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Discrete Painlevé equations from the self-dual Yang-Mills equations

Abstract. Many (continuous) integrable systems, including all of the Painlevé equations, are known
to be reductions of the self-dual Yang-Mills (SDYM) equations. A general class of Béacklund
transformations for the SDYM equations will be described. The Bianchi permutability of these
Bécklund transformations leads to a very rich discrete integrable system, which will be shown to have
reductions to many important discrete equations, including discrete and g-Painlevé equations.
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The anti-self-dual Yang-Mills equations
Four independent variables: z, zZ, w and w.

Four Lie-algebra (in our case sl(2; C))-valued functions: A,, A,, A; and Ay,
The ASDYM equations are

0. Ay — OpA, +[A,, Ay] =0,
O: Ay — OpAs + [Az, Ayl =0,
0,A; — 0:A, — 0,Ag + Op Ay + [AL, As] — [Ay, Ag] = 0.
e Connection one-form: A .= A.dz+ A,dw + A:dz + A; dw.
e The ASDYM equations are the compatibility condition for the Lax pair
(0: = C0p) VU= —(A. — CAy) Y,
(O — COz)¥= — (A, — (A:)V.
e This Lax pair is equivalent to the statement that the differential operators
L=D,—(D: and M=D,—(Dyg
commute, where

D.=0.+A,, D,=0,+A,, D:=0:+A;:, and Dy = 9; + Ay.



Symmetries

e Conformal symmetries (translations, rotations/boosts, dilations, inversions)
e The ASDYM equations are invariant under the gauge transformation
A g0+ g Aug,
for any nonsingular g.
e Symmetry reductions, Ward.

e Non-point symmetries (Béacklund transformations)



Symmetry reductions: the Nahm equations

e We look for solutions in which the components of A depend only on ¢ := w + w.

e Using a gauge transformation, we set A, + Az = 0.

e On writing A, = i(Ty + iT3), A; = i(Th — iT3), A, = —iT} and Ay = T}, the
ASDYM equations reduce to the Nahm equations:
Ty =Ty, T3], To=|T3T and T3 = [T}, Ty).
e Making the further restriction that Tj(t) = w;(t)o;, j = 1,2, 3 we obtain
W] = Wows, Wo = wsawq and w3 = wiws.

e We immediately have the first integrals w? — w5 = p* and w} — w3 = A and hence

the solution
wi(t) = psn(At+a, A",
wa(t) = ipen( M+ a, A7),
wi(t) = —iAdn( At +a, A7) .



Symmetry reductions: the sine-Gordon equation

e We look for solutions of the ASDYM equations such that the A,’s depend on 2z and

Z only.
e We choose a gauge such that A; = 0.
e The field equations become

8214“) + [AZ, Aw] = O, 021411) = O, and 85142 + [Aw, Ad)] = O
e Generically, we can use the remaining gauge freedom to put Ay in the form
01
k :
10
e For the remaining matrices, we take the form

A - O. a—1b and A — ¢ 0 |
a+1b 0 0 —c

e This leads to the equations
a. = 21bc, b, = —2iac and c; = 2ikb.



e We have
a, = 2ibc, b, = —21ac and c: = 21kb.
e The first two equations give
a* +b* = \?,
where X is a constant.
e Introducing the parametrization
a=Acosw and b= Asinw,

we find that ¢ = %wz and

W,z = 4k sinw.

e So the sine-Gordon reduction is

AZ:WZ 1 0 A - O. exp(—iw) A
2 \0 —1 exp(iw) 0

where w = w(z, 2) solves w,; = 4kAsinw.




Symmetry reductions: Py (Mason and Woodhouse)

e New variables: p = —logw, ¢ = —log Z, r = log(w/2), and t = (22)/(ww).
e We intoduce the functions P(t), Q(t) and R(t) by
A=A dz+A,dw+ A:dz+ Ay dw
= Pdp + Qdq + Rdr
= —iPdw — %QdéJr R <d_1b - %> :

w w Z

e Hence zA, =0, wA, = —P, ZA; = —(Q + R) and wA; = R.
e The ASDYM equations,
0, Ay — OpA; + AL, Ay] =0,
O: Ay — OpAs + [Az, Ag] = 0,
0. A; — 0: A, — 0, Ay + OpAw + [AL, Az] — [Aw, Ag] = 0.
reduce to

P'=0, tQ =[R,Q] and t(1—t)R =[tP+Q,R)].



