Hidetaka Sakai

Rational surfaces and geometry of the Painlevé equations

Abstract. Hamiltonian systems with biquadratic Hamiltonian can be solved in terms of elliptic
functions. These systems are closely related to rational elliptic surfaces. The Painlevé equations are
“good” non-autonomous analogue of these systems. The non-autonomous systems are also related
to rational surfaces, but they are not elliptic surfaces. When we investigate these surfaces, we easily

find affine Weyl group symmetry of the systems. Particular solutions called “Riccati solutions” are
also caught by this consideration.
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@ Biquadratic Hamiltonian
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Hamilton system with biquadratic Hamiltonian

We consider a Hamiltonian system

dg 9H  dg  OH

H: = =, — = -0
dt Op dt dq
with biquadratic Hamitonian
mi1 MmMi2 M3 q2
H=(p%p,1) | ma mxn mos q
1

m31 M3z MmMs33
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Hamilton system with biquadratic Hamiltonian

We consider a Hamiltonian system

dg 9H  dg  OH

H: = =, — = -0
dt Op dt dq
with biquadratic Hamitonian
mi1 MmMi2 M3 q2
H=(p%p,1) | ma mxn mos q
1

m31 M3z MmMs33

This system is solved in terms of elliptic functions. l
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Hamilton system with biquadratic Hamiltonian is solved in terms of elliptic
functions.
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Hamilton system with biquadratic Hamiltonian is solved in terms of elliptic
functions.

e
dq = (2p,1,0) M| gq
dt )

= 2(m1q° + mi2q + mi3)p + ma1q° + moaq + mo3,
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Hamilton system with biquadratic Hamiltonian is solved in terms of elliptic
functions.

e
dq = (2p,1,0) M| gq
dt )

= 2(m1q° + mi2q + mi3)p + ma1q° + moaq + mo3,

dqg 2
<E) = (17721612 + my2q + 17723)2

— (m1g* + miaq + m13)(mM31g° + m3pq + maz — C).
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mi; om0
e Look at the case M = mo1 Moy mMo3 , my1miamoy # 0.
0 ms» 0
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mi; om0
e Look at the case M = mo1 Moy mMo3 , my1miamoy # 0.
0 ms» 0

Putting Q = 1/q, we have

d@ ! dp 2 2/Q
X — _(2p.1.0)M - _ awwml 1 ).
” (2p,1,0) <§2>, o (p,p,1) !
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mi; om0
e Look at the case M = mo1 Moy Mo3 , my1miamoy # 0.
0 ms» 0

Putting Q = 1/q, we have

dQ ! dp [ 5 2/Q

Q2
1 2
01 :=dQ + (2p,1,0)M Q2 dt, 6, := Qdp+ (p*,p,1)M| Q |dt,
Q 0

1
91/\92:QdQ/\dp—Q(2p,1,0)M< Q2 >dp/\dt
Q
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mi; om0
e Look at the case M = mo1 Moy Mo3 , my1miamoy # 0.
0 ms» 0

Putting Q = 1/q, we have

d@ ! dp 2 2/Q
— = _(2p,1,0)M = Ml 1 ).
- = —(2p.1,0) <§2>’ = (pp 1) !

o0 N

1
01 = dQ + (2p,1,0)l\/l< Q2 >dt, 0, := Qdp + (p2,p,1)M<
Q

>dt,

1
91/\92:QdQ/\dp—Q(2p,1,0)M< Q2 >dp/\dt
Q

2
—|—(p2,p,1)M< Q >dQ/\dt.
0

vertical leaf : Q@ =0, singular points : (p, Q) = (0,0), (—m21/m11,0).
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These 4 points are “accessible singular” points.
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These 4 points are “accessible singular” points.

«— 1-parameter family of solutions is passing through
each point.
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(P, q) = (0,0) (P+a)=(0,—m2/mu)
P—0 @ P

® (p, Q) = (—ma1/m11,0)

) =(0,0)

_ (P, Q
p= 3
qg=0 Q=0

These 4 points are “accessible singular” points.

