Buthdays in yarn village since the byyny of the per

$$
C(d)=\left\{\begin{array}{lll}
1 & d=1 & J o n \\
1 & d=2 & \text { Jon } 2 \\
2 & d=3 & J a n 3 \\
3 & d=4 \\
3 & d=5 \\
\vdots \\
98 & d=363 \\
100 & d=3640 \\
100 & d=365
\end{array}\right.
$$

C expleses the cunlative mumber of birtheleus (everts) that hoppered obreoly from the beginning of the yoor

$$
p(x) \equiv \frac{d}{d x} C(x) \quad \int_{1}^{d} p(x) d x=C(d)
$$

$P(x)$ is the change in the cumbertue $C(x)$ as a function of x $P(x)$ is the praporivilty that on eerent Roppenss with x in the zenge $[x, x+\Delta x]$
$f(x)$ averaged over $p(x)$

$$
\begin{aligned}
& \sum_{i} f\left(x_{i}\right) \cdot p\left(x_{i}\right)=\langle f\rangle \\
& \langle f\rangle=\int_{\text {inf }}^{x^{\text {anp }}} f(x) p(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x \quad E[x]=: \bar{x} \\
& f(x)=x^{n} \quad E\left[x^{n}\right]=M^{(n)^{n}} \quad M^{(1)}=\bar{x} \\
& E[x]=\bar{x} \quad \underbrace{E[x-\bar{x}]}=0 \& \text { limenta deli' netegde } \\
& \int x f(x)-\int f(x) \cdot \bar{x} d x=\bar{x}-\bar{x} \\
& E\left[(x-\bar{x})^{2}\right]=\int f(x)\left(x^{2}+\bar{x}^{2}-2 x \bar{x}\right) d x \neq 0 \\
& \text { (2-monento "curtiolizeato" } \\
& \text { all } \times \text { wrighs } \\
& \begin{array}{c}
\text { male or ben } \\
\text { He some }
\end{array} \\
& M_{\mu}^{(n)}=E\left[(x-\mu)^{n}\right] \\
& \text { the some }
\end{aligned}
$$

since it is most interenting to know whot hopens neer μ usually $a p(x)$ is characterizeal by $M^{(n)} n \simeq 1,2, \ldots$ fers
$M_{\bar{x}}^{(2)}$ ie la devinzone stombaral σ^{2}
$z(x) \equiv \frac{f(x)}{1-c(x)}$

$$
f(x)=\text { const }
$$

$$
\text { se } x \in[a, b] \quad \int_{a}^{b} f(x) d x=1 \quad \text { const }=\frac{1}{|a-b|}
$$$z(x)=$ const

$$
\begin{gathered}
1-\operatorname{const} \int_{0}^{x} f(z) d z=f(x) \\
-\operatorname{const} f(x)=f^{\prime}(x) \\
f(x)=e^{-\operatorname{cost} x}
\end{gathered}
$$

In general $f(x)=\frac{d C(x)}{d x}=z(x)[1-c(x)]$

$$
\begin{aligned}
& \frac{d c(x)}{d x} \cdot \frac{1}{1-c(x)}=z(x) \\
= & \frac{-d(1-c(x))}{d x} \frac{1}{1-c(x)}=z(x) \\
= & \frac{d \log (1-c(x))}{d x}=z(x)
\end{aligned}
$$

So I cau vabte ell the chrocherstie furrton $\operatorname{ta} z(x)$

$$
\begin{aligned}
& C(x)=1-e^{-\int_{0}^{x} z\left(x^{\prime}\right) d x^{\prime}} \\
& f(x)=z(x) e^{-\int_{0}^{x} z\left(x^{\prime}\right) d x^{\prime}}
\end{aligned}
$$

$Z(x)=\lambda \beta x^{\beta-1} \quad$ Weibull $\beta>0$
$\beta=1 \Rightarrow z(x)=\operatorname{const} \Delta D \exp$

$$
\begin{aligned}
& f(x)=\beta \cdot \lambda x^{\beta-1} e^{-\lambda x \beta} \text { Waibull } \\
& C(x)=1-e^{-\lambda x^{\beta}}
\end{aligned}
$$

$f(x)=\frac{1}{\sqrt{2 a} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \quad$ GAUSSIAN

$$
\begin{aligned}
& \mu^{(1)}=\mu \quad \mu_{\mu}^{(2)}=\sigma \\
& \int_{\mu-t}^{\mu+t} G(\mu, \sigma)(z) d z
\end{aligned}
$$

$C(x)$ is a thing on its own.

$$
C(x)=E_{2 f} f(x)=\frac{2}{\sqrt{\pi}} e^{-\int_{0}^{x} e^{-t^{2}}} d t
$$

PRop. di event multiple

$$
\begin{aligned}
& x=x_{1} \quad p\left(x_{1}\right) \\
& x=x_{2} \quad p\left(x_{2}\right) \\
& x=x_{1} \& x_{2} \quad p\left(x_{1}\right) \cdot p\left(x_{2}\right)=p\left(x_{1} \cap x_{2}\right) \\
& x=\left\{x_{1} \ldots x_{n}\right\} \text { in } n \text { trios is } \prod_{i=1}^{N} p\left(x_{i}\right)
\end{aligned}
$$

if the second event depends on the first p (wet if rained) $\neq p$ (wet for any weather)

$$
P(A \cap B)=P(A) P(B) \text { if inotependent }
$$

if dependent:

$$
P(A \cap B)=P(A \mid B) P(B) \leqslant P(A) P(B)
$$

as well as

$$
P(A \cap B)=P(B \mid A) P(A)
$$

BAYES' RULE

$$
p(B \mid A) p(A)=p(A \mid B) p(B)
$$

$$
P(A)=\frac{P(A \mid B) P(B)}{P(B \mid A)}
$$

undagestent combined probotallies

$$
e^{a} \cdot e^{b}=e^{a+b}
$$

Taylor 5.5

$$
P\left(x_{1} \cap x_{2} n \ldots x_{N}\right)=P\left(x_{1} \ldots x_{N}\right)=\frac{1}{\sigma_{N}} e^{-\sum \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

mox of probotility is $\frac{d p}{d \mu}=0=\sum_{i}\left(x_{i}-\mu\right)$

$$
N \mu=\sum x_{i} \quad \mu=\frac{\sum x_{i}}{N}
$$

SUM IN QUADRATURE OF UNCERTAINTY

Taylor 5.6

$$
\begin{aligned}
& p(x) \propto e^{-x^{2} / 2 r_{x}^{2}} \\
& p(y) \propto e^{-y_{2 r_{y}^{2}}^{2}} \\
& p(x) \cdot p(y) \propto\left(e^{-\frac{x^{2}}{2 \sigma_{x}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}}\right)= \\
& =e^{-\frac{\sigma_{y}^{2} x^{2}+\sigma_{x}^{2} y^{2}}{2 \sigma_{x}^{2} \sigma_{y}^{2}}}=
\end{aligned}
$$

$$
-\frac{(x+y)^{2}}{2\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)}-\frac{1}{2} \cdot \frac{\left(\sigma_{x} y-\sigma_{y} x\right)^{2}}{\sigma_{x} \sigma_{y}\left(\sigma_{x}+\sigma_{y}\right)}
$$

$$
p(x+y, x)(y)=\int d z e^{-z^{2}} f(x, y)=\operatorname{con} s t \quad f(x, y)
$$

