors only. For type II
superconductors the penetration of the field starts at the critical field H,, (T") less
than the thermodynamic critical field H.(T') and is completed at an upper critical
field H,,(T') larger than H.(T).

The London equation has a very deep meaning. We recall that in the presence of
a static vector potential the momentum of a particle is expressed as p = mv + %’A.
Eq.(2.10) implies that the carriers responsible for superconductivity are in a state

of zero momentum

e* / mc . :
P= (n.e"’J' + A) =0 ! (211)

c
In the ordinary metals in the absence of a scalar field we have instead J = 0 and p
varies with A from point to point.

The above phenomenological analysis shows that the transition from normal to
superconducting state is an ordering transition. The London theory implies that
this ordering occurs in momentum space. The ordering specifies the nature of the
phase transition but has not direct implications on the stability of the flux which
is a prerequisite for superconductivity and superfluidity in general. Before going to
discuss how condensation in momentum space is possible for a Fermi systém and give
a general criterion for it , we therefore discuss the general criferion for superfluidity
due to Landau [8]. |

The argument proposed by Landau is concise and very general. Let us consider
a moving fluid in a capillary. The viscosity manifests itself with the loss of the
total kinetic energy of the fluid and the appearance of inner collective motions.
These collective motions are described in terms of elementary excitations and are
characterized by a well defined dispersion law. On the assumption that the fluid
can interact with an external body (the wall) through the creation or annihilation
of elementary excitations énly, in a frame moving with the fluid at velocity v, the
total energy and momentum are those of the elementary excitations. Instead, in a

frame at rest with respect to the fluid, in the presence of a single excitation ¢(p) the



energy and momentum are, according to the Galileian transformations,

E=e(p)+p-v+-;-Mv2 - T(212)

P=p+Mv (2.13)

where M is the total mass of the fluid. The condition for the creation of a single

excitation and the appearance of viscosity is AE = e(p)+ p - v < 0, which means

(2.14)

v>£££l|
b 4

On the above assumption in order to have viscosity the velocity must be greater
than a critical value, which depends on the excitation spectrum of the system.

We note that the Landau criterion tells us that the Bose gas cannot be a su-
perfluid. In fact the free-like spectrum of a Bose gas has v. = 0. The ) superfluid
transition of Helium (*He) cannot be simply modelled with a Bose gas eventhough
the Bose-Einstein condensation is relevant for its intefpretation.

The linear phonon spectrum at low wave vector k and the roton excitations with
gap at high k values for the real superfluid Helium [9) satisfiy the Landau criterion
with a finite value v.. In real superconductors the existence of a gap in the low lying

excitations provides the required stability of the flux.

3 THE CONDENSATION CRITERION AND THE ORDER
PARAMETER

As we have seen in the previous section two requirements have to be satisfied by
any theory of superconductivity: _

1.The Landau criterion, which is related to the stability of the flux and gives a
condition to be imposed on the excitation spectrum of the system.

2.The superconductive phase is highly ordered, and the ordering occurs in momen-

tum space.



Each condition by itself is not sufficient to describe superconductors. The first
does not say what kind of transition the system undergoes at the ::ritica.l tempera-
ture. The second one does not ensure superfluidity. There is no explicit connection
between the two conditions; however every explicit model of superconductivity or
superﬂuidity satisfying one of them satisfies the other.

A general criterion for condensation (10, 11] has been formulated. We discuss
first a system of bosons which is relevant for studying the superfluidity of *He. We
shall afterwards show v}hich modifications are to be made for .a system of fermions.
In this latter case the condensation criterion itself will give us hints ’;m what kind
of microscopic theory we have to build.

In the case of a Bose gas we speak of Bose-Einstein condensation when in the
thermodynamic limit a finite fraction of the total number of particles are in the zero

momentum state

lim -’;-;’ =1-(T/T.)** T<T.

N.ﬂ—ooo,§=c¢mct ’
. Ro _
V= 0 T>T..