«— 1-parameter family of solutions is passing through
each point.

«— We need “bowing-ups”’ to draw distinction between
each solutions.
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dual diagram
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Classification of biquadratic Hamiltonian:
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Classification of biquadratic Hamiltonian:

We draw distinction between my; = 0 and my; # 0.
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Classification of biquadratic Hamiltonian:

We draw distinction between my; = 0 and my; # 0.

@ When my; # 0, you can take my3 = m3; = 0 by an affine
transformation.

o miaymy # 0 — Dél)
o miamy; =0 and (myp, my1) #(0,0) = Dél)
° (m127 m21) — (O, O) = Dél)
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Classification of biquadratic Hamiltonian:

We draw distinction between my; = 0 and my; # 0.

@ When my; # 0, you can take my3 = m3; = 0 by an affine
transformation.

o mypmy; #0 = Dél)

o mipymy =0 and (mip, my) # (0,0) = DV

o (M2, M) = (0,0) = piM
@ mi1=0

o mypmy; #0 = E6(1)

o mizmy =0 and (mio, my1) # (0,0) = EW
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Non-autonomous case

If we take mj; as functions in t, what happens?
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Non-autonomous case

If we take mj; as functions in t, what happens?
For Dél) type, we get conditions

msp /mp1 = const, my3/myp = const,
ms3x My  Mi2Mz 1 d (my
— + > — — | —— | = const,
my1 My mi1 mo1 dt \ mi
my3 M2  Mi2Mz 1 d [ mp
— o — — [ —= ) = const
mix My mi1 mio dt \ mi
for resolution of accessible singularities. (~ Painlevé analysis)
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Non-autonomous case

If we take mj; as functions in t, what happens?
For Dél) type, we get conditions

msp /mp1 = const, my3/myp = const,
ms3x My  Mi2Mz 1 d (my
— o — — | —= ] = const,
my1 My mi1 mo1 dt \ mi
my3 M2  Mi2Mz 1 d [ mp
— o — — [ —= ) = const
mix My mi1 mio dt \ mi
for resolution of accessible singularities. (~ Painlevé analysis)
1 et 0
_ t t
— M=| -1 —(a1+as+e") e'a
0 di 0

IRHFEE (University of Tokyo) Geometry of the Painlevé equations 18 Dec. 2014 ROMA




1 et 0

Mp,=| -1 —(ai+as+et) elay |,
0 di 0
1 1 0 1 0 O
MD6 = 0 —d] — b1 —et , MD7 = 0 di —1 ,
0 —a1 0 0 et O
0 1 0 0O 0 1
Mg, =| -1 —t —a |, Mg=[1 0 ¢
0 —a 0 0 a3 O
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Mp,=| -1 —(ai+as+et) elay |,
0 di 0
1 1 0 1 0 O
MD6 = 0 —d] — b1 —et , MD7 = 0 di —1 ,
0 —a1 0 0 et O
0 1 0 0 0 1
Mg, = -1 —t —a , Mg, = 1 0 ¢t
0 —a 0 0 a3 O

Painlevé equations

Hv = Hp,, Himi(De) = Hp,, Hit(D7) = Hp,, Hiv = He,, Hit = HE,.
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Content

@ Classification of the Painlevé equations
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Where are PI, PIH(Dg), and PVI I
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Where are PI, PHI(Dg), and PVI I

= a generalization to ratio of two elliptic curves
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Where are PI, PHI(Dg), and PVI I

= a generalization to ratio of two elliptic curves

~ (rational) elliptic surfaces
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Where are PI, PHI(Dg), and PVI I