e Furthermore, rewriting the ASDYM Lax pair as
(282 _ igwa@) V- — (mz _ igwAﬁ)) v,
W S
(waw _ ngag) W= — (wAw _ ngAg) v,
z Z
and recalling that
zA. =0, wA, =—P, ZA; = —(Q + R), WA = R

and
p=—logw, ¢g=—logz, r=1log(w/z), t =(22)/(ww),
we let A = —w/(2(), giving

R
oV=—(—— |V
t <)\—t) )

Q P+Q+R R
o= < — .
4 ()\ =1 A=t




Other reductions

e ODESs reductions of the ASDYM equations alone lead to elliptic functions, all six

Painlevé equations in full generality.
e KAV, mKdV, sine-Gordon, Boussinesq, Ernst, chiral field, . ..
e Darboux-Halphen
e generalised Chazy



Backlund transformations
BTs for the (A)SDYM equations have been introduced by several authors:

e Corrigan, Fairlie, Goddard and Yates, 1978
e Ling-Lie Chau Wang, 1980

e Bruschi, Levi and Ragnisco, 1982

e Chau and Chinea, 1986

e Papachristou and Harrison, 1987

e Mason, Chakravarty and Newman, 1987

e Tafel, 1989

e Masuda obtained the affine Weyl group symmetry of P, P and Py from the
ASDYM Backlund transformation, 2005, 2007



Yang’s equation (1)
The first two of the ASDYM equations,
0. Ay — OuA, +[A,, Ay] =0, and
0: Ay — OpAs + [Az, Ag] = 0,
imply the existence of SL(2;C)-valued functions H and K respectively such that
O.H=—-AH, 0,H=-A,H, 0:K=-A:K, 0;K=—-A;K.
The final equation,

0, A; — 0:A, — 0,Ay + Op Ay + [AL, Az — [Ay, Ag] = 0,
then takes the compact form
D 0 ) = 0.(J10:T) = 0,
where J = K~'H. This is known as Yang’s equation.

Yang’s equation has the obvious symmetry

o~

J(z,w, z,w) — M(z,w)J(z,w, zZ,0)M(Z,0).



Yang’s equation (2)
Apart from the Ernst equation and the chiral fields models, this form of ASDYM is

not usually considered in relation to symmetry reductions.

One reason is that Yang’s equation has lost some of the Lie symmetries of the original

system.

Also, the matrices A,, A, etc, of the original formalism appear directly in the Lax
pair of ASDYM.

If we parametrize J € SL(2;C) by

I
Jf(e f2+eg>’

then Yang’s equations reduces to three simple second-order PDEs:

OO, 517 Gt

0, Ow
o(3)-a(%)
2(3)-(3)



The Standard ASDYM Backlund transformation
Writing out Yang's form of the ASDYM eqns in component form gives

(aée}gazg) _ %&p(log f) n (ad)e}gawg)7

0. Oy
82<f2g> :aw<f_29>,
0 o
() =0 (7).

A~ 1
Backlund transformation: f= ?,
R 8@6 N 856
32 = f2 X wd = fQ )
a~/\ o a’wg a azg
€ — ?, w f2 :



Nahm reduction in the Yang formalism

e We return to the Nahm reduction with 7} = wj(t)o;, t = w + w:

Azzl 0 w1 + wo | Aw:% —10 |
2 \wy + woy 0 2 \0 1

A%Zl 0 w1 — W2 7 A,J) % 1 0 .
2 w1 — Wy 0 2 0 —1

e We need to find H and K such that
oO.H=—-AH, 0,H=-A,H, O0:K=-A:K, Oz;K=—-A;K.

e In terms of y = \/w? — w3, the first two equations give

—— \/wl(t)erg \/wl +w2 e M2 ~
H(z,w,z,w)(\/wl(t>_w2 (D) =l )( 0 eu2/2> M(Z,w).

e /{ has a similar expression, giving

—u(z=2)/2 o ($)ezHE)/2\
) wi(t)e ’ wa(t)e ) Mz, ), 2 2 2
—Wy (t)e_/4<z+z)/2 w1 (t)e/L(Z_Z)/Q

1
J=—M(z,w
0



The sine-Gordon reduction in Yang’s formalism

e The sine-Gordon reduction was

AZ - @ Lo ’ Aw = A ! . eXP(ZQ) ’ Ai - 07 AITJ =k 01 )
2 \0 -1 exp(—if) 0 10

where 0 = 0(z, Z) solves
(925 = 4kAsin 0.

e In order to construct the Backlund transformation, we first construct J, and hence
H and K.

