Esercitazione Ia

Il sistema operativo Windows

- Cos'è un'interfaccia grafica?
- Come visualizzare il filesystem di windows?
- A cosa serve l'estensione nel nome di un file?
- Cosa è il path di un file?
- Cosa è la radice nel path?
- Cos'è un file ASCII (testo)?
- Cosa sono i file eseguibili e i file batch?
- Come si configura la tastiera?
- Come si configurano le opzioni di visualizzazione dei numeri?
- Come si configurano le opzioni di visualizzazione di files e cartelle?
- Perché è importante configurare il sistema in modo da mostrare sempre l'estensione dei files?
- Come si può visualizzare lo stato del sistema (Task Manager)?

Prompt dei comandi

- Come si attiva il prompt dei comandi?
- Come si possono vedere i comandi disponibili?
- Come funziona il comando DIR?
- Cosa sono i modificatori di un comando?
- Cosa succede digitando il comando:

- Quale è il comando per creare una nuova cartella?
- Cos'è una procedura batch?

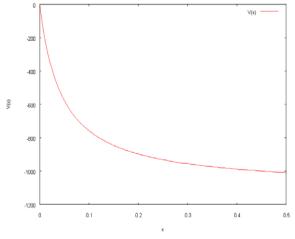
Espressioni

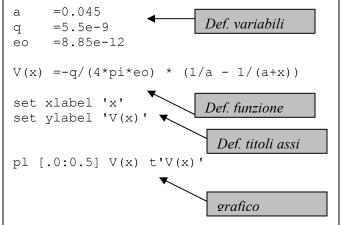
La sintassi con cui viene scritta un'espressione è essenziale affinché un programma interpreti in modo corretto una formula e fornisca il risultato voluto.

Scrivere le seguenti espressioni algebriche "in linea" (bilanciare correttamente le parentesi e utilizzare in modo corretto gli operatori $+,-,*,/, ^, **$)

$\frac{A}{\sigma\sqrt{2\pi}} e^{-\frac{(x-x_o)^2}{2\sigma^2}}$	$\frac{(x-x_o)(y-y_o)}{\sqrt{x_o y_o}}$
$\frac{(x_1 - x_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \sqrt{\frac{\sigma_2^2}{n_2}}}}$	$\int_{4.} \sqrt{\frac{x(x-A)}{N} + \frac{y(y-B)}{M}}$
$\int_{5.} ax^4 + bx^3 + cx + d$	$\frac{\ell}{6. \ 1 + \varepsilon \cos(\theta - \theta_0)}$
$\arccos\left(1 + \frac{\frac{1}{r} - \frac{1}{r_0}}{\frac{1}{r_0} + km/L_z^2}\right)$	$8. \frac{\omega\sqrt{\frac{1}{2}\varepsilon\mu}\sqrt{-1+\sqrt{1+\frac{1}{(\rho\varepsilon\omega)^2}}}}{8}$
$(x_1 - x_2) + Z\left(\frac{1-\alpha}{2}\right)\sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}$	$-\frac{32m^3}{r}e^{-r/2m}$
$ \left(r^2 + a^2 + \frac{(2mr - e^2)a^2 \sin^2 \theta}{r^2 + a^2 \cos^2 \theta} \right) \sin^2 \theta d\varphi^2 $	$12. \left(\frac{2a(2mr - e^2)}{r^2 + a^2\cos^2\theta}\right) \sin^2\theta$
13. $ \left(\gamma \left(1 - \frac{\vec{v}_1 \cdot \vec{v}_2}{c^2} \right) \right)^{-1} \left(\vec{v}_2 + (\gamma - 1) \frac{\vec{v}_1 \cdot \vec{v}_2}{v_1^2} \vec{v}_1 - \gamma \vec{v}_1 \right) $	14. $\frac{2\sin(\theta_t)\cos(\theta_i)}{\sin(\theta_t + \theta_i)}$
$H(x) = \frac{\mu_o}{2} NI(\cos \theta_1 - \cos \theta_2)$	16. $\frac{2\sin(\theta_t)\cos(\theta_i)}{\sin(\theta_t + \theta_i)\cos(\theta_t - \theta_i)}$
$\frac{5}{2}kN + kN\ln\left(\frac{V(2\pi mkT)^{3/2}}{Nh^3}\right)$	18. $\frac{V(2\pi mkT)^{3/2}}{h^3}$

Ad Esempio:


ria Escimpio.	
	$(x-xo) * (y-yo) / (xo * yo)^(1/2)$ ovvero:
${\sqrt{x_o y_o}}$	(x-xo)*(y-yo)/sqrt((xo*yo)) ovvero:
$\sqrt{\omega_0 g_0}$	$(x-xo) * (y-yo) / (xo * yo)^0.5$


Il programma Gnuplot può essere utilizzato per definire e calcolare funzioni/espressioni. In alcuni casi può essere molto più comodo di Excel, ad esempio per effettuare il grafico di funzioni. Graficare le seguenti funzioni negli intervalli specificati, per i valori dati dei parametri. Utilizzare scale logaritmiche quando indicato.

Calcolare il valore della funzione per alcuni valori di x (a scelta) nell'intervallo dato.

Funzione	Intervallo	Parametri
$V(x) = -\frac{q}{4\pi\epsilon_o} \left(\frac{1}{a} - \frac{1}{a+x} \right)$	$0 \le x \le 0.5$	a = 0.045 $q = 5.5 \cdot 10^{-9}$ $\epsilon_0 = 8.85 \cdot 10^{-12}$
$f(x) = \frac{q}{4\pi\epsilon_o} \frac{p}{x^3} e^{-kx^2}$	$0.2 \le x \le 3$ Scala x: lin Scala y: log	$p=3.45\cdot10^{-3}$ $q=5.5\cdot10^{-9}$ $k=0.22$ $\varepsilon_0=8.85\cdot10^{-12}$
$C(x) = \frac{2\pi\epsilon_o h}{\ln\left(\frac{x}{r_1}\right)}$	$0.03 \le x \le 0.5$	$h = 1.5$ $r_1 = 0.02$ $\varepsilon_0 = 8.85 \cdot 10^{-12}$
$Q(x) = C\epsilon_o \left[1 - e^{\frac{-x}{RC}} \right]$	$0.01 \le x \le 0.5$ Scala x: log Scala y: lin	R = $2.3 \cdot 10^3$ C = $3.2 \cdot 10^{-5}$ $\varepsilon_0 = 8.85 \cdot 10^{-12}$
$B(x) = \frac{\pi \cdot 4 \cdot 10^{-7}}{2} I \frac{R^2}{\sqrt[3/2]{R^2 + x^2}}$	$-1 \le x \le 1$	I = 0.35 R = 0.23
$G(x) = \frac{A}{\sigma\sqrt{2\pi}} e^{-\frac{(x-x_o)^2}{2\sigma^2}}$	$-45 \le x \le 125$	A=45 $x_0 = 92$ $\sigma = 12$
$V(x) = \frac{4N}{\alpha^3 \sqrt{\pi}} v^2 \exp\left(-\frac{mv^2}{2kT}\right)$	$0. \le x \le 13$	$v = 4.5 \cdot 10^{4}$ $m = 3.97 \cdot 10^{-7}$ $k = 7.38 \cdot 10^{-8}$ $N = 6.02 \cdot 10^{12}$ $\alpha = 1.2 \cdot 10^{5}$

$$V(x) = -\frac{q}{4\pi\epsilon_o} \left(\frac{1}{a} - \frac{1}{a+x} \right)$$

