Neutrino 5

sommario

- L'anomalia dei neutrini atmosferici
- Interpretazione in termini di oscillazioni
- Esperimenti con neutrini artificiali
 - Reattori
 - Acceleratori long-baseline

Intervallo di energie dei neutrini atmosferici: 0.1 — 100 GeV

Frequenza di eventi molto bassa: ~100 /anno per un rivelatore di 1000 tonn. Incertezza sui flussi dei neutrini atmosferici: tipicamente ± 30% (da incertezze sullo spettro primario, sulla produzione di adroni, ecc.) Incertezza sul rapporto $\nu_{\mu} / \nu_{e} : \pm 5\%$

Irvine Michigan Brookhaven

- La collaborazione IMB si forma nel 1979 per studiare il decadimento del protone
- Le interazioni dei neutrini atmosferici dovevano essere identificate per eliminare questa componente importante del fondo
- Ma era stato effettuato anche uno studio sulla possibilità di rivelare oscillazioni di neutrino!

- 1985: 401 eventi completamente contenuti, nessuna traccia di decadimento del protone. 104 eventi con decadimento del muone, 3.5 sigma meno del numero atteso
- Questo deficit corrispondeva ad un rapporto tra neutrini elettronici e muonici pari a 1.3, in netto disaccordo coi risultati di Nusex e Kamiokande I, che sembravano confermare i flussi attesi
- 1988: anche Kamiokande pubblica un'anomalia.
- In questa fase nè IMB nè Kamiokande riescono ad evidenziare una modulazione in energia o in angolo dell'effetto

Rivelazione dei neutrini atmosferici

 ν_{μ} + Nucleone $\rightarrow \mu$ + adroni: presenza di una traccia lunga al minimo della ionizzazione (il muone)

$v_e + n \rightarrow e^- + p, \overline{v}_e + p \rightarrow e^+ + n$: presenza di uno sciame electromagnetico

(interazioni v_e con produzione multipla di adroni in pratica indistinguibili dalle interazioni di Corrente Neutra)

<u>Identificazione in contatori Čerenkov ad acqua</u> traccia muonica:

d*E*/dx compatibile col minimo della ionizzazione; anello di luce Čerenkov con bordi ben definiti

sciame elettromagnetico:

d*E* / dx elevato (molti elettroni secondari); bordi dell'anello di luce Čerenkov mal definiti

(dall'apertura angolare dello sciame)

Misura della discriminazione elettrone / muone in un contatore Čerenkov ad acqua di 1000 tonn. (copia ridotta di Super-K) esposto a fasci di elettroni e muoni presso acceleratori. Probabilità di identificazione erronea <u>misurata</u> ~2%

 v_{μ} / v_e : primi indizi di un fenomeno nuovo Contatori Čerenkov ad acqua: Kamiokande (1988), IMB (1991), Super-K (1998) Calorimetri convenzionali (lastre di ferro + tubi proporzionali): Soudan2 (1997)

$$R = \frac{(\nu_{\mu}/\nu_{e})_{\text{misurato}}}{(\nu_{\mu}/\nu_{e})_{\text{predetto}}} = 0.65 \pm 0.08$$

Neutrini atmosferici in Super-K

Distanza tra il punto di interazione e la parete del rivelatore interno ≥1 metro

Un altro campione di eventi:

Muoni diretti verso l'alto prodotti da interazioni di v_u nella roccia

<u>Nota</u>: i muoni diretti verso il basso sono principalmente muoni prodotti nel decadimento $\pi \rightarrow \mu$ che attraversano la montagna fino al rivelatore

Misura della distribuzione dell'angolo di zenith

Distribuzioni dell'angolo di zenith in Super-K

Assenza di oscillazioni ($\chi^2 = 456.5 / 172$ gradi di libertà)

Oscillazione $\nu_{\mu} - \nu_{\tau}$ (best fit): $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta = 1.0$ $\chi^2 = 163.2 / 170 \text{ gradi di libertà}$ Sebbene i risultati più completi siano quelli di SK nello stesso periodo conferma dell'effetto è stata fornita anche da Soudan2 e da MACRO