= a generalization to ratio of two elliptic curves

~ (rational) elliptic surfaces

elliptic ALY
multiplicative A((Jl)*, Agl), Aél),
A A AW A AL
additive IOEOENOS
D4(11)1 Dél), Dél), Dél), Dél),
E6(1), E7(1), Eél)
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We have non-autonomous differential systems only for D,((l) and E,El).
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We have non-autonomous differential systems only for D,((l) and E,El).

equations P\/I PV PIII(D6) PHI(D7) PIH(Dg)
geometry Dil) Dél) Dél) Dgl) Dél)
symmetry Dl(ll) Agl) (A + A)D) Agl) _

Pv | Pu | P1
Eél) E7(1) Eél)
AY LA
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For Dl(ll), and Dél), we take Hamiltonians as

1 & '
H= (g%, gog1, 80 )M | ffy | =(g”. g, )M | 1 |,
fotf1 80 2 1/f

where (go : g1), (fo : f1) € P! express homogenious coordinate.
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For Dl(ll), and Dél), we take Hamiltonians as

1 f? f
Y- 2(g127g0g17g02)M ffi | = (g% g,1)M 1
07180 fOQ 1 /f

H

where (go : g1), (fo : f1) € P! express homogenious coordinate.

1 -1- e
Mp,=| a1 +2a —ar—2a+ 25 +a 2 |,
az(a1 + a2) 0 0
0O 1 O
Mp,=| 0 0 o0
—t 0 -1

IRHFEE (University of Tokyo)
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But, in this case, we have a symplectic form w = %dg A df, and
Hamiltonian system is written as

df _  OH  dg OH

e T e @ Tar
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But, in this case, we have a symplectic form w = %dg A df, and
Hamiltonian system is written as

df _ OH  dg OH

e T e @ Tar

Remark (Dy)

If we take G = g/f, then w = dG A df and

H =f(f —1)(f —5)G”
+ {(a1 +2a2)(f — 1)f + as(s — 2)f + ass(f — 1)} G + ax(a1 + a2)f.

o
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But, in this case, we have a symplectic form w = %dg A df, and
Hamiltonian system is written as

df _ OH  dg OH

e T e @ Tar

Remark (Dy)

If we take G = g/f, then w = dG A df and

H =f(f —1)(f —5)G”
+ {(a1 +2a2)(f — 1)f + as(s — 2)f + ass(f — 1)} G + ax(a1 + a2)f.

o

Remark (Dg)

If we take G = —fg, F = 1/f, then w = dG A dF, H = F2G2 — F — t/F.
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Content

e Affine Weyl group symmetry and Picard group
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Affine Weyl group symmetry

Example (Backlund transformations of Pryy)
e R=s1(q)=qg+%, P=s(p)=p;
(p,q) is a sol of Hir(a1) = (P,Q) is a sol of Hyr(—a1).

¢ Q=m(q)=—-q P=n(p)=-p-q° -t
(p,q) is a sol of Hir(a1) = (P,Q) is a sol of Hyr(1 — a1).
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Affine Weyl group symmetry

Example (Backlund transformations of Pryy)
e R=s1(q)=qg+%, P=s(p)=p;
(p,q) is a sol of Hir(a1) = (P,Q) is a sol of Hyr(—a1).

¢ Q=r(a)=—q, P=n(p)=—p—q'—t
(p,q) is asol of Hii(a1) = (P, Q) is a sol of Hyi(1— a1).

S1, T, S = 7w o s o7 has relations: 512 = 592 = 7% = 1.

s; and 7 generate affine Weyl group W(Agl)).
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Picard group

Picard group
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Picard group

Picard group = { formal sum of divisor classes with Z coefficients }
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Picard group

Picard group = { formal sum of divisor classes with Z coefficients }

Picard group

X: a surface obtained by 9 points blowing-up from P?, then

PiC(X) =ZEPLEL B -+ D L&y,

where & is the class of the total transform of a line in P?, &, k # 0 is the
class of the total transform of the exceptional curve.
We have the intersection form with

Eo-Eo=1, E-Ex=—1(k£0), E-& =0(k#I).