e from 0: K = —A:K and 0; K = — Az K, we have

(01
K =exp {—kw (1 0) } M (z,w).

e Find H from 0,H = —A,H and 0.H = —A_H, we have
J = M(zw) <cosh kw sinh ]ﬂb) (em/2 0 ) ( cosh M\w — sinh Aw) ﬁ(%,d))

sinh kW cosh kw 0 e 10/2 —sinh Aw  cosh A\w



Py reduction in Yang’s formalism
ZZ

.t:—N.
ww

e Recall that the reduced equations are
P'=0, tQ =[R,Q] and t(1—1t)R =[tP+ Q,R].
e The second equation shows that
Q(t) = G(t)"'QuG(t) and R(t) = —tG(t)~'C'(1),
for some function G' and constant Q).

e The form of J is then
J = z79q(tw”.



Backlund transformations for the ASDYM equations
Starting from the ASDYM Lax pair
(0> = C0p) VU= —(A. — CAy) Y,
(O = CO:)¥= — (A, — CA:)V,
we perform a (-dependent gauge transformation
U= U = (S +(T)V,
such that the resulting system has the same form:
(02 — CO) V= —(A. — CAz)V,
(O — (0:) U= —(Ay — CA)V.
This gives
{(Sw— SA, + ApS) + (T, — S: + SA; — TA, + A, T — A:S)
+C(=T: + TA; — A:T)} T =0,
{(S, = SA, + A.S) + {(T. — Sy + SA; — TA, + A, T — A;S)
+C =Ty + TAz — AgT)} T = 0.



e The coefficients of the various powers of ( yield
S, =SA,—A,S, S.=SA, —A.S,
S: — T, =S8SA: — A:S — TA, + A,T,
Se—T,=S8SA; — AgS — TA, + AT,
T.=TA: — AT, Ty=TA;— A;T.
e Recall that two of the three ASDYM equations guarantee H and K such that
0.H=—-AH, 0,H=-A,H, 0:K=-A:K, 0;K=—-A;K.
eC =K 'TK,C:=H'SH = C=C(z,w)andC=C(z0).
e In terms of J = K1 H, the remaining equations become
J (j—lcj) - (jéj-l) J.
- (jéj—l) J.

z

z w

J (j—lcj)

w

e Bruschi, Levi and Ragnisco (1982): €' and C constant.
e Ling-Lie Chau Wang (1980): C' and C' constant multiples of the identity.



The BT for the sine-Gordon equation: 6,5 = sin6
Substituting

_ (cosh(tD/Z) sinh(w/2)> (ew/Q 0 ) (cosh(w/2) —sinh(w/2)>
sinh(w/2) cosh(w/2) 0 e 2] \ —sinh(w/2) cosh(w/2)

into the equations defining the ASDYM BT transformation,

J (j—lcj) — (jéj—l)~ J,
J (j—lcj) _ (JAC?J‘l)MJ,
where .
C = ab and C = . b :
b a b a
gives
R 010\ . . ) _
ad,(0 — 0) = 2bsin % , b0:(0 4 0) = 2asin % :
R . 010 X ) _
ad,(0 — 0) = 2bsin % , b0:(0 4 0) = 2asin %

Compatibility implies that either a = b=0orb=a=0.



Schlesinger transformations for Py

2z

o J =U(2)"'G(t)V(w), where t = —

ww'

s0/2 Occ/2 0
I oy [(w
U(z) = z%0 = ( 0 290/2>, V(iw)=w" = ( . wemp).

e We obtain all 12 Schlesinger transformations for Pyr derived in Mugan and Sakka.

For example

(a) é0:90+1,é1:91, ét:Qt, éOOZQOOJrl,

00 ~ 00
Clzwl/Q , 01221/2 .
01 01

(b) Oo=00—1,00 =01, 0 = 0;, 0o = Ono — 1,

10 ~ 10
CQZU}l/Q , ngwl/Q .
00 00



Bianchi permutability for the sine-Gordon BT

Wy = SIN W

<d)—w> zﬁsin<@;w>,

1) - (55)
2 ), B 2 '

w—w=T(fw)

7(52, 7(51; w)) - 7(51, 7(52; w))
Let woo := w and wy, ,, := 71" "w, where 7;(w) := T (B, w). Then

“ — W W — Wity
(ﬁQ _ ﬁﬂtan < m+1,n+1 mJL) _ (ﬁQ + 51)tan ( m,n+1 erl,n)'

+ o

4 4



Bianchi permutability for the ASDYM equations
The equations defining the BT transformation for ASDYM can be written as
(j—lcj)z = Cyt JNJeC = CT My,
(j—lc,])w —C-4 JUJC = CT
where C' = C(z,w) and C = C(Z, ).

