Introduction to the analysis of EXAFS data

Carlo Meneghini

meneghini@fis.uniroma3.it

Grado2013_XAFS_TUTORIAL

http://dl.dropbox.com/u/20746560/Meneghini_EXAFS-Tutorial-DUINO-2011.zip

PDF slides:

https://db.tt/UmF9HOc2

Complete directory

XAFS_tutorial_Grado2013

			2.5 6 24.5	
Data	Examples	Manuals	Software	Grado_2013_XAFS_Tutorial.pdf
	a-Ge	all the let	IFEFFIT	
	A-GeO2	Self-pl-3	VESTA	
	Cu Cu 10K		Notepad++	
	Fe_align			
	W			
	LCA			

Characteristics of a XAS spectrum

Data collection

Errors in XAFS data analysis are dominated by <u>systematic errors</u>:

- spurious structures
- background subtraction
- wrong models
- inaccurate theory

Measure reference samples

1-energy calibration

d

2-data analysis procedures calibration

The power of XAFS technique consists in highlighting the smallest structural differences Experimental set-up & sample preparation

Transmission: massive concentrated samples $0.5 \le \Delta \mu t \le 1.5$ $\mu t \le 2.$ inhomogeneities, holes, not parallel surfaces, etc...

Fluorescence: thin concentrated thick diluted samples

Self absorption, detector linearity, Bragg reflections

thick concentrated

<u>Surface sensitivity</u>, sample charge, Bragg reflections

b

IXS Standards and Criteria Subcommittee Reports

Data quality

EY:

С

S/N ratio

glitches

discontinuities

Collection strategy

- step scan / quick EXAFS
- Fixed Energy or K steps
- single scan/repeated scans
- temperature points

Evaluate S/N ratio

regularly during the experiment

μ_o = represents the bare atom absorption.

It is calculated <u>empirically</u> as a smooth curve across the data.

Different XAFS data analysis software apply different (generally equivalent) methods

<u>Requirements for μ_0 :</u>

1) <u>Smooth</u> enough to not remove true structural features

2) <u>Structured</u> enough to remove background structures

Note: Multiple excitations my affect the background with (small) discontinuities

Shape of FT widely changes as a function of:

- FT window
- •<u>k^w weight</u>
- data range

FT shows more intuitively the main structural features in the real space: the FT modulus represent a pseudoradial distribution function modified by the effct of amplitude, phase and mean free path parameters:

|FT| peaks point out interatomic correlations

Peak positions are not the true distances due to the photoelectron phase shift

Choose a structural model

Search on the web !

XAFS data analysis software

Inside the Ifeffit directory

Preliminary data treatment &

Athena

Extraction of XAFS structural signal: $\chi(k)$

			N Succession
Project	A U I modified		List of files (group) opened into Athena
Current group cu_foil_10k.dat	Cu_foil_10k.dat		opened into rationa
File: E:/Duino_ago09/Examples/Cu_10K/cu_foil_10k.dat		1	
Z: Cu 🖵 Edge: K 🖃 E shift: 0 Importance: 1			
Background removal Show additional parameters			
E0: 8977.58 🗙 Rbkg: 1.0 🗶		•	Plot highlighted files
k-weight: 2 Edge step: 2.32667 🕩 📕 fix step		kq 🚽	dby for an end
Pre-edge range: -150 🗴 to -30 🗙	E K R q		Plot (sourrel)
Normalization range: 150 🗙 to 2284.89 🗙		kw	marked files
Spline range: k: 0.0 × to 25.019 ×	V Plotting options		marked mes
	E k R q Stack Ind PF		
k-range: 2 X to 23,019 X	📕 mu(E) 🧖		
dk l window type: hanning	background		
Phase correction: no arbitrary k-weight: 0.5	nost-edge line		Options for plot
Prolement Fourier transform	Normalized ©		
R-range: 1 XI to 3 XI	E Derivative		
dr: 0.0 window type: hanning _		Wa	rning: check the graphic
plotting in energy from group `cu_foil_10k.dat'	check if the full	wir	ndows and never close it
windows is	visible on your PC,	le	aving Athena/Artemis
smai scree	0	pen sometime the PC	
	ne iower pari		crasnes

Exercise 4: in q (Back Fourier) space look at the effects of changing BF parameters and regions

Full Exercise:

1. Read Fe Files

2. Align Fe files on order to have the same Eo

3. Merge files having the same T

4. Save $\chi(k)$ of merged files, to be used for the structural analysis

Structural model & Data refinement

Cu-fcc

....

metal SPG: fcc, f m 3 m (# 220) a = 3.61 A Cu 0.0 0.0 0.0

Sh	R	Ν	$R_{Cu}(A)$
I:	a/sqrt(2)	12	2.553
II:	a	6	3.610
III	a·sqrt(1.5)	24	4.421
IV:	a·sqrt(2)	12	5.105
V:	a∙sqrt(2.5)	24	5.708