Distribuzioni dell'angolo di zenith in Super-K:

evidenza per scomparsa di v_{μ} su distanze di ~1000 — 10000 km L'oscillazione responsabile non è $v_{\mu} - v_{e}$:

- Esclusa dall'esperimento CHOOZ con reattori nucleari (discusso in seguito)
- La distribuzione dell'angolo di zenith per eventi "e-like" dovrebbe mostrare un'asimmetria di segno opposto (eccesso di eventi "e-like" verso l'alto) perchè v_µ / v_e ≥ 2 alla produzione

L'ipotesi più plausibile: oscillazione $v_{\mu} - v_{\tau}$

Esperimenti con fasci artificiali

- Le due sorgenti artificiali di neutrini
 - Acceleratori
 - Reattori

sono state utilizzate fin dagli anni '70 per la ricerca di effetti di oscillazione

- Intensità elevate → possibilità di esplorare piccoli angoli di mescolamento
- Pregiudizi:
 - Angoli di mixing piccoli, come nel settore adronico
 - Masse non piccolissime (fino a metà degli anni '90 si riteneva che la materia oscura potesse essere tutta "calda" → eV)
- Questi, se osservati, avrebbero dovuto essere molto più facili da intepretare che non i dati dei solari o degli atmosferici
- Ma come abbiamo visto
 - Reattori: E/L ~ 1MeV/10m $\rightarrow \Delta m_{min}^2 \sim 0.1 \text{ eV}^2$
 - Acceleratori: E/L ~ 1GeV/0.1Km $\rightarrow \Delta m_{min}^2 \sim 10 \text{ eV}^2$
 - Mentre la natura ha scelto valori di $\Delta m^2 \sim 5 \times 10^{-5}$ e 3×10^{-3} eV²

Oscillation Search up to 1 km baseline

Chooz

- Prima di KamLAND gli esperimenti ai reattori hanno permesso solo di stabilire delle regioni di esclusione nel piano dei parametri (Δm²,sin²2theta)
- I risultati negativi non sono privi di interesse: nel caso di Chooz la non osservazione dell'oscillazione dell'antineutrino elettronico ad una distanza di 1km esclude che un'oscillazione con ∆m²~2.5x10⁻³eV² possa coinvolgere neutrini elettronici → contribuisce all'interpretazione del risultato dei neutrini atmosferici!

CHOOZ

Esperimento di scomparsa di \overline{v}_e su una distanza di ~1 km Effetto osservabile per $\Delta m^2 > 7 \times 10^{-4} \text{ eV}^2$

Esperimento CHOOZ

Oscillazioni
$$\overline{v}_e - \overline{v}_\mu (\overline{v}_e - \overline{v}_\tau)$$
:
regione esclusa

 Δm^2

<u>Riassunto</u>

- Oscillazione di v_e solari: $\Delta m^2 \approx 7.6 \times 10^{-5} \,\mathrm{eV^2}$, $\theta \approx 34^\circ$
- Oscillazione di ν_μ atmosferici, $\Delta m^2 \approx 2.5 \times 10^{-3} \text{ eV}^2$, $\theta \approx 45^\circ$
- Oscillazione di ν_e con Δm² ≈ 2.5 x 10⁻³ eV² <u>non osservata</u>: θ < 12°

Physics Letters B 466 (1999) 415-430

Acceleratori:

Acceleratori:

(ma nello stesso plot anche anti-numu \rightarrow anti-nue e anti-nue \rightarrow altro)

Long baseline

- La via per la conferma delle oscillazioni in esperimenti con neutrini artificiali e l'aumento della distanza sorgente-rivelatore, come per KamLAND.
- Questa via è stata percorsa anche per cercare conferma delle oscillazioni osservate nei neutrini atomosferici:
 - K2K
 - Minos
 - CNGS

