Problemi correnti nella fisica dei neutrini D.Orestano AA 2011/12

Sommario II

La scoperta del terzo neutrino

•

u d s

е	μ
ν _e	νμ

1964

u	С
d	S

е	μ
ν _e	νμ

u	O
d	S

1	964
1	974
1	975

е	μ	τ
ν _e	νμ	

Il leptone tau: proprieta'

- Leptone carico <=> solo interazioni em e deboli, come elettrone e muone
- Ma piu' pesante: 1777 MeV (contro 0.5 MeV e 106 MeV)
- Decadimento tramite corrente carica debole, come per il muone
 - Ma massa piu' elevata
 - Maggiore spazio delle fasi
 - Minore vita media (5x10-13 s contro 2x10-6 s)
 - Possibilita' di decadere anche in quark

	Modes with one o	hare	ed particle		
Γ_1	particle ≥ 0 neutrals $\geq 0K^0\nu_{\tau}$		(85.36±0.07	96	S=1.3
	("1-prong")		7.		
Γ_2	particle ⁻ ≥ 0 neutrals $\geq 0K_I^0\nu_{\tau}$		(84.72±0.08	1%	S=1.3
Γ3	$\mu^- \overline{\nu}_{\mu} \nu_{\tau}$	[a]	(17.39±0.04) %	S=1.1
Γ4	$\mu^- \nu_\mu \nu_\tau \gamma$	[6]	(3.6 ±0.4	$) \times 10^{-3}$	
Γ_5	$e^-\overline{\nu}_e\overline{\nu}_{\tau}$	[a]	(17.82±0.04		S=1.1
Γ6	$e^- \overline{\nu}_e \nu_\tau \gamma$	[6]	{ 1.75±0.18	96	
Γ7	$h^- \ge 0K_L^0 \nu_\tau$		{12.13±0.07	96	S=1.1
Гв	$h^-\nu_{\tau}$		(11.61±0.06	1 %	S=1.1
Го	$\pi^- \nu_{\tau}$	[a]	(10.91±0.07		S=1.1
Γ10	K-v-	[a]	(6.96±0.23	$) \times 10^{-3}$	S=1.1
Γ11	$h^- \geq 1$ neutrals ν_{τ}		(37.06±0.10		S=1.2
Γ12	$h^- \ge 1\pi^0 \nu_{\tau} (\text{ex.} K^0)$		{36.54±0.10	96	S=1.2
Γ13	$h^-\pi^0\nu_{\tau}$		(25.94±0.09	96	S=1.1
Γ_{14}	$\pi^-\pi^0\nu_{\tau}$	[a]	(25.51±0.09) %	S=1.1
Γ ₁₅	$\pi^{-}\pi^{0}$ non- $\rho(770)\nu_{\tau}$		(3.0 ±3.2	$) \times 10^{-3}$	
Γ16	$K^-\pi^0\nu_{\tau}$	[a]	{ 4.29±0.15	$) \times 10^{-3}$	
Γ_{17}	$h^- \geq 2\pi^0 \nu_{\tau}$		(10.85 ± 0.11)		S=1.2
Γ ₁₈	$h^-2\pi^0\nu_{\tau}$		(9.51±0.11) %	S=1.2
Γ19	$h^{-}2\pi^{0}\nu_{\tau}(ex.K^{0})$		(9.35 ± 0.11)	96	S=1.2
Γ20	$\pi^{-}2\pi^{0}\nu_{\tau}(ex.K^{0})$	[a]	(9.29±0.11		S=1.2
Γ_{21}	$\pi^- 2\pi^0 \nu_{\tau} (\text{ex.} K^0),$ scalar		< 9	× 10 ⁻³	CL=95%
Γ_{22}	$\pi^{-}2\pi^{0}\nu_{\tau}(ex.K^{0}),$		< 7	$\times 10^{-3}$	CL-95%
Γ_{23}	$K^{-}\frac{\text{vector}}{2\pi^0}\nu_{\tau}(\text{ex.}K^0)$	[a]			
Γ24	$h^{-} \geq 3\pi^{0}\nu_{\tau}$		(1.34±0.07	-	S=1.1
Γ25	$h^- \ge 3\pi^0 \nu_{\tau} (\text{ex. } K^0)$		(1.25±0.07		S=1.1
Γ26	$h^{-}3\pi^{0}\nu_{\tau}$	16/8	(1.18±0.07		
Γ27	$\pi^{-}3\pi^{0}\nu_{\tau}(ex.K^{0})$	[a]	(1.04±0.07		
Γ28	$K^-3\pi^0\nu_{\tau}(ex.K^0,\eta)$	[a]	(4.9 ±2.2		S=1.1
F29	$h^- 4\pi^0 \nu_{\tau} (\text{ex.} K^0)$		(1.5 ± 0.4) × 10-3	
Γ30	$h^{-}4\pi^{0}\nu_{T}(ex.K^{0},\eta)$	[a]	(1.1 ± 0.4		201200
Г31	$K^- \ge 0\pi^0 \ge 0K^0 \ge 0\gamma \nu_{\tau}$		(1.57±0.04		S=1.1
Γ ₃₂	$K^- \ge 1 \left(\pi^0 \text{ or } K^0 \text{ or } \gamma\right) \nu_{\tau}$		(8.72±0.32) × 10 ⁻³	S=1.1
	Modes wit	th K	S	3	
Г33	K_S^0 (particles) ν_{τ}		(9.2 ±0.4		S=1.4
T34	$h = \overline{K}^0 \nu_{\tau}$		(10.0 ±0.5		S=1.8
Г35	$\pi^- \overline{K^0} \nu_{\tau}$	[a]	(8.4 ±0.4		S=2.0
Г36	$\pi^- K^0 (\text{non-}K^*(892)^-) \nu_{\tau}$		(5.4 ±2.1		
Γ37	K-K0 V-	[a]	(1.59±0.16		
Γ38	$K^{-}K^{0} \ge 0\pi^{0}\nu_{\tau}$		(3.18±0.23) × 10 ⁻³	
Г39	$h^{-}K^{0}\pi^{0}\nu_{\tau}$		(5.5 ±0.4	$) \times 10^{-3}$	

Created: 6/16/2011 12:05

HTTP://PDG.LBL.GOV

Molteplici modi di decadimento ma in sostanza W+neutrino A queste energie W-> e nu W-> mu nu W-> ud (x 3 colori) democraticamente