Such a definition of condensation is strictly related to the existence of single particle
levels. These are not well defined in interacting systems. In order to avoid this
concept we introduce the reduced density matrices and generalize the condensation
criterion. |

Given a N-particle system let us recall [12] that its density matrix
p(X1,X2, ..., XP, .. XN|X], X5, o0y Xp, ... X ) (3.1)

is defined by
<0 >=Trp0 Trp=1 (3.2)

where x stands for the position and any other necessary quantum index, O is any
observable referred to the system and <> means averaged value. In the case the

system is in a pure state (for which we have the maximum information available)



and is described by a vector state |y >, the density matrix p is
p(x1,x2,...,Xp, ...xnlx;,x',, vy Xpy oo Xy) =

=< X1y X3y -0y XPy .. XN[ >< P|X], X3, ..., X, o Xy >=
= ¥"(X1,X2, o0y XPy .. XN )P(X], X3, oe0y Xy .. Xy ) (3.3)

where|x;,...xny > is a complete set for the N par:;ticle system.

| Consider the case that the system cannot be' represented by a vector state but
has a definite temperature T owing to a thermal bath with which it weakly interacts.
Its behavior can be described on the average by an ensemble of a laf.ge number éf
identical weakly interacting systems, m, of which are in the state [¥n > If the
number of copies M is made very large, the system can be considered in a mixed
state in which each single state occurs with probability P, = m, /M. The density

matrix p is then
! ’ ! !
P(X1,X2, 000y XPy oo XN|X], Xy ooy Xy oo Xy) =

=3 Patli(X1,X2, e, XPy o XN )P (XL, Xy ooy Xy Xy (3.4)
n

The last case considered is not to be confused with the case in which the wave vector
itself is a superposition of states |t >= T; ¢;|1; >.
The reduced density matrix of order P < N is defined as

N!
hp (x1,..,Xp[X}, .., Xp) = (—m')-!/dyp(xu--,xP,)’|x'n--,xﬁo,y) (3.5)

where y stands for xp,4,..,XnN.

The diagonal part of hy(x,x’) is obviously the local density. The diagonal part
of ha(x1,%;; xi,x3) is the equal time density-density correlation function.It gives
the probability that, given a particle at the point x;, one can find another particle
at point x;. These two functions are sufficient to describe a system with one and

two body interactions.



Going back to the Bose gas, the one particle reduced density matrix h, is diagonal
in the momentum space and its elements are the occupation numbers ny. Here the
zero momentum state plays a special role and k;(x,x') can be accordingly written

hi(x,x') = 1 Y ek x-Xp, = o4 1 3 ek, (3.6)
Q5 Q  Qf 20

ng = a(T)N, 0< a < 1,  being the volume of the system. The Riemann-Lebesgue

theorem on the Fourier transforms states that «

+oo . .
lim f(z)= ‘Er:{l”/_“ et f(t)dt = 0.

z-+too

Therefore in the limit of an infinite system where the sum over k is ‘replaced by a

continuous integration in eq.(3.6)

) n_"To _aN
pim Ml x)=g =75 T<L
. 7 —
Jhm m(xx)=0 T>T. (3.7)

The order in momentum space given by the Bose-Einstein condensation has therefore
a counterpart in configuration space. This is the appeﬁrance of a correlation in the
off-diagonal matrix elements of the one particlé reduced density matrix named as
off-dia.gonal‘ long range order (ODLRO).

