Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V

Sui PC a disposizione sono istallati diversi sistemi operativi. All'accensione scegliere Windows.

Immettere	Nome utente	b##	(## : numero del pc)
	Pass.:	biologia##	(## : numero del pc)
		Stud_fisica	

Il sistema operativo è Windows 2000. (Non molto diverso dal WXP!) base a quanto detto a lezione controllare che:

Lezioni mie07

Turn_lab.pdf

擧 install flash player.exe

Name

File Edit View Favorites

🕒 Back 🔻 🍙 👻 🍰

Tools

Address 🛅 F:\A_lavoro\A_lezioni\informatica2006-7\Lezioni_r 🔻

Search

Help

Folders

31 KB Adobe Acrobat 7.

Size Type

3 691 KB Application

1 325 KB Application

a) le cartelle mostrino i dettagli dei files;

b) siano visibili le estensioni dei files anche per i tipi conosciuti;

c) la configurazione della tastiera corrisponda alla tastiera effettivamente in uso (Inglese);

d) i numeri decimali siano codificati con il "." e sia usato lo spazio "" per il raggruppamento delle cifre.

			💾 Turn_lab.doc	31 KB	Documento di Micr	
	-		🕙 Questionario.xls	20 KB	Foglio di lavoro di	
Decimal symbol:		-	🕙 studenti_2007.xls	229 KB	Foglio di lavoro di	1
			💼 Turn_lab.jpg	440 KB	JPEG Image	1
No. of digits after decimal:	2	-	🕮 Eserc_IIold_2007.ppt	1 601 KB	Presentazione di N	1
2	-		🎒 illusioni_ottiche.ppt	748 KB	Presentazione di N	1
Digit grouping symbol:		•	Esonero1.rar	3 592 KB	WinRAR archive	-
			٠ ا		Þ	2

e) Attivare **Excel** e controllare che siano istallate le opzioni "analisi dati" o aggiungerle utilizzando "strumenti > opzioni aggiuntive"

f) Creare una cartella di lavoro nella cartella dei documenti "Eserc_A##" dove salvare il proprio lavoro.

g) Scaricare e istallare la cartella con i dati per l'esercitazione dalla pag. web del corso (esercitazioneA.exe)

Esercizio 1) Statistica descrittiva Importare un file di dati in Excel, calcolo di indici di posizione, ampiezza e asimmetria. Confronto di dati, Istogramma di frequenze.

Il file di dati: **studenti.dat** è un file ASCII a tre colonne che riporta l'età e l'altezza di un gruppo di studenti divisi per sesso:

<u>A</u>- Importare i dati in Excel utilizzando uno dei seguenti metodi:

a) aprendo il file con Excel,

b) aprendo il file con un editor di testo (blocco note) e utilizzando le opzioni copia e incolla

c) aprendo il file da Excel utilizzando File > apri > ...

Utilizzare l'opzione *dati > testo in colonne* per organizzare i dati nelle celle.

ATTENZIONE: quando si apre un file ASCII con EXCEL ricordarsi di salvare il lavoro utilizzando il formato xls in uscita, altrimenti si perde tutto il alvoro fatto!

B- Utilizzare le funzioni di Excel per calcolare indici di posizione e variabilità presentare i risultati in una tabella con 2 cifre significative

😑 stude	nti_1.c	lat		
1	sea	sso e	ta'	peso
2	F	21	55	
3	М	20	65	
4	М	20	60	
5	F	21	58	
6	м	10	02	

- 🗆 🗙

Statis	tica desi	orittiva
N	t	:utti
169	età	peso
	Anni	Kg
max	31	97
min	18	43
media	20.11	64.69
moda	moda 19.00	
mediana	19.00	62.00
Q1	19.00	55.00
Q3	20.00	75.00
varianza	4.43	137.63
dev.st.	2.10	11.73
interq.	1.00	20.00

<u>C</u>- Determinare il numero e la frazione di uomini e donne nel campione utilizzando, ad esempio, le funzioni CONTA.VALORI(...) e CONTA.SE(...)

