Boris Dubrovin

Isomonodromy de	eformation problems	associated with	quantum cohomology.
-----------------	---------------------	-----------------	---------------------

Three days on Painlevé equations and their applications, Roma Tre, 19.12.2014

Isomonodromy deformation problems associated with quantum cohomology

Boris DUBROVIN

SISSA, Trieste

Rational curves on a smooth projective variety X

Derived category of coherent sheaves $Der^b(X)$

Plan

- Introduction: quantum cohomology of projective plane and Painlevé-VI equation
- Semisimple Frobenius manifolds and isomonodromy deformations
- Quantum cohomology and (conjectural) description of the monodromy data

I. Quantum cohomology of ${f P}^2$ and P-VI equation

Denote N_k = number of rational curves of degree k $z \mapsto (P_0(z): P_1(z): P_2(z))$, $\deg P_i(z) = k$ passing through 3k-1 points

E.g.,
$$N_1 = 1$$
, $N_2 = 1$, $N_3 = 12$ etc.

Denote
$$\phi = \sum_{k=1}^{\infty} \frac{N_k}{(3k-1)!} e^{k t}$$

Thm. (Kontsevich, '92) The function satisfies diff. equation

$$\phi''' = \frac{{\phi''}^2 + 54\phi'' - 33\phi' + 6\phi}{27 + 2\phi' - 3\phi''}$$

Corollary. The coefficients N_k for $k \geq 2$ are uniquely determined by $N_1 = 1$

Reduction to P-VI: change of variables $(t, \phi(t)) \mapsto (x, y(x))$

Denote u_1, u_2, u_3 the roots of cubic equation

$$u^{3} - \phi''u^{2} - 3(3\phi'' + 5\phi' - 2\phi)u$$
$$+9\phi''^{2} - 6\phi\phi'' - 243\phi'' + 4\phi'^{2} + 243\phi' + 3\phi'\phi'' - 54\phi = 0$$

Then the function

of

$$y = -\frac{9\phi''^2 - 6\phi\phi'' + 4\phi'^2 + 3\phi'\phi''}{3(9\phi'' - 9\phi' + 2\phi)} - u_1$$
$$x = \frac{u_3 - u_1}{u_2 - u_1}$$

satisfies

$$y'' = \frac{1}{2} \left[\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-x} \right] y'^2 - \left[\frac{1}{x} + \frac{1}{x-1} + \frac{1}{y-x} \right] y'$$
$$+ \frac{1}{2} \frac{y(y-1)(y-x)}{x^2(x-1)^2} \left[9 + \frac{x(x-1)}{(y-x)^2} \right]$$

2. Frobenius manifolds

- I.I Frobenius algebra: a pair (A, \langle , \rangle)
- A commutative associative \mathbb{C} -algebra with a unit
- (,) symmetric bilinear nondegenerate invariant form

$$\langle a \cdot b, c \rangle = \langle a, b \cdot c \rangle$$

E.g., every semisimple Fr. algebra is isomorphic to

$$\begin{array}{rcl} e_i \cdot e_j & = & \delta_{ij} e_i \\ \langle e_i, e_j \rangle_{\mathbf{h}} & = & \delta_{ij} h_i \end{array} \quad \mathbf{h} = (h_1, \dots, h_n), \quad h_i \neq 0 \quad \forall i$$

1.2 Frobenius manifold M: a structure of Frobenius algebra on the tangent spaces T_{xM}

es T_xM A o b

such that

- **FMI.**The metric $\langle \cdot, \cdot \rangle$ has zero curvature and $\nabla e = 0$
- FM2. Define $C(X,Y,Z):=\langle X\cdot Y,Z\rangle$.Then $\nabla_W C(X,Y,Z)$ is symmetric in X,Y,Z,W
- FM3. There exists a linear vector field \boldsymbol{E} , i.e. $\nabla \nabla E = 0$

such that
$$Lie_E(\ \cdot\)=\ \cdot\ Lie_E\langle\ ,\
angle=\ (2-d)\langle\ ,\
angle$$

Locally there exist flat coordinates v^1, \ldots, v^n

$$\left\langle \frac{\partial}{\partial v^{\alpha}}, \frac{\partial}{\partial v^{\beta}} \right\rangle = \eta_{\alpha\beta} \ (= \text{ const})$$

$$e = \frac{\partial}{\partial v^{1}}$$

$$\exists \ F = F(v) \quad \text{such that} \quad \left\langle \frac{\partial}{\partial v^{\alpha}} \cdot \frac{\partial}{\partial v^{\beta}}, \frac{\partial}{\partial v^{\gamma}} \right\rangle = \frac{\partial^{3} F(v)}{\partial v^{\alpha} \partial v^{\beta} \partial v^{\gamma}}$$