This formulation is generalizable to the interacting systems, since h; is well
defined also in the presence of interactions. '

By definition a system shows condensation when the largest eigenvalue n, of
hi(x,x')is a finite fraction of the total number of particles. Once the eigenvalue
equation

/ dx'hy (%, x')i(x') = nidi(x) (3.8)

is solved, h, can be written in terms of its eigenvalues and eigenfunctions
hi(x,x') = En.-gb;(x')cb,-(x). (3.9)
Condensation is then specified by

n, .
Nll‘;'r_r.lw v = 0<a<l (3.10)



lim

R
Jhim 2=0 (3.11)

where j # o and N/ = const.
It is possible to show in general [10] that the above definition of condensation, as

for the Bose gas, is equivalent to appearance of long range order in t_lie one particle

reduced density matrix (ODLRO):

im h(x,x')= aNf‘(x’)f(x). (3.12)

[x—x!|—~00

with aN = n, and f = ¢,. We will follow a simple derivation given in ref.[13].
Condensation as defined by eqs.(3.10-3.11) leads to ODLRO when wé consider the
decomposition (3.9) of hA; in terms of its eigenvalues and eig;nfunctions . Viceversa

in the case that eq.(3.12) is satisfied with the normalization condition

[ifeta=1 1f@x)I< 55 (3.13)

we show that in the limit of infinite volume at constant density f(x) tends to the

eigenfunction of h, corresponding to the maximum eigenvalue n,

Cf(x) > go(x) aN — n,. (3.14)
We consider the following functional of any normalized trial wave function ¢r =
Ticdi(x), Tilalr =1
F¢r) = [ dx [ ax'sr(xYa(x,x)d3(x) = T leslni < m,

where the equality holds only if ¢r = ¢,.

If we choose
¢r(x) = f(x)
then
F(fy=aN+1

I'= [dx [ dx'f(x') (ha(x,X) = aNF () 1)) £(x) = [ dx [ F(e s, %) ().



We next show that in the thermodyn@c limit T is neg].igii:le if compared with aN.
In fact | .

1< fax [ ax'|f ) ha(e, x)lIf @) < & [ drfha(x,x)]
where we have used the translational invariance: ,(x,x') = hy(r) is function of the
relative variable only. Because of eq.(3.12) for any € > 0 there exists R > 0. such
that : ' |
k() < 5 if FI>R

2¢c?
Q 2

where Ay is the maximum of iz; in the limited domain Qz. Then

I< cz/drlle(r)l < -;—/»Rdr + c?hyy dr < €Q.

r<R

This is clearly enough to show that

O.N—oeol.llsr/lﬂ=comt F(f)=oN <n, _ (3.15)

and there exists a macroscopic eigenvalue of h;. Moreover any trial wave function ¢r

satisfying the normalization condition eq.(3.13) can be obtained as a superposition

of f with a function g orthogonal to it

¢br=af+bs, al+¥'=1, [dxf(x)e(x)=0.

The value (3.15) corresponds to the maximum of the functional F(¢r) = a®aN in
this class of functions ¢r. The identification (3.14) follows. The argument assumes
that the eigenfunction itself belongs to the specified class of wave functions.

The normalized expression of the eigenfunction corresponding to the eigenvalue

n, obtained in the off diagonal long range limit

Y(x) = (aN)¢,(x) (3.16)

can be taken as the order parameter which goes to zero at the transition temperature,

and characterizes the type of ordering occurring in superfluids, i.e. condensation

\)



in the effective single particle state, obtain‘ed as eigenfuﬂction of the one pa.rticie
reduced density matrix. . °

The function ¥(x) can be considered therefore as a kind of weighted wave func-
tiqn for the condensate. It has a semiclassical character , i.e. its modulus squared
coincides with a density rather than a probability, because of the macroscopic oc-
cupancy of such a state. .

In superconductors the electrons, being ferﬂions, cannot condense in a single
particle state, because of the Pauli principle. The simplest possibility is that the
two particle reduced density matrix has an eigenvalue n, = ajV [11] .

Taking into account the translational invariance we can introduce the variables

r=X; — Xa, r' =x| —x), (3.17)

R =x; —x; +x; — x} - (3.18)

as h; depends only on three independent vectors and for ﬁimplicity we do not change
the notations when we consider such dependence. On the hypothésis that there exists

an eigenfunction ¢,(x;,x;) of the associated eigenvalue problem

/dx',/dx’,hz(xl,xz;x'l,x’z) = A;¢;(x1,x2) (3.19)

with the corresponding macroscopic eigenvalue n, = aN, 0 < a < 1, it is possible

to show that the ODLRO property

im  hy(r,r',R) = aN¢;,(r)¢,(r') (3.20)

R—oo,rr'<¢

exists.