	A	В	C	D	E	F	G	Н					=CON	TA.SE(A	3:A171."M	")
1	SESSO	ETA'	PESO			Statisti	ca desc	rittiva						<u> </u>		ć
2		Anni	Kg			N	tu	tti			=CONTA	. VALORI	(A3:A171	1)		
3	F	21	55			169	età	peso					·	<u> </u>		
4	M	20	65				Anni	Kg					N stud	Maschi	Femmine	
5	M	19	60			max	31	97					160	72	90	
6	F	21	58			min	18	43					169	731	96	
7	M	19	82			media	20.11	64.69				frazione		0.43	0.57	
8	F	18	50			moda	19.00	58.00				%		43.2	56.8	
9	M	22	81			mediana	19.00	62.00					· · · · · ·			
10	M	19	70			Q1	19.00	55.00								
11	M	19	75			Q3	20.00	75.00								
12	M	20	58			varianza	4.43	137.63								
13	M	23	72			dev.st.	2.10	11.73								
14	M	19	72			interq.	1.00	20.00								
15	M	20	77													
16	M	20	65													
17	M	20	76				N. stud.	Maschi	emmine	e						
18	F	21	60				169	73	96							
19	F	26	65			frazione		0.43	0.57							
20	F	21	54			%		43.2	56.8							
21	M	18	63													

<u>**D**</u>- descrivere separatamente la distribuzione di altezza e peso per uomini e donne (Si suggerisce di usare un nuovo foglio). Per questo, ad esempio, si possono **ordinare** i dati (usando l'opzione dati>ordina) in modo da poter selezionare in modo semplice i dati per Maschi e e Femmine

	Star	listica desci	rittiva		
	e	tà	peso		
	ar	inn	Kg		
	F	M	F	M	
N	96	73	96	73	
max	31	29	80	97	
min	18	18	43	58	
media	20.08	20.14	57.57	74.05	
moda	19.00	19.00	55.00	80.00	
mediana	19.00	19.00	55.50	75.00	
Q1	19.00	19.00	52.00	68.00	
Q3	20.25	20.00	61.00	80.00	
varianza	5.09	3.62	61.11	84.05	
dev.st.	2.26	1.90	7.82	9.17	
interq.	1.25	1.00	9.00	12.00	

Per confrontare i valori medi ottenuti per altezza e peso si calcoli l'errore standard sulla media (err = dev.st / $N^{1/2}$). Si può vedere ch la differenza di età tra la popolazione di uomini e donne mostra ec'è differenza nell'altezza media di maschi e femmine mostra una differenza molto piccola rispetto all'errore statistico sulla media. Al contrario la differenza tra i pesi è molto maggiore degli errori statistici

sulle medie. Vedremo in seguito quanto queste differenze siano significative da un punto di vista statistico.

Utilizzare la funzione avanzata "statistica descrittiva" (in *strumenti > analisi dati*) per riassumere i risultati. Se non compare l'opzione "*analisi dati*" nel menu *strumenti* utilizzare l'opzione *componenti aggiuntivi* per aggiungere le macro "*analisi dati*"

 $\underline{\mathbf{E}}$ - Costruire un istogramma per visualizzare i dati di peso e altezza. Durante l'esercitazione scorsa sono stati mostrati due metodi per la ripartizione dei dati in classi.

Qui di seguito descriviamo un terzo metodo che consiste nell'utilizzare la **definizione di formule in forma in matrice in Excel**:

- 1) una volta definite le classi per le quali definire l'isogramma di frequenze, selezionare il gruppo di celle per le quali calcolare le frequenze,
- digitare nella barra delle formule "=frequenza(matrice dati; matrice_classi) " dove matrice_dati è l'insieme delle celle contenenti i dati (solo celle contigue) e matrice_classi è l'insieme delle celle contenenti le classi (corrispondente al gruppo di celle per le frequenze),
- per attivare la formula utilizzare Ctrl + Shft + Enter, n in questo modo la formula viene calcolata automaticamente per per tutte le celle selezionate.

Costruzione di un istogramma: diagramma di flusso dell'algoritmo.

Confrontare graficamente le distribuzioni di altezza e peso per uomini e donne.

Si osserva che, mentre la distribuzione delle età degli studenti dipende poco dal sesso degli studenti, la distribuzione dei pesi è sensibilmente diversa per uomini e donne.

<u>F</u>- calcolare gli indici di asimmetria e curtosi per le distribuzioni totali e parziali.

Il file studenti1.xls contiene una possibile soluzione e può essere utile consultare le formule utilizzate.

Esercizio 2) Studio di distribuzioni

Utilizzare l'opzione *generazione di un numero casuale* di excel per generare distribuzioni di numeri casuali con legge data.