BR~20% in ciascuno di questi canali

					in in the O				
Γ_{40}	$\pi^- \overline{K}{}^0 \pi^0 \nu_{\tau}$	[a] $\{3.9 \pm 0.4\} \times 10^{-3}$		Γ78	$h^-h^-h^+3\pi^0\nu_{\tau}$	[a]		6)×10-4	S=1.2
Γ_{41}	$\overline{K}^0 \rho^- \nu_{\tau}$	$(2.2 \pm 0.5) \times 10^{-3}$		Γ ₇₉	$K^-h^+h^- \ge 0$ neutrals ν_+			$.24) \times 10^{-3}$	S=1.5
Γ42	$K^{-}K^{0}\pi^{0}\nu_{\tau}$	[a] $\{1.59\pm0.20\} \times 10^{-3}$		Γ ₈₀	$K^-h^+\pi^-\nu_{\tau}(ex.K^0)$			$19) \times 10^{-3}$	S=2.6
Γ_{43}	$\pi^{-}\overline{K}^{0} \geq 1\pi^{0}\nu_{\tau}$	$(3.2 \pm 1.0) \times 10^{-3}$		Г81	$K^-h^+\pi^-\pi^0\nu_{\tau}(ex.K^0)$			2)×10 ⁻⁴	S=1.1
Γ44	$\pi^{-} \overline{K}{}^{0} \pi^{0} \pi^{0} \nu_{-}$	$(2.6 \pm 2.4) \times 10^{-4}$		Γ ₈₂	$K^-\pi^+\pi^- \ge 0$ neutrals ν_{τ}			$(21) \times 10^{-3}$	S=1.4
Γ45	$K^{-}K^{0}\pi^{0}\pi^{0}\nu_{\tau}$	< 1.6 × 10 ⁻⁴	CL=95	Γ ₈₃	$K^-\pi^+\pi^- \ge 0\pi^0\nu_{\tau}(\text{ex.}K^0)$		(3.75±0	$(19) \times 10^{-3}$	S=1.4
Γ ₄₆	$\pi^{-}K^{0}\overline{K}^{0}\nu_{-}$	$(1.7 \pm 0.4) \times 10^{-3}$	S=1	Γ84	$K^-\pi^+\pi^-\nu_{\tau}$		{ 3.49±0	$16) \times 10^{-3}$	S=1.9
Γ47	$\pi^{-}K_{S}^{0}K_{S}^{0}\nu_{\tau}$	[a] (2.4 ±0.5) × 10 ⁻⁴		Γ ₈₅	$K^-\pi^+\pi^-\nu_{\tau}(ex.K^0)$	[a]	(2.94±0	$(15) \times 10^{-3}$	5-2.2
Γ48	$\pi^- K_S^0 K_L^0 \nu_\tau$	[a] (1.2 ±0.4)×10 ⁻³	S=1	Γ ₈₆	$K^- \rho^0 \nu_{\tau} \rightarrow$		(1.4 ± 0)	$5) \times 10^{-3}$	
	π-K ⁰ K ⁰ π ⁰ ν-	(3.1 ±2.3)×10 ⁻⁴	3-1		$K^-\pi^+\pi^-\nu_{\tau}$				
Γ ₄₉			C1 01	Γ87	$K^-\pi^+\pi^-\pi^0\nu_{\tau}$		(1.35 ± 0)	$14) \times 10^{-3}$	
Γ_{50}	$\pi^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}$		CL=95	Γ ₈₈	$K^-\pi^+\pi^-\pi^0\nu_{\tau}(ex.K^0)$		(8.1 ±1	2) × 10 ⁻⁴	
Γ ₅₁	$\pi^- K_S^{\delta} K_L^{\delta} \pi^0 \nu_{\tau}$	$(3.1 \pm 1.2) \times 10^{-4}$		Γ ₈₉	$K^-\pi^+\pi^-\pi^0\nu_{\tau}(ex.K^0,\eta)$			2) × 10 ⁻⁴	
Γ_{52}	$K^0 h^+ h^- h^- \ge 0$ neutrals ν_{τ}	< 1.7 × 10 ⁻³	CL-95	Γ ₉₀	$K^-\pi^+\pi^-\pi^0\nu_{\tau}(ex.K^0,\omega)$			9)×10-4	
Γ_{53}	$K^0 h^+ h^- h^- \nu_{\tau}$	$(2.3 \pm 2.0) \times 10^{-4}$		Γ91	$K^-\pi^+K^- \ge 0$ neut. ν_{π}		9	× 10-4	CL=95%
	Mades with these	showed postleton		Γ92	K − K + π − ≥ 0 neut. 1/2	9.7	_	06) × 10 ⁻³	S=1.8
	Modes with three of			Γ ₉₃	K-K+π-ν-	1.0		.05) × 10 ⁻³	S=1.9
Γ_{54}	$h^-h^-h^+ \ge 0$ neutrals $\ge 0K_L^0\nu_\tau$		S=1	4.4	$K^{-}K^{+}\pi^{-}\pi^{0}\nu_{\tau}$		-	5) × 10 ⁻⁵	S=1.4
Γ_{55}	$h^-h^-h^+ \ge 0$ neutrals ν_τ	(14.56±0.07) %	S=1	Г94	$K^-K^+K^- \ge 0$ neut. ν_{τ}		2.1	× 10-3	CL=95%
	(ex. $K_S^0 \rightarrow \pi^+\pi^-$)			Г ₉₅	K-K+K-v _T			21) × 10 ⁻⁵	CL=95%
	("3-prong")			Г96				× 10 ⁻⁶	C1 0001
Γ ₅₆	$h^{-}h^{-}h^{+}\nu_{\tau}$	(9.80±0.07) %	S=1	Г97	$K^-K^+K^-\nu_{\tau}(ex. \phi)$		< 2.5		CL=90%
Γ_{57}	$h^- h^- h^+ \nu_{\tau} (ex. K^0)$	(9.46±0.06) %	S=1	Г98	$K^-K^+K^-\pi^0\nu_{\tau}$		4.8	× 10 ⁻⁶	CL-90%
Γ_{58}	$h^{-}h^{-}h^{+}\nu_{\tau}(ex.K^{0},\omega)$	(9.43±0.06) %	S=1	Г99	$\pi^- K^+ \pi^- \ge 0$ neut. ν_τ		2.5	× 10 ⁻³	CL=95%
Γ ₅₉	$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$	{ 9.31±0.06) %	S=1		$e^-e^-e^+\nu_e\nu_\tau$			5) × 10 ⁻⁵	
Γ ₆₀	$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0})$	(9.02±0.06) %	S=1	101	$\mu^-e^-e^+\overline{\nu}_{\mu}\nu_{\tau}$. 4	3.6	$\times 10^{-5}$	CL-90%
Γ ₆₁	$\pi^-\pi^+\pi^-\nu_{\tau}(ex.K^0)$,	< 2.4 %	CL-95		Modes with five of	harme	d particle		
-	non-axial vector			г	$3h^-2h^+ \ge 0$ neutrals ν_+			.04) × 10 ⁻³	S=1.1
Γ_{62}	$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0},\omega)$	[a] (8.99±0.06) %	S=1	102	$(ex. K_S^0 \rightarrow \pi^-\pi^+)$		(1.02 ± 0	04) × 10	5=1.1
Γ_{63}	$h^-h^-h^+ \geq 1$ neutrals ν_{τ}	{ 5.38±0.07) %	S=1						
Γ64	$h^- h^- h^+ \ge 1\pi^0 \nu_\tau (\text{ex. } K^0)$	(5.08±0.06) %	S=1	-	("5-prong") $3h^-2h^+\nu_+$ (ex. K^0)	1.1	(0 30 1 0	25) 20-4	S=1.1
Γ ₆₅	$h^-h^-h^+\pi^0\nu_{\tau}$	(4.75±0.06) %	S=1	Γ103				.35) × 10 ⁻⁴	5=1.1
Γ ₆₆	$h^- h^- h^+ \pi^0 \nu_{\tau} (ex.K^0)$	(4.56±0.06) %	S=1	Γ ₁₀₄	A A A			.27) × 10 ⁻⁴	
Γ67	$h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}(ex. K^{0}, \omega)$	(2.79±0.08) %	S=1	Γ ₁₀₅	$3h^{2}h^{2}\pi^{2}\nu_{\tau}$	•	3.4	× 10 ⁻⁶	CL=90%
Γ ₆₈	$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$	(4.61±0.06) %	S=1		Miscellaneous othe	r allo	wed mode	-	
Γ ₆₉	$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(ex.K^{0})$	(4.48±0.06) %	S=1	Γ106	$(5\pi)^-\nu_{\tau}$			5) × 10 ⁻³	
Γ ₇₀	$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(ex.K^{0},\omega)$	[a] (2.70±0.08) %	S=1		$4h^-3h^+ \ge 0$ neutrals ν_{τ}		3.0	× 10 ⁻⁷	CL-90%
Γ71	$h^- \rho \pi^0 \nu_{\tau}$	(4)		101	("7-prong")				
Γ72	$h^-\rho^+h^-\nu_\tau$			Γ ₁₀₈	4h-3h+ v=		4.3	$\times 10^{-7}$	CL-90%
Γ73	$h^-\rho^-h^+\nu_{\tau}$			Γ ₁₀₉	$4h^{-}3h^{+}\pi^{0}\nu_{\tau}$		2.5	× 10 ⁻⁷	CL-90%
Γ74	$h^-h^-h^+ \ge 2\pi^0\nu_{\tau}$ (ex.	$(5.17\pm0.33)\times10^{-3}$			$X^{-}(S=-1)\nu_{\tau}$		f 2.86±0		S=1.3
. 74	K ⁰)	(3.17 ± 0.33) X 10			$K^*(892)^- \ge 0$ neutrals \ge		(1.42±0		S=1.4
Г	$h^-h^-h^+2\pi^0\nu_{\tau}$	$\{5.05\pm0.32\}\times10^{-3}$. 111	0K1 VT		(1.42.20	100	2-1.4
Γ ₇₅	$h^-h^-h^+2\pi^0\nu_{\tau}$ $h^-h^-h^+2\pi^0\nu_{\tau}$ (ex. K^0)	$(5.05\pm0.32)\times10^{-3}$ $(4.95\pm0.32)\times10^{-3}$						000 07	5 40
Γ ₇₆	$h^- h^- h^+ 2\pi^0 \nu_\tau (ex.K^0, \omega, \eta)$			Γ ₁₁₂			{ 1.20±0		S=1.8
F77	$n = n = 2\pi^* \nu_\tau (ex.K^*, \omega, \eta)$	[a] (10 ±4)×10 4		Γ ₁₁₃	$K^{*}(892)^{-}\nu_{\tau} \rightarrow \pi^{-}\overline{K}{}^{0}\nu_{\tau}$		(7.8 ±0	.5) × 10 ⁻³	