IRHFEE (University of Tokyo) Geometry of the Painlevé equations 18 Dec. 2014 ROMA 21 /33



Picard group

Picard group = { formal sum of divisor classes with Z coefficients }

Picard group

X: a surface obtained by 9 points blowing-up from P?, then

PiC(X) =ZEPLEL B -+ D L&y,

where & is the class of the total transform of a line in P?, &, k # 0 is the
class of the total transform of the exceptional curve.
We have the intersection form with

Eo-Eo=1, E-Ex=—1(k£0), E-& =0(k#I).

i

Lorentzian lattice of rank = 10
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Cremona isometry

Backlund transformation
birational, complicated,
acts on rational surface X
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Cremona isometry

Backlund transformation Linear transformation
birational, complicated, «—— simple calculation of matrices,
acts on rational surface X acts on Pic(X)
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Cremona isometry

Backlund transformation Linear transformation
birational, complicated, «—— simple calculation of matrices,
acts on rational surface X acts on Pic(X)

Cremona isometry

An automorphism o of Pic(X) is called a Cremona isometry, when

@ o preserves the intersection form in Pic(X),
@ o leaves the canonical class x fixed,

@ o preserves the semi-group of effective classes invariant.

We denote the group of Cremona isometries as Cr(X).
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Kx=-3&%+& +-- +&

(Kx)*t = {F € Pic(X) | F-Kx =0}
=Ly DL D---DLrg ~ Q(Eél))

IRHFEE (University of Tokyo) Geometry of the Painlevé equations 18 Dec. 2014 ROMA 23 /33



Kx=-3&%+& +-- +&

(Kx)*t = {F € Pic(X) | F-Kx =0}
=Ly DL D---DLrg ~ Q(Eél))

Cr(X) C Aut(Q(EM)) ~ W(EM)
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Pict(X) = the semi-group of effective classes

Is generated by
e NEFF N Pic™(X), NEFF: set of numerically effective classes
@ EX: set of exceptional classes
@ Comp(D): set of classes of irred. comp. of D € | — Kx|

o A™9: set of classes of nodal curves disjoint from Comp(D)
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Pict(X) = the semi-group of effective classes

Is generated by
e NEFF N Pic™(X), NEFF: set of numerically effective classes
@ EX: set of exceptional classes
@ Comp(D): set of classes of irred. comp. of D € | — Kx|

o A™9: set of classes of nodal curves disjoint from Comp(D)

Q(R) :=ZDy ®ZD, & --- ®ZD,, —  Comp(D) = {Dy}
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Pict(X) = the semi-group of effective classes

Is generated by
e NEFF N Pic™(X), NEFF: set of numerically effective classes
@ EX: set of exceptional classes
@ Comp(D): set of classes of irred. comp. of D € | — Kx|

o A™9: set of classes of nodal curves disjoint from Comp(D)

Q(R) =ZDy & ZD1 & --- ®ZD,  «—  Comp(D) = {Dy}
R(RY) = Q(R)r ={F € Pic(X) | F- D =0 for Vk}
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Pict(X) = the semi-group of effective classes

Is generated by
e NEFF N Pic™(X), NEFF: set of numerically effective classes
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Example (Root system of Py)

R=D"; Q(D{M)=2ZDy®ZD: & -- & ZDs,
Di=& — & —&E—&, Dy=E&E—&, Dis=& — &,
Dy=E — & —E4—E, Ds=&E — & —& — &, Dg=E— &,

RL=AY:  QAY) = Zas ® Zay ® Zar ® Zas & Zas,
a1 =E1—E&, ax=&E —E3—E4—&, a3=E — &,
Oéo2250—51—52—54—56—58—59.