You can visualize the structure using VESTA program

icsd_43493_Copper.cif

Path 15: [Cu1_1 Cu1_1 Cu1_1] Dath 49-1Cu4 2 Cu4 41

Compare model and experimental data

Open Cu_foil_10k.inp

Using CRTL key you can select groups for plot

Absolute misfit between experimental data and theory

Structural results

	Data file cu_foil_10k.dat.chi	
20	Data controls Fourier and fit parameters ✓ Include in the fit Fourier and fit parameters ✓ Plot after the fit R-range ✓ Fit background K	Effects
	R window Hanning R window Hanning	
	Fitting space R Epsilon 0 kw=1 Minimum reported correlation 0.25 kw=2 kw=3 Path to use for phase corrections Image: the second	
	Document: Fitting parameters	
	'cu_foil_10k.dat.chi' in R spa	ce
-	Δ	foil_10k.dat_
-		fit K°1wgt
-		— fit K*3 wgt
A ⁻²)		
(R) (
× 0		
-		
	1 2 3 4	
	R (\$)	

ts of Fitting parameters

..... 6

Add new contributions

neighbour shells! Take care about multiple scattering contributions

Visualize the

structure and

understand the

		Maria		Independent points = 44.382812500
#		Name	Math Expression	Number of variables = 12.000000000
1	s:	amn	0.919991	Chi-square = 1816.763460636
-		camp	0.515551	Reduced Chi-square = 56.102707590
2	g:	enot	5.448280	R-factor = 0.011517825
				Measurement uncertainty $(R) = 0.001020057$
3	d:	delr	-0.004	Number of data sets $=$ 1 000000000
4	g:	delr2	-0.004661	
5	g:	delr3	-0.004	Guess parameters +/- uncertainties (initial guess):
6	a:	delr4	004	enot = $5.1036410 + - 0.60891$
Ť	S.			delr = -0.0063660 + - 0.00374
7	g:	33	0.003596 (0.000283)	delr2 = -0.0233000 + 7 = 0.01223 $delr3 = 0.0189970 + 7 = 0.00751$
			0.005400.10.0045051	delr3 = -8.0359130 + - 0.00984
8	g:	334	0.005123 (0.001735)	ss = 0.0035890 +/- 0.00024
9	a:	333	0.004593 (0.000671)	ss2 = 0.0044530 +/- 0.00130
-	a.			ss3 = 0.0045820 +/- 0.00058
10	g:	ss4 👘	0.028058 (0.043714)	ss4 = 0.3097740 +/- 132.33165
		-		ss5 = 0.0151180 +/- 0.00620
11	g:	885	0.004597 (0.000968)	ss6 = -0.0003130 +/- 0.00194
12	a:	336	0.006	ss7 = 0.0073710 +/- 0.00229

Correlations	between varia	ables:
336	and ss7	> -0.8579
enot	and delr	> 0.8206
delr4	and ss5	> -0.6973
enot	and delr3	> 0.6923
delr	and delr3	> 0.5675
enot	and ss5	> 0.4211
enot	and delr2	> 0.3650
delr	and ss5	> 0.3464
delr3	and delr4	> 0.3298
delr	and delr2	> 0.2970
delr4	and ss6	> -0.2649
enot	and ss7	> 0.2521
All other com	relations are	e below 0.25

0.6089100 0.0037480 0.0122330 0.0075140 0.0098410 0.0002440 0.0013020 0.0005800 132.3316580 0.0062090 0.0019450 0.0022950

#		Name	Math Expression					
1	s:	amp	0.919991					
2	g:	enot	5.448280					
3	d:	delr	delr2/sqrt(2)					
4	g:	delr2	-0.004661					
5	d:	delr3	delr2*sqrt(1.5)					
6	d:	delr4	delr2*sqrt(2)					
7	g:		<u>0.003596 (0.000283)</u>					
8	g:	ss2	0.005123 (0.001735)					
9	g:	ss3	0.004593 (0.000671)					
10	g:	ss4	0.028058 (0.043714)					
11	g:	885	0.004597 (0.000968)					
12	g:	33 6	0.006					
13	g:	ss7	0.006964 (0.006210)					

•				Þ		
Edit selected pa	rameter					
delr3 =	deir2*sqrt(1.5)	Set 🧯 Skip	Restrain	🔴 After		
Undo edit New Grab Discard Hide						
Document: Guess, Def, Set						

Independent points		=	44.382812500
Number of variables		=	9.00000000
Chi-square		=	3499.926965502
Reduced Chi-square		=	98.916019339
R-factor		=	0.022188660
Measurement uncertainty	(k)	=	0.001028657
Measurement uncertainty	(R)	=	0.004036509
Number of data sets		=	1.00000000

Guess parameters	+/-	uncertainties	(initial	guess):
enot	=	4.5727030	+/-	0.7133360
delr2	=	-0.0051830	+/-	0.0061960
88	=	0.0036500	+/-	0.0003280
ss2	=	0.0046410	+/-	0.0018030
883	=	0.0047920	+/-	0.0007880
ss4	=	0.0239730	+/-	0.0373920
ss5	=	0.0057660	+/-	0.0014520
33 6	=	0.0010460	+/-	0.0058090
ss7	=	0.0060830	+/-	0.0044900

Correlations	between	n variables:	
33 6	and ss'	7>	-0.9544
enot	and de	lr2>	0.8598
554	and ss5	5>	0.6684
ss5	and ss	7>	0.6517
ss4	and ss	7>	0.6019
ss5	and sst	5>	-0.5675
ss4	and sst	5>	-0.4966