HTTP://PDG.LBL.GOV Page 7 Created: 6/16/2011 12:0

HTTP://PDG.LBL.GOV

Page 8

Created: 6/16/2011 12:05

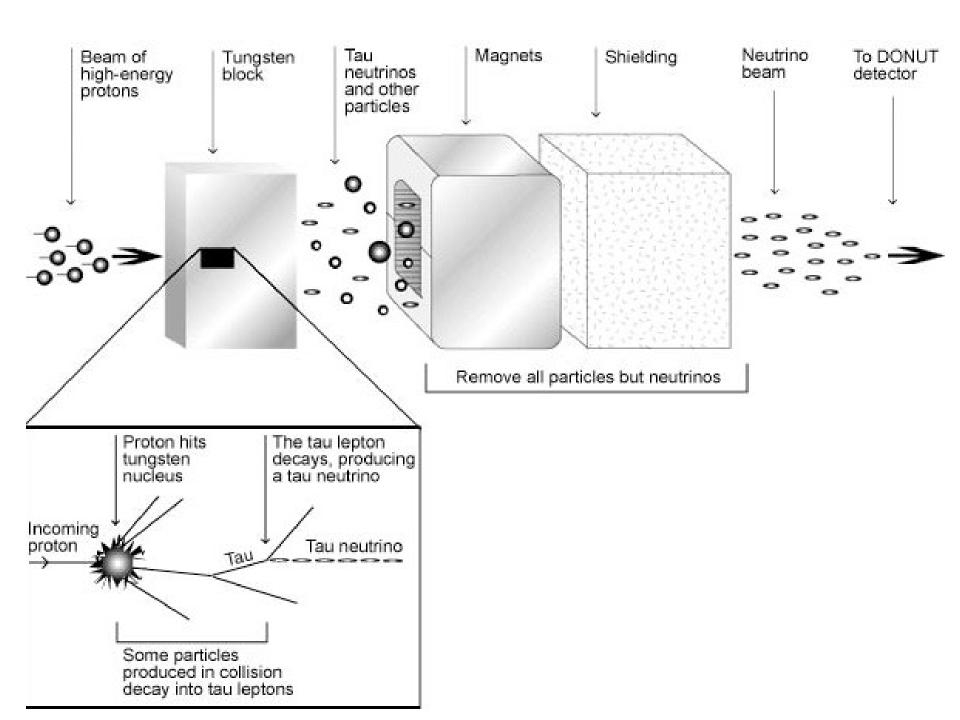
u	C	
d	S	b

е	μ	τ
ν _e	νμ	

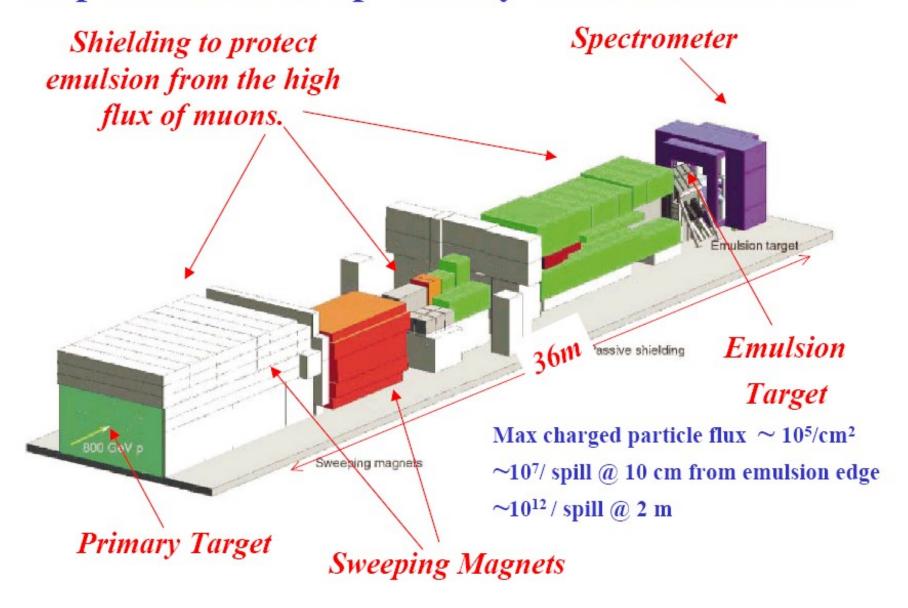
LEP: le famiglie di neutrini "leggeri" sono 3