<u>Ricerche di oscillazioni su lunga distanza con acceleratori</u>

<u>Scopo</u>: dimostrazione conclusiva che il deficit di v_{μ} atmosferici è dovuto a oscillazioni di neutrini mediante l'uso di fasci di v_{μ} prodotti da acceleratori (Neutrini direzionali, spettro d'energia noto)

Misure in esperimenti di oscillazione su lunga distanza:

- Distorsioni dello spettro d'energia dei v_{μ} (misura di Δm^2 , $\sin^2 2\theta$);
- Frequenza di interazioni di Corrente Neutra (per distinguere oscillazioni $v_{\mu} v_{\tau}$ da oscillazioni in un neutrino "sterile" v_s);
- \bullet Apparizione di $\nu_{\tau}\,$ a grande distanza in un fascio $\,$ privo di $\,\nu_{\tau}\,$ alla produzione.

Esperimenti su lunga distanza con acceleratori

(completati, in corso o in preparazione)

Progetto	Distanza L	<e<sub>v></e<sub>	Stato	
$K2K (KEK \Rightarrow KAMIOKA)$	250 km	1.3 GeV	Fenovin	iento completato
$\mathbf{MINOS} \ (\mathbf{Fermilab} \Rightarrow \mathbf{Soudan})$	735 km	qualcl&t&toVa	ttuale di	inirlog?pubblicati
CERN ⇒ Gran Sasso	732 km	17 GeV		presa-dati : 2008

• Soglia d'energia per $v_{\tau} + N \rightarrow \tau^- + X$: $E_{\nu} > 3.5 \text{ GeV}$

Frequenza eventi ~1 evento v_µ → µ⁻/ anno per tonn. di massa del rivelatore
 → sono necessari rivelatori con masse di parecchie kilotonn.

nessun problema per colpire il rivelatore.
Il flusso dei neutrini decresce come L⁻² per grandi valori di L

Predizioni

DATI

Giugno 1999 – febbraio 2004 (8.9 x 10¹⁹ protoni su bersaglio) Eventi completamente contenuti, $E_{vis} > 30$ MeV: previsti ($\mathscr{P}_{osc} = 0$): 151^{+12}_{-10} eventi osservati: 107 eventi

Eventi contenuti con un solo µ prodotto: 57

Misura dello spettro d'energia dei ν_{μ} in Super-K dal campione di 57 eventi 1 μ nell'ipotesi di diffusione quasi-elastica $\nu_{\mu} + n \rightarrow \mu^- + p$

Best fit: $\Delta m^2 = 2.2 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta = 1$ (in accordo con i dati sui ν_{μ} atmosferici) Probabilità di assenza di oscillazioni 5 x 10⁻⁵ (equivalente a 4 deviazioni standard)

Esperimento MINOS

Fascio neutrini da Fermilab a Soudan (miniera di ferro abbandonata nel Minnesota): L = 735 km

Acceleratore: Fermilab Main Injector (MI) Sincrotrone a protoni 120 GeV <u>Alta intensità (0.4 MW)</u>: 4x10¹³ protoni per ciclo Durata del ciclo: 1. 9 s 4x10²⁰ protoni / anno Tunnel di decadimento: 700 m

MINOS: Rivelatore lontano

- Calorimetro tracciatore ottagonale diametro 8 m
- Lastre di Ferro, spessore 2.54 cm
- Strisce di scintillatore (larghezza 4 cm) tra le piastre
- 2 moduli, lunghezza di un modulo 15 m
- Massa totale 5400 tonn., massa fiduciale 3300 tons.
- 484 piani di scintillatore (26000 m²)
- Le lastre di Ferro sono magnetizzate: campo toroidale, B = 1.5 T

Costruzione completata nel giugno 2003

MINOS: Rivelatore vicino

- Calorimetro tracciatore "ottagonale" in Ferro, 3.8x4.8 m
- Costruzione identica a quella del rivelatore lontano
- 282 lastre di Ferro magnetizzato
- Massa totale 980 tonn. (massa fiduciale 100 tonn.)
- Installato a 250 m dalla fine del tunnel di decadimento