Consider two BT transformations corresponding to the pairs of matrices (Cf, 51) and
(Cy, Cs). We have

8. (J71C1T) = (85Ch) + JT Y (031)Cr — CL 10,
8. (J51Co) = (85Cy) + Jy Y (93J2)Co — CoJ 18,
8. (J'Coy) = (83Co) + TR (0 J12)Co — Cod 01,
3. (J51C1Jy) = (8aCh) + J5 (0 o1 )C1 — CrJy 9.

If J12 — J21 and [Cl, 02] = 0, it follows that
o, {J;; (@Jlél - 01J252> + (52J;101 - 51J2—102> J} 0.

We take  Jg! (CQJIG1 - Cngég) + (@J{lCl - éljglcg) -



Lax pair for ASDYM Bianchi system (1)
Starting from the ASDYM Lax pair

(0: = (0p) V= —(A; — CAg) ¥,

(Ow — COz)¥= —(Ay — CA2) Y,
we perform a (-dependent gauge transformation

Ui U = (S +(T)V,

such that the resulting system has the same form:

(0. — CO5) U= —(A. — CAg) V¥,

(0 — CO2) U= — (A, — CA)V.
In terms of H and K given by

0.H=-AH, 0,H=—-A,H, 0:K=-A:K, O;K =—-A;K,
we have
Vs U= (S+ (T = (HCH ' + (KOK ™).

Set & = K. Then

O b — (jéj—l v gc) o,
where J = K—'H.,



Lax pair for ASDYM Bianchi system (2)

R - (jéJ—l v gc) o,

(I)m—H,n = (J7n+1,n5(1)‘]n_1,1n + Cc(l)) q)m,m
(Dm,n—l—l = (an,n—l—la(m]n_z}n + CC(Q)) (I)m,n-
Compatibility gives

‘]/r;—lkl.,n—l-l (C(Q)Jm+1,n5(1) - C(l)Jm,nJrlé@))

+ (5@)1—1 oW — o -1

m—+1.n m,n—+1

0(2)) Jm n — Oa

where



Sine-Gordon permutability as a reduction

Substituting
g (cosh kw sinh k:tb) (ew/Q O ) ( cosh Aw —sinh )\w> L WEW
sinh kw cosh kw 0 e 102 —sinh Aw  cosh Aw
into

! (02J161 - Cljg@) + (@Jl—lc1 _ 51J2—102) J=0

01 ~ 10
C. — D C. — a.
/ J(l 0)’ / aj(o 1)
gives
(0, +0 . (02 + 0o . (01 + 0o . [0+ 0
Sin — sin + K |sin — sin = 0.
2 2 2 2

with




Discrete Painlevé equations as Backlund transformations

e This example is from Fokas, Grammaticos and Ramani.

e The third Painlevé equation is

where «, 3, v and 0 are constants.

e [f v = 0 but a and ¢ are non-zero, then rescaling gives

12 /
it )

w T w
o If w = w(x, ) is a solution of equation (1) then
z(l+w'(x;8)  B+1

w(; B)? w(w; B)’
z(l—w'(r;8) B-1
w(x, f—2) = — : 3

( ) w(z; 5)? w(w; 5) 3

are also solutions with 3 replaced by 3 + 2 and 3 — 2 respectively.

w(x; B+ 2) = and (2)

e Adding equations (2) and (3) gives
¢ 203
(w; 87 w(w; B)

w(aj;6+2)+w(:ﬁ;ﬁ—2):w



Non-autonomous ASDYM Bianchi system

O b — (j(?J—l n gc) o,

o1 = (Jni1aClbhint + CCLL) @,
(I)m,nJrl - <Jm,n+167(37)nﬂ]7;71n + CCT(nQ’)n> (I)m,n-
Compatibility gives
J r;iljnﬂ (Cr(r?—)l—l,n‘] Tn—‘-l,nar(r},)n - OT(nl}rL—l—l‘] m,n+15r(3,)n)
+ (éé?il,nJT;il,/rch,)n o 57(171/,)72+1‘]'r;7ln+107(73)n> Jmm - 07
where

o @~ o and O C@) = b

mn+1~—"mn mn+1~—"mn m,n’



Reduction of Bianchi system to the non-autonomous lattice
mKdV equation

Let us consider the system
~1 (2) ~(1 (1) (2
Jm+1,n+1 (Om—l-l,n‘]m+1,n07(n,)n - CTTL7n+1Jm/7n+1Of(IL,)TL>

+(5<2> 1o a0

m+1nm+1n~"mmn m,n+1

Jr;}nHC(Q) ) Jmm =0,

m,n

~ ~

CT%}H%lc(Q) :C(g) D and 5(1) 2 :C(Q) c)

m,n m+1ln~"mmn mn+1~"mmn m+1n~"mmn’

independently of any connection with the ASDYM equations.