To show that viceversa ODLRO

ho(r,x',R) = aN f*(r)f(r') (3.21)

m
R—oo,r,r'<¢

implies macroscopic occupancy of a pair state requires some care. In the case of Bose

sy&tems, in order to show that the asymptotic factorization property for the one



pafticle reduced density matrix is equivalent to condensation, it has been enough to
assume that the function f in which k; factorizes is normalized as the eigenfunctions
of h, itself, i.e. the function f has to be chosen in the same class of the eigenfunctions
of hi. For the fermion case instead it is not enough that in the limit of infinite
volume f(r) is normalized in the same way as the eigenfunctions of ;. When the
function f in which the two particle reduced density matrix asymptotically factorizes
is chosen in the class of functions f such that f‘(xx - x3) = 0 if |x; — x3| > &, the
argument essentially goes through as for A; {13]. Physically this means that f varies
in the restricted class of functions which describe two-particle boun_gi states. We
can include in this class exp.onentia.lly decreasing functions.” If this is not the case
for large separation between x; and x, yPe(X1,X2) factorizes in the product of two
single particle states. ka(x;,X,;X],X3) is then approximated by products of k,’s at
different points as for a Fermi gas. Eigenvalues of the order of N for A, cannot be
obtained in this case, because the eigenvalues of h; are all finite. The distance ¢
between x; and x, beyond which ¢, ~ 0, corresponds to the coherence length.

In the previous section we Lave seen that a phenomenological explanation of
the superconductivity implies condensation. We have now achieved the result that _
fermions may condense provided pair formation occurs [11]. Therefore any micro-
scopic theory of superconductivity showing condensation must be based on electron
pair formation as indeed the B.C.S. theory [14] does. The order parameter is again
related to the eigenfunction of h; corresponding to the macroscopic eigenvalue and

can be considered as a weighted pair wave function:

x(x1,%2) = (aN)'/?¢,(x1,%,). (3.22)

As we shall see in the microscopic theory the gap energy is strictly related to y.
Indeed Gor’kov[15] assumed that the actual order parameter is the integrated quan-
- tity

A(xy) = /V(x;,xz)x(xl,xz)d(xl - Xz) = —gx(x1,%1) (3.23)

where V(r) is the attractive potential leading to superconductivity, assumed to be



strc;ngly peaked at r = 0, and

= - / ¢.ixV(x)

defines the coupling constant. In phenomenological theories [16] instead the order
parameter ¢ is normalised in such a way as to make || equal to the superconducting
electron density 'n. ie.

¥(x) = z‘/’A(:é) (3.24)

where Z is the normalizing constant such that |¢)|* = n, and x represents the
center of mass of the bound pair. These positions are altogether consistent with the

phenomenology introduced in chapter 2.

4 ORDER PARAMETER AND SYMMETRY

The discussion of the criterion for condensation has enabled us to introduce the
important concept of the order parameter, which is maximum at zero temperature,
goes to zero at the critical point and is zero above it, this being a common feature
of all second order phase transitions [8, 17].

These transitions are characterised by a discontinuous change of the symmetry
properties of the system at the critical temperature. The phase at high temperature
is more symmetric than the phase at low temperature. For example an isotropic
ferromagnet is invariant under space rotations transformations above its Curie point.
Below T, where the spontaneous magnetization (order parameter in this case) is
different from zero, the system is not invariant under generic rotations because of
the privileged direction of the spontaneous magnetization itself i.e. the ordered
phase is less symmetric. However small the spontaneous magnetization is, as long
as it is different from zero, the larger symmetry is not restored.

The symmetry of a systém is represented by the group of transformations which
leave invariant the Hamiltonian. These symmetry transformations are expressed in
a given representation as operators that act on the Hilbert space of the system and

have the property of commuting with the Hamiltonian.