u	C	t
d	S	b

е	μ	τ
ν _e	νμ	

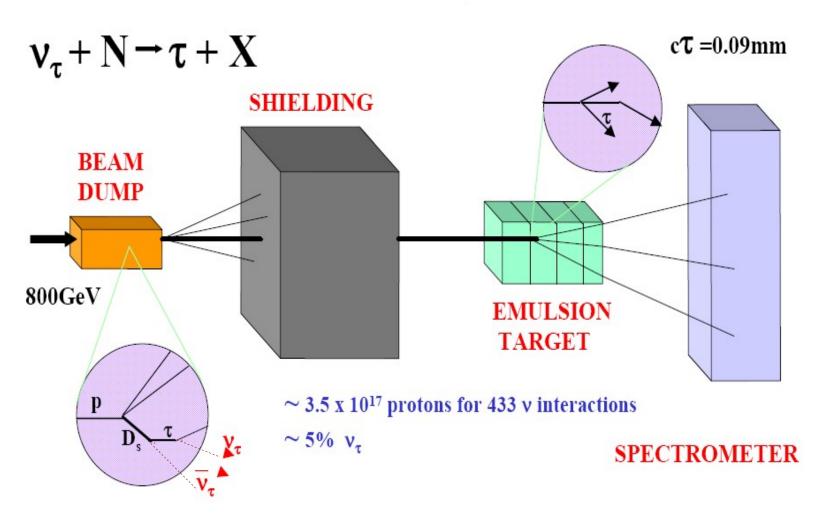

u	C	t
d	S	b

е	μ	τ
ν _e	νμ	ν τ

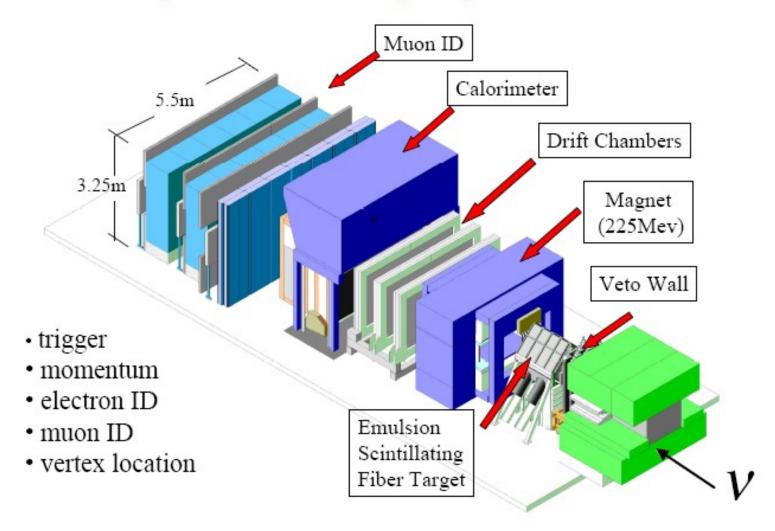

DONUT: scoperta del neutrino tau

- Dove cercare il neutrino tau?
- Un fascio di neutrini di alta energia può contenere neutrini del tau se l'energia dei protoni primari è sufficiente a produrre il mesone D_s, che può decadere nel tau e nel suo neutrino (il tau ha una massa di 1777 MeV, il D_s di 1968 MeV)
- Il fascio a banda larga del CERN, usato da NOMAD e CHORUS, aveva una "contaminazione" di 10-7
- Il fascio usato da DONUT è prodotto in interazioni di protoni da 800 GeV, non c'e' "tunnel di decadimento" in modo da assorbire subito i mesoni leggeri e osservare solo i neutrini di decadimento dei mesoni pesanti. Si ottiene così un fascio con 10% di neutrini tau e una popolazione simmetrica di neutrini elettronici e muonici

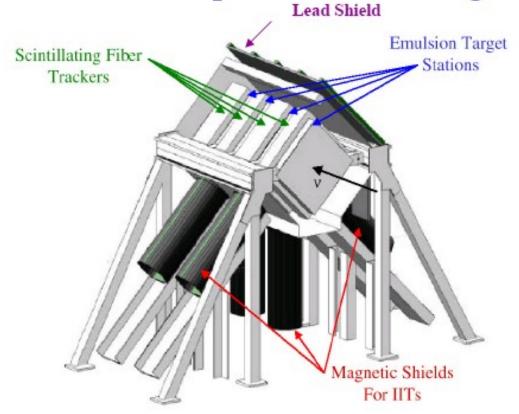
Ovvero si sfrutta la grande differenza di vita media tra pioni (2.6x10⁻⁸ s), kaoni (1.2x10⁻⁸ s) e D_S (5x10⁻¹³ s)



Experimental Setup - Purify the Neutrino Beam



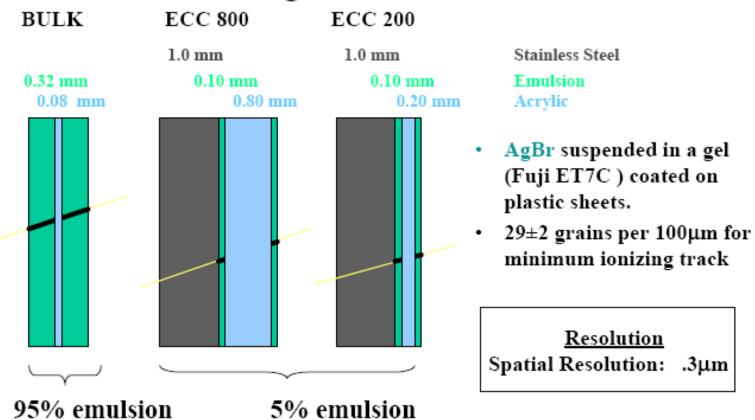
Experimental Setup – Block Diagram


directly observe cc interactions of the v_{τ}

Experimental Setup - Spectrometer

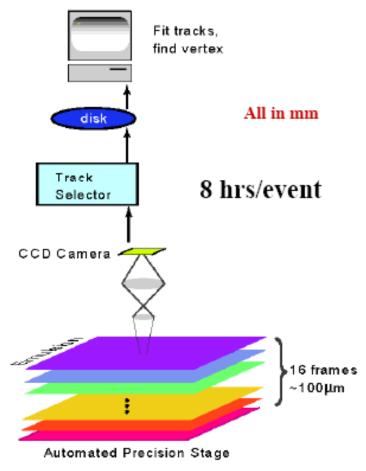
Experimental Setup - Emulsion Target Stand

260 kg total mass


500µ Scintillating Fibers Image Intensifier - CCD Readout.

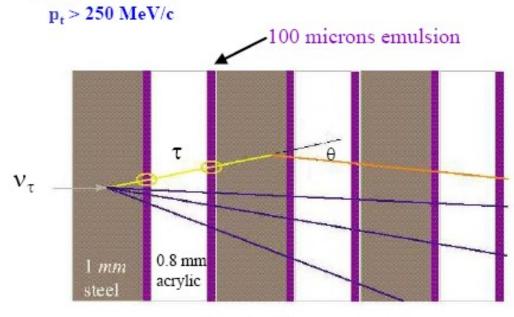
Experimental Setup - Emulsion Target Designs

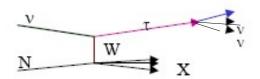
Emulsion modules consist stacks of sheets made


of emulsion, acrylic, and steel.

Three configurations were used.

Data Analysis – Overview of Analysis

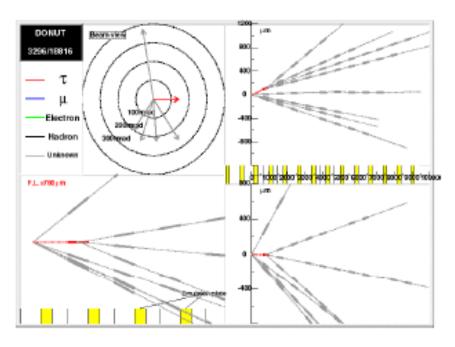

- Predict interaction point from spectrometer tracks (software + humans)
 - Fermilab/Minnesota/Pittsburgh/Athens
- Search emulsion around predicted interaction and digitize track segments (hardware processor)
 - Nagoya
- Find interaction events (software pattern recognition)
 - Nagoya
 - Minnesota/Fermilab/Athens
- •Find V_{τ} interactions (software pattern recognition)
 - Nagoya
 - Minnesota/Fermilab/Athens

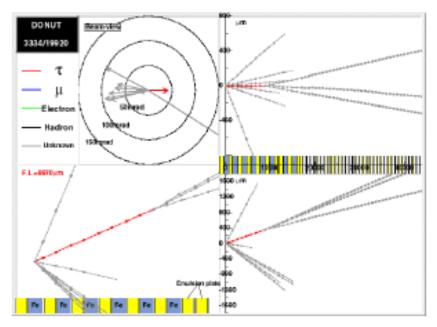


Scanning method getting better because electronics are getting better ~100 times faster