Let
o _ L (1O0) he L (L0 my Fme o (O
m,n &m O 1 U TTL,TL /Bn O 1 ? m,n m,n 1 O ?

Um.n, 0
I = ’ .
e ( 0o 1/ umn>

Then the Bianchi system reduces to

and

O‘m(“m,n“m—l—l,n - u/rn,’fl-l-lu/fn—‘-l,n-l-l) - 5n(um,num7n+1 - UfrrL—l—l,’rLu/rn—H.,n—l-l) = 0.



Factorisation

Symmetry reductions of the ASDYM equations in the original variables (A,) lead to
reductions in Yang’s form where J has the “dressed” form J,,, = AG,, ,B.

Substituting this into
Tt (Oggrl,njm‘ﬂ,né;é)n - 07(717)n+1jm/ﬂ+157(3,)n)
+ <57(7?3rl,n‘]ﬂ_%1#17n07(nl,)n - 57(71,)n+1‘]77_1,1n+107(73,)n) Jmn =0,
gives
Gt (Dq(ill,nGmH,nE%,)n - Dg,)n+le,n+1[j£3,)n>
+ (Egll,nGT—ni—l,nD%,)n - Eg,)nJrlGT_n}n—O—lD?(”s,)n) Gun =0,

where DU — A=1C A and DV) = BCUW B,

Furthermore, the conditions

CT(nl,)n+ICT(3,)n - C?ngrl,ncz(n{)n and afnl,)?wrlar(n%)n - 57(311,7157(711%
become
pU p@ _p® pu .4 DY PO —pR  po

mn+1-—"mmn m+1,n"~"m,n mn+1-—"m,mn m+1n~"m,n"



dmKdV in terms of BTs

e The ASDYM Bianchi system with

;o (cosh(zb/Q) Sinh(w/2)> (Um,n(za z) 0 ) (cosh(w/Q) —sinh(w/2)>
"\ sinh(w/2) cosh(/2) 0 1 —sinh(w/2) cosh(w/2)

um.,n(zi)

el =—( )= () an=an =] )
? Qm \0 1 ” B \0 1 ’ ’ 10

again gives the dmKdV

and

Oém(“m,n“m—l—l,n - um,n—l—lum—kl,n—l-l) - 5n(um,num7n+1 - Um—l—l,n“rn—kl.,n—l—l) = 0.

e However this is now a statement about BT's of a reduction of the ASDYM equations

(specifically the sine-Gordon equation with tu, ,(z, 2) = ¢/fmn(%2)/2),

e Ormerod has shown that dmKdV has a reduction to qPy.



Summary

e Many integrable equations are know to be reductions of the ASDYM equations:
Ou(J 10gJ]) — 0.(J10:J) =0,
e We have derived the following form of the Backlund transformation
J (j—lcj)z - (jéj-l) J.
J(Jcd)

- (jéj—l)j,

w z

where C' = C(z,w) and C = C(Z, 0)
e Bianchi permutability gives
7! <02J151 - 01J252> + <52J1—101 - C“ljglcg) J =0,
which is a source for many discrete integrable systems.

e The richness of reductions of the ASDYM equations comes form the large

(conformal) group of symmetries.

e The richness of discrete reductions of the ASDYM BT equations comes from the

~

choices of C(z,w), C(Z,w) as well as the form of J.



Nevanlinna theory

1 2m )
e The proximity function is m(r, f) = g / log™ | f(re)| do),
T Jo

where log" x := max(log x, 0).

. f)
0 t

where n(r, f) is the number of poles of f (counting multiplicities) in |z| < 7.

e The enumerative functionis N(r, f):=

e The Nevanlinna characteristic function T(r, f) = m(r, f) + N(r, f)

measures “the affinity” of f for infinity.

e Nevanlinna’s First Main Theorem
For a € C,

T (nfia) T ) +0(), -

e We use S(r, f) to denote any function of r that is o(T(r, f)) outside some set of

finite linear measure.

e Lemma on the Logarithmic Derivative: m(r, f'/f) = S(r, f).