Inizio presa – dati: 2005

MINOS: rivelatore lontano

Risultati MINOS (giugno 2008)

3.36 x10²⁰ protoni su bersaglio (maggio 2005 \rightarrow luglio 2007)

Due fasci di neutrini: bassa energia (<E_v> ≈5 GeV); alta energia (<E_v> ≈13 GeV)

Composizione tipica fascio v : 93% v_{μ} , 6% \overline{v}_{μ} , 1.2% v_{e} , 0.1% \overline{v}_{e}

MINOS: discriminazione tra oscillazioni $v_{\mu} - v_{\tau} e v_{\mu} - v_{s}$

Misura della frequenza di eventi di Corrente Neutra (NC)

 $v + N \rightarrow v + adroni$ nel rivelatore lontano.

Slide complicata – spostare piu' avanti?

Eventi NC: assenza di traccia $\mu \Rightarrow$ eventi contenuti in un numero limitato di piani consecutivi (contengono anche eventi $v_e + N \rightarrow e^- + adroni$)

Oscillazioni $v_{\mu} - v_{\tau}$: Frequenza di eventi NC invariata (identica per i tre tipi di neutrino)

Oscillazioni $v_{\mu} - v_s$:

ν_s non interagisce con la materia ⇒ deficit di eventi NC

Distribuzione misurata compatibile con assenza di deficit ⇒ nessuna evidenza per V_s

Risultati di un fit che include una frazione $f(v_s)$ di v sterili: $f(v_s) = 0.28 \pm 0.28$; $f(v_s) < 0.68$ (livello di confidenza 90%)

CNGS (CERN Neutrinos to Gran Sasso) Ricerca di apparizione di v_{τ} a L = 732 km Numero previsto di eventi $v_{\tau} + N \rightarrow \tau^- + X$ (N_{τ}) : $N_{\tau} = A \int_{E_{max}} \Phi_{\mu}(E) \mathcal{P}_{\mu\tau}(E) \sigma_{\tau}(E) dE$ Normalizzazione: dipende da massa rivelatore, durata presa dati, efficienza di rivelazione, ecc. $N_{\tau} = A \int_{SGeV} \Phi_{\mu}(E) \mathcal{P}_{\mu\tau}(E) \sigma_{\tau}(E) dE$ flusso v_{μ} sezione d'urto per produzione di τ^-

Probabilità di oscillazione $\mathbf{v}_{\mu} - \mathbf{v}_{\tau} (\mathscr{P}_{\mu\tau})$: $\mathscr{P}_{\mu\tau} = \sin^2(2\theta)\sin^2(1.27\Delta m^2 \frac{L}{E}) \approx 1.27^2 \sin^2(2\theta)(\Delta m^2)^2 \left(\frac{L}{E}\right)^2$ Buona approssimazione per: L = 732 km, E > 3.5 GeV, $\Delta m^2 < 4 \times 10^{-3}$ eV² $N_{\tau} \approx 1.61 \sin^2(2\theta)(\Delta m^2)^2 L^2 \int \Phi_{\mu}(E) \frac{\sigma_{\tau}(E)}{E^2} dE$

3 5 GeV

<u>Svantaggi</u>:

•L = 732 km: distanza << lunghezza d'oscillazione $v_{\mu} - v_{\tau}$

• N_{τ} dipende da (Δm^2)² \Rightarrow frequenza eventi molto bassa per Δm^2 piccolo

<u>Vantaggi</u>:

• L'ottimizzazione del fascio non dipende da Δm^2

In assenza di altri utenti dell'SPS: 7.6 x 10¹⁹ protoni su bersaglio / anno

Ricerca di apparizione di v_{τ} al Gran Sasso Esperimento OPERA Nessun rivelatore vicino (produzione di v_{τ} da protoni trascurabile)

Esperimento OPERA: rivelazione di τ⁻ mediante osservazione dei decadimenti con un secondario carico (~85%)