Data Analysis – Finding v_{τ} Interactions

- No e, μ from primary vertex
- At least one segment on parent
 76% of τ's have visible track
- Decay with one or three charged products 85% of decays are single charge
- Minimum p_t




- Short decay length length < 10 mm (mean 2.5 mm)
- Small production angle < 200 mr (mean 40)

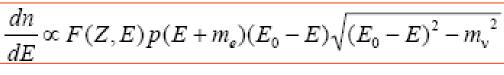
angle < 200 mr (mean 40 mr)

Single Prong

Results 9 ν_τ Candidates

Final analysis: 9 with an estimated background of 1.5 events, from a total of 578 observed neutrino interactions

DONUT

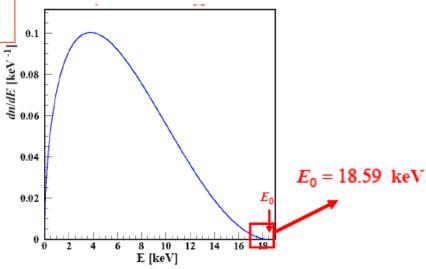

- PHYSICAL REVIEW D 78, 052002 (2008)
- http://www-donut.fnal.gov/
- http://www.hep.umn.edu/e872/presentations/HepSem.pdf

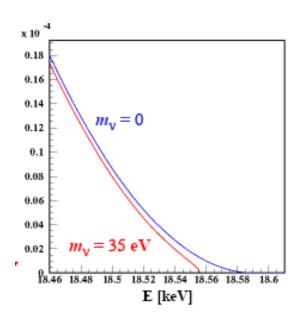
Misura diretta della massa dei $v_{\rm e}$

- Si misura lo spettro degli elettroni da decadimento β e se ne studia l'end-point
- * Si sceglie il trizio perché è il nucleo più leggero (meno complesso)

$$^{3}\mathrm{H}_{1} \rightarrow ^{3}\mathrm{He}_{2} + \mathrm{e}^{-} + \overline{\mathrm{v}}_{\mathrm{e}}$$

 $\tau_{1/2} = 12.33$ anni




F(Z,E): correzione Coulombiana calcolabile

p: impulso dell'elettrone

E: energia cinetica dell'elettrone

E₀: energia massima ("end point")



- Esperimento concettualmente semplice ma di difficile realizzazione:
 - Statistica bassa in prossimità dell'endpoint
 - Necessità di usare una sorgente intensa e al tempo stesso trasparente agli elettroni (→gas o strati sottili)
 - Spettrometro magnetico con grande apertura angolare e ottima risoluzione energetica

Katrin

Dal sito di TROITSK

Γοὸ		Macca
1994		$m_v^2 = -2.7 \pm 10.1 (fit) \pm 4.9 $ (syst), eV^2/c^4
1996		$m_v^2 = +0.5 \pm 7.1 (fit) \pm 2.5 $ (syst), eV^2/c^4
	1	$m_v^2 = -8.6 \pm 7.6 (\text{fit}) \pm 2.5 (\text{syst}), eV^2/c^4$
1997	2	$m_v^2 = -3.2 \pm 4.8 (fit) \pm 1.5 $ (syst), eV^2/c^4
1998		$m_v^2 = -0.6 \pm 8.1 (fit) \pm 2.0 $ (syst), eV^2/c^4
1999		$m_v^2 = \pm 1.6 \pm 5.6 (fit) \pm 2.0 $ (syst), eV^2/c^4
	1	$m_{\nu}^{2} = -5.5 \pm 6.5 (fit) \pm 2.0 (syst), eV^{2}/c^{4}$
2001	2	$m_{\nu}^{2} = -5.2 \pm 6.7 (fit) \pm 1.5 (syst), eV^{2}/c^{4}$
с 1994 по 200)1	$m_v^2 = -2.3 \pm 2.5 (fit) \pm 2.0 (syst), eV^2/c^4$

Предел на массу нейтрино $m_{\nu} \le 2.05~eV/c^2$ at 95% C.L. (Универсальный предел)

• Gli esperimenti misurano m²

$\overline{\nu}$ MASS SQUARED (electron based)

Given troubling systematics which result in improbably negative estimators of $m_{\nu_e}^{2({\rm eff})} \equiv \sum_i |{\sf U}_{ei}|^2 \ m_{\nu_i}^2$, in many experiments, we use only KRAUS 05 and LOBASHEV 99 for our average.

VAL	UE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
-	1.1±	2.4 OUR AVERAGE				
_	$0.6 \pm$	$2.2\pm\ 2.1$				3 H eta decay
_	$1.9 \pm$	$3.4\pm~2.2$	¹⁶ Lobashev	99	SPEC	3 H eta decay

(Mainz e Troitsk rispettivamente)

$\overline{\nu}$ MASS (electron based)

Those limits given below are for the square root of $m_{
u_e}^{2({\rm eff})} \equiv \sum_i |{\rm U}_{ei}|^2$ $m_{
u_i}^2$. Limits that come from the kinematics of ${}^3{\rm H}\beta^-\nu$ decay are the square roots of the limits for $m_{
u_e}^{2({\rm eff})}$. Obtained from the measurements reported in the Listings for " ν Mass Squared," below.

VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
< 2 OUR EVALUAT	TION				
< 2.3	95	¹ KRAUS			3 H β decay
< 2.5	95	² LOBASHEV	99	SPEC	3 H $_{eta}$ decay

pdg.lbl.gov

Misura diretta della massa dei ν_{μ}

$$m_{\nu}^{2} = m_{\pi}^{2} + m_{\mu}^{2} - 2m_{\pi}\sqrt{p_{\mu}^{2} + m_{\mu}^{2}}$$

- Misurando l'impulso del muone nel decadimento del pione (in quiete)
- Utilizzando misure molto precise delle masse di pione e muone provenienti da
 - Energia di transizioni in atomi pi mesici
 - Momento magnetico + rapporto giromagnetico del muone

$$m_{\pi} = 139.57018 \pm 0.00035 \,\text{MeV} \leftarrow$$

$$m_{\mu} = 105.658357 \pm 0.000005 \,\text{MeV} \leftarrow$$

$$p_{\mu} = 29.79200 \pm 0.00011 \,\text{MeV} \,\text{(misurato)}$$

 $m_{\nu} < 0.19 \text{ MeV}$ (livello di confidenza 90%)

Misura diretta della massa dei $v_{ au}$

- Studio degli eventi e⁺e⁻→τ + τ a LEP (ALEPH)
- Selezione di eventi con un τ che decade in 1 prong (identificando così l'evento) e l'altro in più prong → almeno 4 carichi nello stato finale

T.1 Epedm 0.95 0.9 Outer line: $m_{\nu}=0 \text{ MeV}/c^2$ Inner line: $m_s=23 \text{ MeV}/c^2$ 0.85 1.64 1.68 1.72 M_h (GeV/ c^2)

$$E_h = \sum E_{\pi}$$

$$\vec{p}_h = \sum \vec{p}_{\pi}$$

$$M_h^2 = E_h^2 - |\vec{p}_h|^2$$

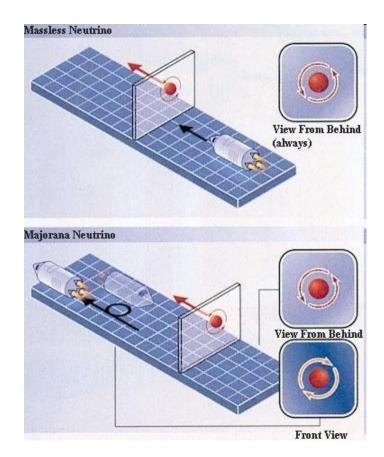
$$m(v_{\tau}) < 18.2 \text{ MeV}$$

livello di confidenza 95%)

SUM OF THE NEUTRINO MASSES, m_{tot}

(Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives greater than or equal to the age of the universe). These papers assumed Dirac neutrinos. When necessary, we have generalized the results reported so they apply to $m_{\rm tot}$. For other limits, see SZA-LAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85.