Joint work with Galina Filipuk and Risto Korhonen

Theorem
[f there exist a pair x, y of non-rational finite order meromorphic solutions of system
+8(2)y(2) + v(2)y(2)*
y(z)* -1 ’
+b(2)x(2) + c(2)z(2)?
r(z)?—1 ’

then v = ¢ = 0 and either x and y satisfy first-order difference equations or the system

a(z)

w(z+1)+x(z) =

a(z)

y(z) +ylz=1) =

is reduced to the coupled d-Py; equations
a+ (B +02)y(z)

y(z)? =1
a+(6—0/2+02)x(2) (4)
r(z)?—1 ’

r(z+ 1)+ z(2)

y(z) +ylz—1) =

where a, o, § and ¢ are constants.



Extending Painlevé analysis to find particular solutions

e Suppose that a solution of
o s (2)
dz?

has a pole at a point zy where f is analytic.

e The series expansion of the solution is necessarily of the form

y(2> - Z CLn(Z - Z())nfz, ap = 1.

n=>0

e Substituting and equating coeffs gives a1 = as = a3 = 0 and the recurrence relation
n—1

(n+1)(n—=06)a, =6 Z Wy, Cpy—m

m=1

1
(n —4)!

f(n_4)(2’0).

e There is a resonance at n = 6 which gives f”(zy) = 0. If this is true for “enough”

zp then ,
d
ey _ 6y° + Az + B,
dz?

where A and B are constants.



Can we find all meromorphic solutions of solutions of

ww// . w/2

= a(z)w + B(z)w +~(2)?

e The constant coefficient case was solved in work with Chiang.

e Let O be the set of all zeros and poles of the coefficients «, 5 and ~.

e w has no poles in {2:= C\ O.

o [f 5 =~ =0, then any zero of w on € is a double zero. Otherwise it is simple.
o [f v £ 0 then at each zero zy € €2 of w,

w(z) =Y an(z — 20)"",

n=0

where a3+ 3(z0)ao +7(z) = 0 and the a,s satisfy a recurrence relation of the form
(n+1)(n —r)aga, = Py(ag, ..., an_1),
where r depends on the coefficients «, 5 and ~.

e Finiteness property (work of Hille, Eremenko, Conte).



General meromorphic coeflicients
Joint work with Jun Wang.

e An admissible solution of ww” — w"” = a(z)w + B(z)w’ + v(2)
satisfies T'(r, ) + T(r, B) + T(r,y) = S(r,w).

e Consider the case a Z0, B =~ = 0.

e [n the neighbourhood of any zero zy € ) of w,

w(z) = —Q(;O)(z — 2)* — O/(;O) (z—20)* + O ((z = z0)4).

e Together with the fact that w is analytic on €2, it follows that

wo o'\ o W o'\ w'\’
o (- v (-9 ()
w o« w w o« w
is also analytic on Q. Also m(r, f) = S(r, w).

e Furthermore

N(r, ) = No(r, f) < 2Ng <7°’ g’) + 2N (r’ g) o <T’ (ﬂl) />
w «a w
(8%



Now

When (% 'Y £ 0, we obtain

w/ Oél f/
vea sl
Substituting this into the definition of f gives

f/2 -9 o
=G e ©
o w
We must have (o//a) =0, so from Eq. (5), f/=0. Thus,
a(z) = kie?”® and f(2) =,

where ki #£ 0, ko and ¢q are constants,
In terms of u = w/«, the definition of f becomes

u? = cqu — 2u.

Other generalisations with Khadija Al-Amoudi (including branching at fixed singular-

ities).



Algebroid solutions

e A function f is called algebroid if it is algebraic over the meromorphic functions,

i.e., it satisfies
ao(2) + ar(2) f(2) + -+ an-a(2) f(2)" + f(2)" =0,

for meromorphic functions ao, . .., a,_1.

e Malmquist actually showed that if F'(z,y,%') = 0 has an algebroid solution, where
I is rational, then the equation can be reduced to either a Riccati equation or the

equation for the Weierstrass elliptic function.

e Thomas Kecker and I have shown that the only admsissible degree 2 algebroid
solutions of
Y =co(2) + -+ a2yt + 1
can be expressed in terms of either admissible solutions of Riccati equations or the

fourth Painlevé equation (or its degenerations).