A) Generare una serie di numeri con distribuzione binomiale con probabilità data.

Calcolare valori medi, varianza e deviazione standard cambiando N: numero di punti.

All'aumentare del numero di punti valore medio, varianza e deviazione standard calcolate si progressivamente ai valori teorici e l'errore standard sulla media diminuisce.

Attenzione: l'errore sulla media è, per definizione:

$$\epsilon_{\bar{x}} = \frac{\sigma}{\sqrt{N}}$$

Provare a cambiare il "generatore" della funzione

umenti <u>D</u> ati Fi <u>n</u> estra <u>?</u> A Conversione euro	
Ricerca objettivo	
Mailsi dati	
Componenti aggiuntivi	Annulla
Analisi dati Saota descritiva Smorzamento esponenziale Test F a due campioni per varian	12e
Analisi di Fourier Analisi di Fourier Istory armo Media mobile Cindardonci di un attanci cessae Rango e percentile Regressione	
Generazione di un numero casuale	n di colonne
Numero di variabili:	ОК
Numero di numeri casuali: 100 Distribuzione: Uniforme	n. di valori per colonna
Parametri Tra 20 g 25	Tipo di distribuzione
	Parametric della distribuzione
Generatore:	generatore
Opzioni di output Intervallo di output: \$4\$2 3 Nuovo Egglio di lavoro: Nuova cartella di lavoro	

Visualizzare la distribuzione utilizzando un istogramma.

Il file excel distribuzioni.xls mostra alcuni esempi.

	A	в	U		E												
1			Bin	omiale													
2	Valori	p=	0.3														
3	15	N=	50														
4	14																
5	13		STA	TISTICA													
6	20		DATI	TEC	RIA	- ·											
7	13	media	14.90	N*p	15.00	—											
8	12	err. media	0.42				A	В	С	D	E						
9	12	var.	8.62	N*p*(1-p)	10.50	1			Bin	omiale							
10	16	dev.st.	2.94		3.24	2	Valori	p=	0.3								
A A	40					3	29	N=	100								
						4	33						А	B	C	D	F
		-				5	25		STAT	TISTICA		1			Bino	miale	
			classi	frequenze		6	28		DATI	TEC	RIA	2	Vəlori	n=	03	maic	
			20	2		7	36	media	29.47	N*p	30.00	3	151	N=	500		
			22	1		8	30	err. media	0.40				144	IN-	000		
		1	24	9		9	24	var.	16.35	N*p*(1-p)	21.00	- 4-	144		CTAT		
			26	12		10	33	dev.st.	4.04		4.58		160		DATE		
			28	18						1		4 <u>b</u>	158	12	DATI	IEU	JRIA
		-	20	10								/	132	media	148.95	м-р	150.00
		-	20	13								8	141	err. media	U.45		
		-	32	14								9	153	var.	99.80	N*p*(1-p)	105.00
		-	34	12								10	145	dev.st.	9.99		10.25
			36	10					1	1		14	4.40			1	1
			38	3	-			■ N=100			-						
			40	0	-						-						
			42	0	- ²⁰ T			_			-						
			44	0	18						-						
			46	0	16						-						
		- 1	48	Ω							-						
			50	ñ	14						-						
		-	50	ő	12		_				-						
		-	52	0	- 10 L						-						
			54	U							-						
		-	56	U	l °†						-						
		_	58	U	6						_						
			60	0	4												
			62	0													
		1	64	0		-											
		1	66	0] ₀₽	1,1											
			68	0	2	0 22	2 24 26	28 30 3	2 34 31	6 38 40							
		_	70	0													
				_													

		0		0					
		Uniforme							
	Valori								
	20.00732	N=	50						
	21.09806								
	21.4182		STATISTICA						
Ī	21.38722		DATI	TEC	RIA				
	21.07288	media	22.54		22.50				
	23.59767	err. media	0.21						
	22.70119	var.	2.12		2.08				
ſ	23.58638	dev.st.	1.46		1.44				

~	0	~	0	L				
Uniforme								
Valori								
20.00732	N=	150						
21.09806								
21.4182	STATISTICA							
21.38722		DATI	TEC	RIA				
21.07288	media	22.45		22.50				
23.59767	err. media	0.11						
22.70119	var.	1.90		2.08				
23.58638	dev.st.	1.38		1.44				
04.45044								

	Uniforme							
	Valori							
	20.00732	N=	500					
	21.09806							
	21.4182		STATI	STICA				
Ī	21.38722		DATI	TEC	RIA	ſ		
	21.07288	media	22.50		22.50	ľ		
	23.59767	err. media	0.06			l		
	22.70119	var.	2.02		2.08			
ĩ	23.58638	dev.st.	1.42		1.44	ſ		

Esercizio 3) In figura sono riportate le posizioni per 1500 esemplari di piante di una specie A distribuite in una regione di superficie $S=10^4 \text{ m}^2$. Si vuole stimare la densità media di piante δ misurando il numero di piante in uno o più quadrati di prova di lato L=10m, di superficie s₀.