Percorso medio di decadimento del $\tau\approx 1~mm \Rightarrow alta risoluzione spaziale Emulsione fotografica: risoluzione spaziale ~1 <math display="inline">\mu m$

"Mattone": 56 pellicole separate da lastre di Pb (spessore 1 mm) impacchettate sotto pressione

strati di emulsione fotografica, (spessore 50 μm) Struttura interna di un mattone

"Mattoni": disposti in "muri" di 52 x 64 mattoni

"Muri": disposti in "super-moduli": 31 muri / super-modulo Due supermoduli, uno spettrometro magnetico dopo ogni super-modulo 206 336 mattoni, massa totale 1800 tonn.

Tracciatori (piani ortogonali di strisce scintillanti) inseriti tra i muri per fornire il trigger e per identificare il mattone dove il neutrino ha interagito. Rimozione immediata del mattone, sviluppo dell'emulsione, analisi e misure automatiche mediante microscopi controllati da calcolatori

Super-modulo OPERA

Physics Letters B 691 (2010) 138-145

Observation of a first v_{τ} candidate event in the OPERA experiment in the CNGS beam

Primo evento candidato osservato in OPERA in un campione corrispondente a 1.9x10¹⁹pot

$$\tau \rightarrow h^{-}(n\pi^{0})n_{\tau}$$

Fig. 2. Monte Carlo distribution of: (a) the kink angle for τ decays, (b) the path length of the τ , (c) the momentum of the decay daughter, (d) the total transverse momentum P_T of the detected daughter particles of τ decays with respect to the parent track. The red band shows the 68.3% domain of values allowed for the candidate event and the dark red line the most probable value. The dark shaded area represents the excluded region corresponding to the a priori tau selection cuts. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

ICARUS

- Inaugurato a Marzo 2011
- LAr TPC: da un'idea di Rubbia del 1977
- 600t di Argon liquido

The ICARUS T600 Module

- Two separate containers
 - inner volume/cont. = 3.6 x 3.9 x 19.6 m³
- Sensitive mass = 476 ton
- 4 wire chambers with 3 readout planes at 0°, ±60° (two chambers / container)
 - ~ ≈ 54000 wires
 None broke during test
- Maximum drift = 1.5 m
 - HV = -75 kV @ 0.5 kV/cm
- Scintillation light readout with 8" VUV sensitive PMTs

Gli obiettivi di fisica di Icarus

- Neutrini atmosferici e da Supernova
- Oscillazioni di neutrino con il fascio dal CERN
- Ricerca di segnali del decadimento del protone

Il decadimento del protone e' l'obiettivo originale del progetto ICARUS Molto competitivo sul canale Kv

"Single" event detection

 $p \rightarrow K^+ v_{e}$:efficiency=97% 0.001 bg events in 1kt x year exposure: results after few kt year

Caratteristiche importanti di ICARUS per la fisica del neutrino (atmosferico e da fascio)

Bassa soglia (~50 MeV), separazione netta e/ μ Ricostruzione completa degli eventi Correnti Neutre: buona discriminazione e/ π ⁰

50 cm

Una interazione di neutrino in Argon Liquido

ICARUS-CERI

CERN v -beam

Ricostruzione della massa del π^0

Run 712 Evt 7 (Left Collection View)

neutrini dalle Supernovae

Interazioni di bassa energia rivelabili in Argon

- Scattering elastico dei ν (ES) φ(ν_e)+0.15 φ(ν_μ +
- Assorbimento del v (CC) (v) Q=5.885 MeV
- Scattering elastico <u>degli</u> anti- ν (ES) $\phi(\overline{v}_{e})+0.34 \phi(v_{\mu} + v_{\mu})$
- Assorbimento dell'anti-v e (CC)
 Q 8 MeV

$$V_x + e^- \rightarrow V_x + e^-$$

$$V_e + {}^{40}Ar \rightarrow {}^{40}K^* + e^-$$