VA	LUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT		
•	• • We do no	t use the follo	wing data for avera	iges, f	fits, limit	s, etc. • •	•	
<	1.1		⁵⁴ ICHIKI	09	COSM			
<	1.3		⁵⁵ KOMATSU	09	COSM	WMAP		
<	1.2		⁵⁶ TERENO	09	COSM			
<	0.33		⁵⁷ VIKHLININ	09	COSM			
<	0.28		⁵⁸ BERNARDIS	80	COSM			
<	0.17 - 2.3		⁵⁹ FOGLI	07	COSM		9	$\sum m_{\nu}$
<	0.42	95	⁶⁰ KRISTIANSEN	07	COSM		$\Omega_{\nu}h^{2} =$	$\frac{\sum m_{\nu}}{93 \text{eV}}$,
<	0.63-2.2		⁶¹ ZUNCKEL	07	COSM			93 eV ′
<	0.24	95	⁶² CIRELLI	06	COSM			
<	0.62	95	⁶³ HANNESTAD	06	COSM			
<	1.2		⁶⁴ SANCHEZ	06	COSM			
		r. 95	⁶² SELJAK	06	COSM		AD:	. 1. 1


The Cosmic Microwave Background (CMB) data of the WMAP experiment, combined with supernovae data and data on galaxy clustering can be used to obtain an upper limit on the sum of neutrinos masses [118] (see review on Cosmological Parameters): $\sum_j m_j \lesssim 0.68$ eV, 95% C.L. A more conservative estimate of the uncertainties in the astrophysical data leads to a somewhat weaker constraint (see e.g., Ref. 119): $\sum_j m_j \lesssim 1.7$ eV, 95% C.L.

Neutrino di Majorana

- Neutrino a due componenti, perché?
 - Massa nulla + interazione debole solo per particelle levogire, la soluzione più facile adottata per lungo tempo
 - Massa non nulla, 4 componenti, neutrino di Dirac:

$$-m_D\left(\overline{\nu_L}\nu_R+\overline{\nu_R}\nu_L\right)$$

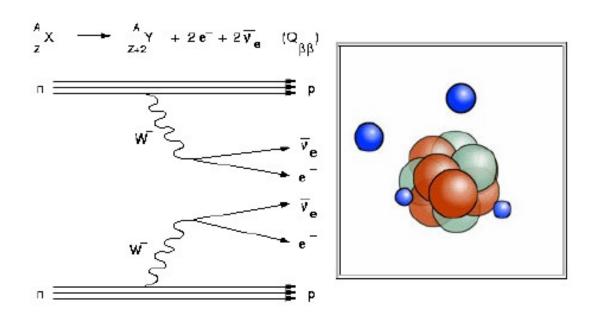
Massa non nulla ma 2 sole componenti, neutrino di Majorana! Neutrino ed antineutrino sono i due stati di elicità della stessa particella il numero leptonico non è un buon numero quantico

$$-\frac{1}{2}m_{M}^{L}\left(\overline{\nu_{L}}(\nu_{L})^{c}+\overline{(\nu_{L})^{c}}(\nu_{L})\right)-\frac{1}{2}m_{M}^{R}\left(\overline{\nu_{R}}(\nu_{R})^{c}+\overline{(\nu_{R})^{c}}(\nu_{R})\right)$$

See-saw

- Perché le masse dei neutrini sono così piccole?
- Il meccaniscmo See-Saw spiega in modo naturale questa gerarchia
- Se la Lagrangiana contiene termini di massa di entrambi i tipi può essere riscritta come

$$\mathcal{L}_{mass} = -rac{1}{2} \left(\overline{
u_L} \overline{(
u_R)^c}
ight) \mathcal{M} \left(egin{array}{c} (
u_L)^c \
u_R \end{array}
ight) + h.c.$$


Introducendo la matrice

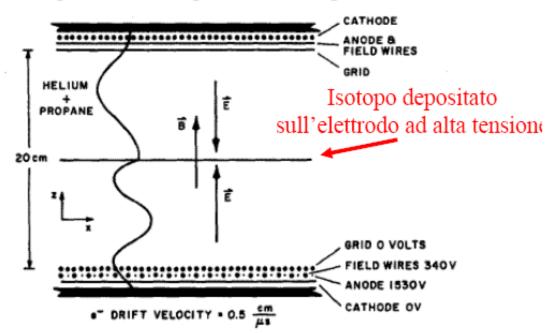
$$\mathcal{M} = \left(egin{array}{cc} m_M^L & m_D \ m_D & m_M^R \end{array}
ight)$$

- Qualora le masse fossero molto diverse e si avesse ad esempio μ molto piccolo o nullo $m_M^R = M \gg m_D \gg m_M^L = \mu$
- La diagonalizzazione della matrice porterebbe ad avere alcune particelle molto leggere ed altre molto pesanti
- Nel modello più semplice $\frac{m_{D1}^2}{M_1}, \, \frac{m_{D2}^2}{M_2}, \, \frac{m_{D3}^2}{M_3}, \, M_1, \, M_2, \, M_3$

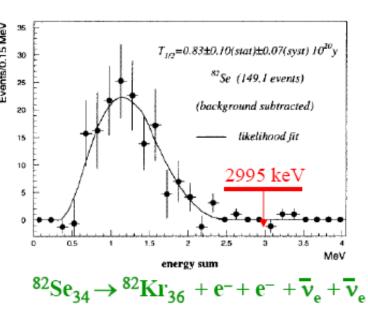
Doppio decadimento beta

- Alcuni nuclei possono decadere mediante due transizioni
 β simultanee con conseguente emissione di due elettroni e due antineutrini (o di due positroni e due neutrini)
- Trattandosi di un processo debole di ordine superiore questo è osservabile solo quando altre transizioni non siano possibili
- Si tratta comunque di un processo molto raro ed è stato osservato solo in una frazione dei nuclei per i quali è previsto teoricamente

Doppio decadimento β "convenzionale" (numero leptonico conservato):

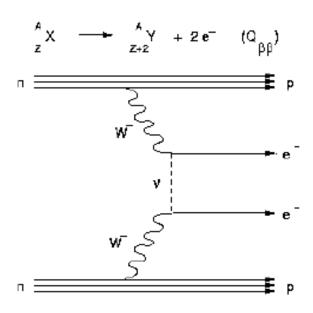

$$(A, Z) \rightarrow (A, Z + 2) + e^- + e^- + \overline{\nu}_e + \overline{\nu}_e$$

misurato in diversi esperimenti. (Articolo di rassegna: Elliott & Vogel, hep-ph/0202264 v1)

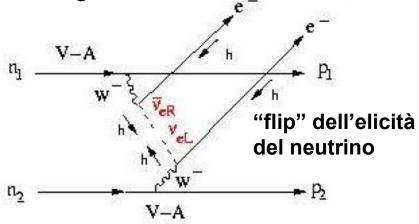

<u>IGEX</u> (8 cristalli di Germanio, arricchiti in ⁷⁶Ge) Esposizione di 1.8 kg x anno ⇒ 4817 ± 139 eventi 76 Ge₃₂ → 76 Se₃₄ + e⁻ + e⁻ + $\overline{\nu}_e$ + $\overline{\nu}_e$ $\tau_{1/2} = (1.3 \pm 0.1)$ x 10^{21} anni