The eigenstates of a given representation transform into each other under the
action of the symmetry group. The symmetric phase has a ground state which is not
degenerate and hence is invariant under the transformations. Under given circum-
stances the ground state is degenerate and the selection of one among all possible
degenerate states ( choice of the direction of the spontaneous magnetization in fer-
romagnets) giv.es raise to a phase which has a lower symmetry than the original
Hamiltonian. This phenomenon is known as the spontaneous symmetry breaking
[18] in the sense that the invariance properties of the system still survive but a
particular solution is not invariant. The symmetry of the ordered pha.q; remains dif-
ferent up to the transition point i.e. as long as the order parameter is different from
zero. As the critical point must have thq symmetry of both phases, the symmetry
group of the disordered phase (more symmetric) must contain the symmetry group
of the ordered phase (less symmetric phase).

Let us now turn our attention to the invariance properties broken in the super-
conductive phase. |

In quantum  mechanics the conservation of charge is related to the invariance
under the global\phase transformation ¢¥, N being the total number operator,
which commutes with the hamiltonian. The wave function of the an N-particle

system transforms as
Yy — eNoyy (4.1)

where 6 is between 0 and 27. According to their definition the density matrix and
all the reduced density matrices are invariant under the global phase transforma-
tions. This is enough to characterize the physical properties of a normal system. In
the previous section we have seen that in the case of superconductors instead the
existence of a condensation of electron pairs in a single state is the condition to be
imposed in order to explain the phenomenology. This condensation phenomenon is
characterised by the appearance of off-diagonal long range order in the two particle
reduced density matrix and by the possibility of factorizing it in terms of the pair

wave function ¥ which we take as order parameter. Hence, while the two particle



reduced density matrix h, remains invariant under global phase transformations,
the order parameter transforms as A
¥ — ey,

Now a well sound assumption is that the superconducting state is well approximated
by a coherent macroscopic occupation of the pair state at fixed phase rather than
at fixed N, giving rise to a spéntaneous symmet_f;ry breaking.

For the superfluid Helium (*He) the above u.'gument can be repeated using the
one particle reduced density matrix k;. '

Until now we have considered only global phase transformation, i.e. the phase
6 is independent of space and time. As it is well known from the electrodynamics
local gauge invariance leads us to introduce the scalar and the vector potential V
and A and their transformations with a space and time dependent scalar function
¢ .

' A= A+ V(z,t) (4.2)

10¢(z,t)
Vo V- (4.3)

Since the order parameter 1) obtained from the factorization of the two particle
reduced density matrix k; , corresponds to a weighted ”single particle wave function”

describing the distribution of the center of the mass of the bound pair , under local

gauge transformatio*a.nsforms according to

1/) —_ ei(e'/hc)¢(c.t)¢ (44)

€” being the effective electric charge of the charge carriers (e* = 2e for the present
case).

Now we want to show that our interpretation of the order parameter as a semi-
classical wave function is sufficient to explain all the "super” effects.

We start from the expression of the Schrédinger equation for a particle in the

presence of a scalar and vector potential:

- 2
a1 (E.v - %A) Y+eVy (4.5)



The general solution to this equation can be written as
_ < [var+ S [ -a)
¢_¢oezp( i /kat +=[aa (4.6)

%o being the wave function in the absence of external fields. The phase 6 of the

wave function is. changed into
6=0 ——/ vt + /A d. | (4.7)

Using the general expression for the current in quantum mechanics we get the su-

percurrent '
3, = e[l (vo - iA) = ot (va,, - / Vth) (4.8)
’ m ch ' m
Whenever A is equal to zero, the superfluid current is given by
L] 2
3, = EibelAo, (4.9)
m

In the presence of a vector potential we choose the gauge divA = 0 which, when the
system is isolated, gives ' .

) R
Y div], =0 = ;V’G (4.10)

—

that ise/quiva.lent to 8 = const. The London relation eq.(2.10) between the cur-
rent and the vector potential then follows from eq.(4.8), provided |¢s|? = n, as
hypothesized for the normalization of the order parameter in the previous chapter.