0=-—-Kx=ap+oa1t+ay+a3 =Dg+ Dy +2Dy +2D3 + D4y + Ds.
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Example (Root system of Pyp)

R=£Y. QEM=zDy®ZD - -®ZD;,
Di =& —&, Dy=&—&&, D3=&—E&, Dy=~E& — &,
Ds =& — &, Dsg=E —&, Dr=E& —& —&E —&s,
Do =&y — &1 — &4 — &,

rRL =AM, @A) = Zay ® Zay,
051 254—55, Oéo2380—51—52—53—254—56—---—59.

18 Dec. 2014 ROMA
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By using Pic(X), 7 is expressed by a matrix

(4 -1 -1 =1 =3 0 -1 -1 -1 0\
1 0 0 0 —-10 0 0 -1 0
1 0 0 0 —-10 0 -1 0 0
1 0 0 0 —-10 -1 0 0 0
3 -1 -1 -1 -2 0 -1 -1 -1 0
6o 0 0 0 0 0 0 0 0 1
1 0 0 -1 -10 0 0 0 0
1 0 -1 0 -10 0 0 0 0
1 -1 0 0 -10 0 0 0 0
\o o0 0 0 0 1 0 0 0 0)
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Discrete Painlevé equations

Symmetry of the surface
= Cremona transformation
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Discrete Painlevé equations

Symmetry of the surface
= Cremona transformation

produces

Discrete Painlevé Equations.

IRHFEE (University of Tokyo) Geometry of the Painlevé equations 18 Dec. 2014 ROMA 28 /33




Content

O Riccati solutions and Period map
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Riccati solutions

Example (Riccati solution of Pry)

p =0, % =q° + : = (p, q) is a solution of Hr(a; = 0).

e Riccati solution has one parameter in space of initial conditions.
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Riccati solutions

Example (Riccati solution of Pi)

p =0, % =q° + : = (p, q) is a solution of Hr(a; = 0).

e Riccati solution has one parameter in space of initial conditions.

Ricatti solution appears iff A™9 £ (.
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Riccati solutions

Example (Riccati solution of Pi)

p =0, % =q° + : = (p, q) is a solution of Hr(a; = 0).

e Riccati solution has one parameter in space of initial conditions.

Ricatti solution appears iff A™9 £ (.

If there exists a nodal curve C which is disjoint from elements of
Comp(D), we can restrict the flow of the Hamilton system to C
(C ~P).
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Riccati solutions

Example (Riccati solution of Pi)

p =0, % =q° + : = (p, q) is a solution of Hr(a; = 0).

e Riccati solution has one parameter in space of initial conditions.

Ricatti solution appears iff A™9 £ (.

If there exists a nodal curve C which is disjoint from elements of
Comp(D), we can restrict the flow of the Hamilton system to C
(C ~P).

—>  We like to know when A"9 £ (.
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Period map

We have two parameterizations for isomorphic class of surfaces.
One comes from 9 points set in P2, and one is the period map.
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We have two parameterizations for isomorphic class of surfaces.
One comes from 9 points set in P2, and one is the period map.

The period map of surface is a coupling between 2-from and second
homology classes.

But we have no holomorphic 2-from. So we use a meromorphic 2-form:

w, div(w) = Z m;D;,
and we take Hy(X — Dyed, Z).
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We have two parameterizations for isomorphic class of surfaces.
One comes from 9 points set in P2, and one is the period map.

The period map of surface is a coupling between 2-from and second
homology classes.

But we have no holomorphic 2-from. So we use a meromorphic 2-form:

w, div(w) = Z m;D;,

and we take Hy(X — Dyed, Z).
We have exact sequence 0 — H(D,eq) — Ha2(X — Dreq) — Q(R*) — 0,
so we obtain the map:

X+ Q(RY) = C mod {(Hi(Dred))-
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e For a € Q(Ri), a e Anod
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e For a € Q(R1), a €A™ & x(a)=0.
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e For a € Q(R1), a €A™ & x(a)=0.

e X is an elliptic surface < x(d) =0.
(6 is null root and it realized as —Kx.)
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Thank you.
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