Rivelazione delle tracce dei due elettroni

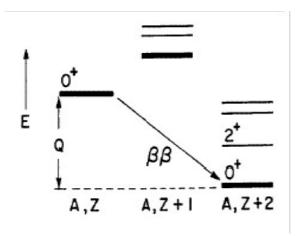
Esempio: camera a proiezione temporale (TPC)


L.Di Lella

Neutrinoless double β decay


Violazione di

2 unita' del numero leptonico


 Qualora i neutrini fossero particelle di Majorana con massa non nulla dovrebbe poter aver luogo il doppio decadimento beta senza emissione di neutrini

 Questo processo richiede che un antineutrino destrogiro emesso da un vertice debole venga assorbito in un altro dove, nel caso di particelle di Dirac, ci saremmo aspettati venisse assorbito un neutrino levogiro

- Si tratta dell'unico processo che possa distinguere tra neutrini di Dirac e di Majorana
- L'ampiezza di transizione è proporzionale alla massa del neutrino e alla costante di Fermi al quadrato, quindi la probabilità di transizione va come la massa efficace del neutrino di Majorana al quadrato (può essere una combinazione lineare delle masse di più neutrini)
- Si deve scegliere un nucleo per il quale non si abbiano processi concorrenti che possano costituire un fondo, ed in particolare per il quale il decadimento β ordinario sia proibito per motivi energetici

L'estrazione della massa efficace (o di un limite su essa) richiede che si conoscano gli elementi di matrice nucleari per la transizione in esame. Questi si possono calcolare dai modelli nucleari e possono essere misurati nel decadimento $\beta\beta$ con neutrini dello stesso nucleo.

Table 1. Results on two neutrino DBD

Nucleus	%	$Q_{\beta\beta}(\mathrm{keV})$	${\bf T}^{2\nu}_{1/2}(measured)(y)$	${\bf T}^{2\nu}_{1/2}(calculated)(y)$
⁴⁸ Ca	0.19	4271	$4.2^{+2.1}_{-1.0} \times 10^{19}$	$6 \times 10^{18} - 5 \times 10^{20}$
$^{76}\mathrm{Ge}$	7.8	2039	$1.42^{+.09}_{07} \times 10^{21}$	$7 \times 10^{19} - 6 \times 10^{22}$
$^{82}\mathrm{Se}$	9.2	2995	$(.9 \pm .1 \times 10^{23})$	$3 \times 10^{18} - 6 \times 10^{21}$
$^{96}\mathrm{Zr}$	2.8	3350	$4.2^{+2.1}_{-1.0} \times 10^{19}$	$3 \times 10^{17} - 6 \times 10^{20}$
$^{100}{ m Mo}$	9.6	2995	$(8 \pm .7 \times 10^{18})$	$1 \times 10^{17} - 2 \times 10^{22}$
$^{100}Mo(0^{+*})$	9.6	2995	$(6.8 \pm 1.2 \times 10^{20})$	$5 \times 10^{19} - 2 \times 10^{21}$
$^{116}\mathrm{Cd}$	7.5	3034	$3.3^{+.4}_{3} \times 10^{19}$	$3 \times 10^{18} - 2 \times 10^{21}$
$^{128}{ m Te}$	34	867	$(2.5 \pm .4 \times 10^{24})$	$9 \times 10^{22} - 3 \times 10^{25}$
$^{130}{ m Te}$	33.8	2530	$(.9 \pm .15 \times 10^{21})$	$.2 \times 10^{19} - 7 \times 10^{20}$
$^{150}{ m Nd}$	5.6	3367	$(7 \pm 1.7 \times 10^{18})$	$6 \times 10^{16} - 4 \times 10^{20}$
^{238}U	99.3	1145	$(2.0 \pm .6 \times 10^{21})$	1.2×10^{19}

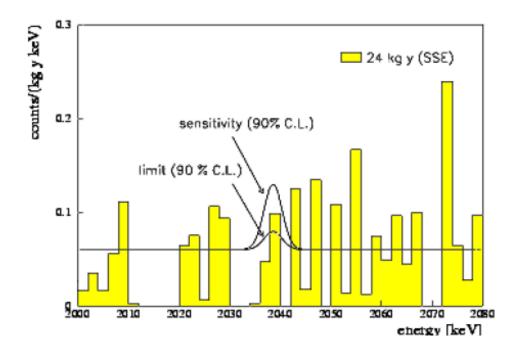
Da notare che si tratta di processi rari (vita media molto lunga) e quindi di misure sperimentali difficilissime!

Ricerca del decadimento 0νββ

- Segnatura sperimentale: la somma delle energie degli elettroni emessi deve essere una costante
- Due metodi
 - Sorgente e rivelatore coincidono: il rivelatore, di tipo calorimetrico, contiene il nuclide da studiare
 - Sorgente (in strati sottili) e rivelatore sono separati

Table 2. Results on neutrinoless DBD

Nucleus	Experiment	%	$Q_{\beta\beta}(keV)$	Technique	$T_{0\nu}$ (y)	$ m_{0\nu} ({\rm eV})$
⁴⁸ Ca	Elegant IV	0.19	4271	Scintillator	$> 1.4 \times 10^{22}$	7-45
$^{76}{ m Ge}$	Heidelberg-Moscow	7.8	2039	Ionization	$> 1.9 \times 10^{25}$.12-1
$^{76}\mathrm{Ge}$	IGEX	"	"	"	$> 1.6 \times 10^{25}$.14 - 1.2
$^{76}{ m Ge}$	Klapdor et al	"	"	"	1.2×10^{25}	.44
$^{82}\mathrm{Se}$	NEMO 3	9.2	2995	Tracking	$> 1 \times 10^{23}$	1.8 - 4.9
$^{100}\mathrm{Mo}$	NEMO 3	"	"	"	$> 4.6 \times 10^{23}$.7-2.8
$^{116}\mathrm{Cd}$	Solotvina	7.5	3034	Scintillator	$> 1.7 \times 10^{23}$	1.7-?
$^{128}\mathrm{Te}$	Bernatovitz	34	867	Geochemical	$> 7.7 \times 10^{24}$.1-4
$^{130}\mathrm{Te}$	CUORICINO	33.8	2530	Bolometric	$> 2 \times 10^{24}$.2-1.0
$^{136}\mathrm{Xe}$	DAMA	8.9	2476	Scintillator	$> 1.2 \times 10^{24}$	1.1 - 2.9
$^{150}\mathrm{Nd}$	Irvine	5.6	3367	Tracking	$> 1.2 \times 10^{21}$	3-?