The quantization of the flux {19, 20] and the Josephson effect|21, 22, 23] afe also
easily derived from the expression for the current .

Let us consider a superconducting ring below its transition temperature. We
consider a closed contour C well inside the ring. Along the contour the current
must be zero because the field cannot penetrate in the bulk. Hence performing the

contour integration we obtain

Laa=[ e (vo- -A) =e'|¢o|2—:; (Ae—%q»w)) =0 (411)



where ¢(B) is the magnetic flux trapped inside the ring. Since the wave function

must be single valued Af = 2rn and the flux is quantized:

3(B) = n-‘:—,: (4.12)
n being an integer.

The experiments give e* = 2e [19] according to the basic assumption of the pair
condensation . .

We now briefly discuss the Josephson effect. It may be useful to make again an
analogy with the ferromagnets. In a ferromagnet below its Curie point the order
parameter is the spontaneous magnetization M; which breaks the invariance under
rotations, setting a preferred orientation in space. Another ferromagnet with a
magnetization M, oriented at an angle § with respect to the previous one, when
sufficiently near, gives rise to an interaction energy U(6) = M;M;cos(6). In the
case of two superconductors we may apply the same concept. The complex order
parameter may also be viewed as a two component vector. In the phase of broken
symmetry , a choice for ¥ corresponds to a preferred orientation. in the complex
plane. Then it is natural to write the interaction energy of two superconductors ,
separated by a insulating junction , as a periodic function of the phase difference
61 — 6, of the order parameter, exactly as for the ferromagnets. In order to convince
ourselves of the presence of such an energy term in the Josephson junction we add
the following considerations. If we let the thickness d of the film of the insulafing
layer become very large (d >> £) the system is made of two independent isolated
superconductors, each one with a constant phase uncorrelated to the other one , as
can be derived from the condition V26 = 0 previously discussed. On the other hand
when the thickness d goes to zero, the two superconductors will tend to behave as a
single one with an overall constant phase and the phase difference between the two
must go to zero. There is therefore an interaction energy U(6; — 6;) which goes to
zero as d 3> § and becomes important when d < ¢. U must be an even periodic

function of 6, U = C cosf. When the two superconductors are separated by a small



dist;ance d ( usually d is of the order 10 — 504 much less than the penetration lenght
A and the coherence distance ¢ over which the pair wave function gxtends) we may
approximate the phase difference as 6, — 6, = d|V6|. From the gauge invariance we
know that only the combination of the phase gradient and the vector potential is
physically meaningful. Hence ,using the general fact that the derivative with respect

to the vector potential gives the current , we may write

3, = ‘%z—) = Jcs;n(o) (4.13)

from which we see that a supercurrent flows across the junction i.e. pa_.i'rs can tunnel
from one side to the other of the junction without a d.c. voltage. The maximum
Josephson current J. can be determined by microscopic calculations only.

The pr:enx‘af an electromagnetic field modifies the phase of the pair wave
function according to eq.(4.7). A scalar potential V gives rise to an a.c. Josephson

current with frequency
eV
.

This current oscillates very rapidly due to appearance of the Planck constant and

0..;: -_—

(4.14)

therefore averages to zero. Combining two Josephson junctions in a circuit it is
possible to study interference effects on the outcoming current as a function of the
magnetic flux through the loop in units of the quantum hc/e.

The experimental observation of quantization of flux [19], of the d.c. Josephson
current and the interference effects in the Josephson junctions [23] is the most direct
evidence of the appearance of quantum phenomena on macroscopic level via the
coherent macroscopic occupation of a single pair state due to the off diagonal long

range order.

5 LANDAU THEORY OF SECOND ORDER PHASE TRANSITIONS.
ITS LIMIT OF VALIDITY

In the previous sections we have seen that the transition from normal to super-

conducting state is of the second order at zero external magnetic field. Below the