Per una densità costante di piante, il numero di piante k osservate in quadrato di lato L segue una statistica di Poisson:

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

E' <u>90</u> L T

il cui valore medio è $\mu = \lambda$ e da la varianza è $\sigma^2 = \lambda$.

Infatti possiamo assumere la distribuzione di Poisson come caso limite di una distribuzione di Bernulli con N (numero di prove= numero totale di piante nella regione S) grande e p (probabilità di successo) piccola, p è la probabilità di osservare una pianta nell'area di prova s_o, quindi, per la distribuzione di Bernulli, la probabilità di successo è

 $p = s_o/S = 0.01$

Il valore medio atteso dalla distribuzione di Bernulli è $\mu = Np = \delta s_0$. La varianza della distribuzione di Bernulli è $\sigma^2 = N p (1-p)$, essendo p<<1 si ha: $\sigma^2 \approx N p = \mu$.

<u>A</u>- contando il numero di piante k in uno dei quadrati di lato L=10 m stimare la densità di piante nella regione S:

 $\delta = k / s_o$

L'errore associato si ottiene dalla deviazione standard della distribuzione P(k), quindi $\varepsilon_{\delta}=\sigma/s_{o}$. Ad esempio per il quadrato A1 il numero di piante è 17, quindi

$$\delta_{A1} = 0.17 \pm 0.04$$

<u>B</u>- Ripetere l'osservazione in più quadrati e riportare i dati in una tabella, eventualmente integrando i risultati ottenuti da più gruppi di studenti.

Dalla tabella si può osservare che i valori di densità osservati si distribuiscono attorno al valore medio atteso (N / S = 0.15 m^{-2})

Riportare i risultati su un istogramma:

Calcolare il valore medio, la varianza e la deviazione standard della distribuzione dei valori osservati K_i: il valore medio e la varianza della distribuzione sono simili, come ci si aspetta per una distribuzione di Poisson.

Valori medi									
	K	δ		err.					
media	14.53	0.145	±	0.038					
varianza	13.36								
dev.st	3.66	0.037							

riquadro	K	δ		err.
A 1	17	0.17	±	0.041
B 2	13	0.13	±	0.036
С З	8	0.08	±	0.028
D 4	18	0.18	±	0.042
E 5	18	0.18	±	0.042
F 6	13	0.13	±	0.036
G 7	16	0.16	±	0.040
H 8	17	0.17	±	0.041
19	14	0.14	±	0.037
L 10	9	0.09	±	0.030
A 2	11	0.11	±	0.033
B 3	16	0.16	±	0.040
C 4	16	0.16	±	0.040
D 5	14	0.14	±	0.037
E 6	12	0.12	±	0.035
F 7	13	0.13	±	0.036
G 8	15	0.15	±	0.039
H 9	19	0.19	±	0.044
I 10	12	0.12	±	0.035
L 1	9	0.09	±	0.030

C- Ripetere la misura utilizzando riquadri di campionamento di lato L=20 m.

In questo caso l'errore sulla densità stimata è dimezzato.

Valori medi							
	K	δ		err.			
media	60.00	0.150	±	0.019			
varianza	87.83						
dev.st	9.37	0.023					

riquadro	K	δ		err.
A 1	57	0.1425	±	0.019
B 2	56	0.14	±	0.019
С З	56	0.14	±	0.019
D 4	67	0.1675	±	0.020
E 5	44	0.11	±	0.017
F 6	69	0.1725	±	0.021
G 7	68	0.17	±	0.021
Н8	72	0.18	±	0.021
19	47	0.1175	±	0.017
L 10	52	0.13	±	0.018
A 2	58	0.145	±	0.019
В3	65	0.1625	±	0.020
C 4	46	0.115	±	0.017
D.S.	49	0 1225	+	0.018