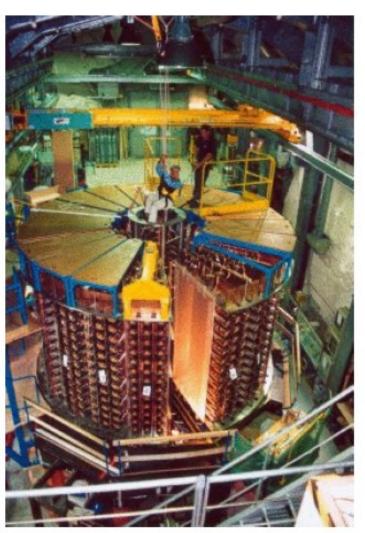

Un metodo per ricercare il decadimento
$$\beta\beta0\nu$$
 (E. Fiorini, 1967)
 $^{76}\text{Ge}_{32} \rightarrow ^{76}\text{Se}_{34} + e^- + e^- \quad \text{E (e}^-_1) + \text{E (e}^-_2) = 2038 \text{ keV}$

Esperimento Heidelberg-Mosca:

5 cristalli di Germanio <u>arricchiti</u> in ⁷⁶Ge (rivelatori a stato solido) Massa totale: 19. 96 kg , 86% ⁷⁶Ge (⁷⁶Ge contenuto nel Germanio naturale: ~7.7%) I cristalli sono circondati da contatori in anticoincidenza e installati nel laboratorio sotterraneo del Gran Sasso (ambiente a bassissimo rumore di fondo)

Ricerca di un segnale mono-energetico a 2038 keV (risoluzione in energia: 1-2 %)

Risultati sperimentali da una esposizione di 24 kg x anno


Nessuna evidenza di doppio decadimento β senza emissione di neutrini Assenza di segnale

⇒ limite sulla vita media del 76 Ge $\tau_{1/2} > 5.7 \times 10^{25}$ anni

 \Rightarrow limite sulla massa del v_e $m(v_e) < 0.35 \text{ eV}$ se v_e è un neutrino di Majorana

NEMO3

Ricerca di doppio decadimento β senza emissione di neutrini nel laboratorio sotterraneo del Frejus

Rivelatore cilindrico in campo magnetico solenoidale B = 25 Gauss diretto lungo la verticale


20 settori indipendenti con tracciatori a gas di bassa densità (principalmente He⁴) e scintillatori

Isotopo in esame depositato su fogli sottili nel mezzo di ciascun settore

Spessore del deposito: 30 – 60 mg cm⁻²

Isotopi studiati:

Mo¹⁰⁰, Se⁸², Zr⁹⁶, Cd¹¹⁶, Nd¹⁵⁰

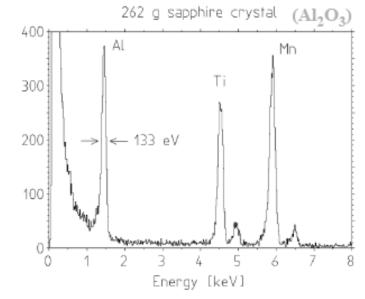
L.Di Lella

Rivelatori Criogenici ("Bolometri")

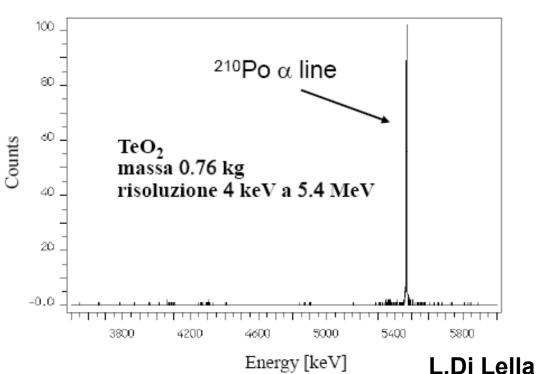
Principio di funzionamento:

Cristallo (Ge, TeO₂, Al₂O₃, CaWO₄, ...) raffreddato a 12 x 10 $^{-3}$ °K = 12 mK

Esempio: cristallo di TeO₂, massa 0.76 kg


Capacità termica: $C = \delta Q / dT \approx 1 \text{ MeV} / 0.1 \text{ mK}$ (per $T \rightarrow 0 C \sim T^3$)

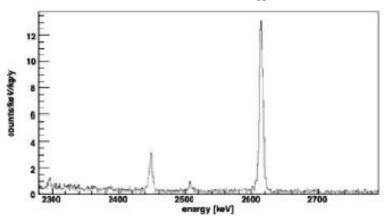
Termometro: termistore al Ge, R = 100 M Ω , dR/dT \approx 100 k Ω / μ K

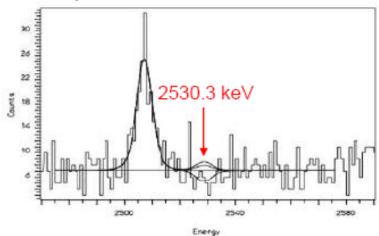

Energia depositata $E = 1 \text{ MeV} \rightarrow \Delta T = 100 \text{ } \mu\text{K} \rightarrow \Delta R = 10 \text{ } M\Omega$

Tempo di risposta: qualche millisecondo

Risoluzione in energia:

 ΔT dipende solo da E e non dal tipo di particella (quenching factor = 1)


1ª fase dell'esperimento CUORE presso i Laboratori del Gran Sasso (esperimento "CUORICINO")


44 cristalli di TeO₂ 5 x 5 x 5 cm³ + 18 cristalli 3 x 3 x 6 cm³ (massa 40.7 kg)

$$^{130}\mathrm{Te}_{52}
ightarrow ^{130}\mathrm{Xe}_{54} + \mathrm{e}^- + \mathrm{e}^-$$

$$E(e_1) + E(e_2) = 2530.3 \pm 2.0 \text{ keV}$$

Risultati da un'esposizione di 11.83 kg · anno di ¹³⁰Te (pubblicati il 23.02.2008)

Origine del picco a 2505.68 keV: somma dei due fotoni (1173.21 + 1332.47 keV) dal decadimento β del 60 Co \rightarrow 60 Ni* \rightarrow 60 Ni + γ + γ). 60 Co prodotto da radiazione cosmica nella struttura meccanica in rame prima del trasporto al Gran Sasso)

Nessuna evidenza per doppio decadimento β senza emissione di neutrini:

$$\tau_{1/2}(^{130}\text{Te}) > 3.0 \text{ x } 10^{24} \text{ anni} \implies m(\nu_e) < 0.38 - 0.46 \text{ eV}$$
Incertezze teoriche sull'elemento di matrice nucleare

Prossima generazione

Table 3. Second generation experiments on neutrinoless DBD

Experiment	Nucleu	%	$Q_{\beta\beta}$	$T_{0\nu}$ (y)	Technique	$ m_{0\nu} ({\rm meV})$
CUORE	$^{130}\mathrm{Te}$	34	2533	$1.8 \text{x} 10^{27}$	Bolometric	9-57
GERDA	$^{76}{ m Ge}$	7.8	2039	$2x10^{27}$	Ionization	29-94
Majorana	$^{76}{ m Ge}$	7.8	2039	$4x10^{27}$	Ionization	21-67
GENIUS	$^{76}{ m Ge}$	7.8	2039	1×10^{28}	Ionization	13-42
SuperNEMO	$^{82}\mathrm{Se}$	8.7	2995	$2x10^{26}$	Tracking	54-167
EXO	$^{136}\mathrm{Xe}$	8.9	2476	$1.3 \text{x} 10^{28}$	Tracking	12-31
MOON-3	$^{100}\mathrm{Mo}$	9.6	3034	$1.7 \mathrm{x} 10^{27}$	Tracking	13-48
DCBA	$^{150}\mathrm{Nd}$	5.6	3367	1×10^{26}	Tracking	16-22
Candles	^{48}Ca	.19	4271	$3x10^{27}$	Scintillation	29-54
CARVEL	"	"	"	$3x10^{27}$	Scintillation	29-54
GSO	$^{160}\mathrm{Gd}$	22	1750	1×10^{26}	Scintillation	
COBRA	$^{116}\mathrm{Cd}$	7.5	2805		Scintillation	
SNOLAB+	$^{150}\mathrm{Nd}$	5.6	3367		Scintillation	

bibliografia

- Ettore Fiorini 2006 J. Phys.: Conf. Ser. 39 243
- Referenze in http://www.nu.to.infn.it/Neutrinoless_Double_Beta_Decay/