It satisfies WDVV associativity equations and quasihomogeneity

$$E = \sum \left(a^{\alpha}_{\beta}v^{\beta} + b^{\alpha}\right) \frac{\partial}{\partial v^{\alpha}}, \quad EF = (3-d)F + \text{at most quadratic terms}$$

In the example of quantum cohomology of ${f P}^2$

$$F = \frac{1}{2} \left[(v^1)^2 v^3 + v^1 (v^2)^2 \right] + \sum_{k=1}^{\infty} \frac{N_k}{(3k-1)!} (v^3)^{3k-1} e^{k v^2}$$

$$\left\langle \frac{\partial}{\partial v^{\alpha}}, \frac{\partial}{\partial v^{\beta}} \right\rangle = \delta_{\alpha+\beta,4}$$

$$E = v^1 \frac{\partial}{\partial v^1} + 3 \frac{\partial}{\partial v^2} - v^3 \frac{\partial}{\partial v^3}$$

WDVV associativity equation \Leftrightarrow Kontsevich equation

Main ingredient of the theory of Frobenius manifolds flat connection on $M \times \mathbb{C}^*$

$$\tilde{\nabla}_a b = \nabla_a b + z \, a \cdot b$$

$$\tilde{\nabla}_{\frac{d}{dz}}b = \partial_z b + E \cdot b - \frac{1}{z}\mu(b), \quad \mu = \frac{2-d}{2}\mathrm{id} - \nabla E$$

Observe: $\langle \mu(a), b \rangle = -\langle a, \mu(b) \rangle$

Flatness \Rightarrow (local) existence of n independent horizontal sections

$$\tilde{\nabla} df = 0$$

 $(n = \dim M)$

On a **semisimple** Frobenius manifold existence of canonical coordinates

$$\frac{\partial}{\partial u^i} \cdot \frac{\partial}{\partial u^j} = \delta_{ij} \frac{\partial}{\partial u^i}$$

They also satisfy orthogonality $\left\langle \frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right\rangle = 0$ for $i \neq j$

If FM3 holds true then u^1, \dots, u^n are eigenvalues of the operator of multiplication by the Euler vector field

Orthonormalized idempotents

$$f_i = \frac{1}{\sqrt{\left\langle \frac{\partial}{\partial u_i}, \frac{\partial}{\partial u_i} \right\rangle}} \frac{\partial}{\partial u_i}, \quad i = 1, \dots, n$$

Introduce matrices U, V

$$U_{ij} = \langle f_i, E \cdot f_j \rangle = u_i \delta_{ij}$$

$$V_{ij} = \langle f_i, \mu(f_j) \rangle = -V_{ji}$$

(depend on the point of the Frobenius manifold)

The z-part of equations for horizontal sections of $\tilde{\nabla}$ reduces to

$$\frac{dY}{dz} = \left(U + \frac{V}{z}\right) Y$$

Thm. Flatness of $\tilde{\nabla}$ \Rightarrow isomonodromicity

Invariant pairing

$$Y^{T}(-z)Y(z) = \text{const}$$

Remark. An alternative isomonodromy description for

$$(U - \lambda \cdot id) \frac{d\Phi}{d\lambda} = \left(\frac{1}{2} - \nu + V\right) \Phi$$

 \Leftrightarrow

$$\frac{d\Phi}{d\lambda} = \sum_{i=1}^{n} \frac{A_i}{\lambda - u_i} \Phi$$

Monodromy data of
$$\frac{dY}{dz} = \left(U + \frac{V}{z}\right) Y$$

$$ullet$$
 at $z=0$ $Y_0=\left(\Psi+\mathcal{O}(z)
ight)z^\mu z^
ho$

 μ diagonal matrix, $\mu = \operatorname{diag}(\mu_1, \dots, \mu_n), \quad \Psi^{-1}V\Psi = \mu$

 ρ nilpotent matrix (in presence of resonances)

$$\rho = \rho_0 + \rho_1 + \dots, \quad (\rho_k)_{ij} \neq 0 \quad \text{only if} \quad \mu_i - \mu_j = k$$

$$\langle \rho_k(a), b \rangle = (-1)^{k+1} \langle a, \rho_k(b) \rangle$$

 $S_{ii}=1, \quad S_{ij}=0 \quad ext{for} \quad i>j \quad (ext{after ordering } u_i)$

ullet central connection matrix C

$$Y_R(z) = Y_0(z)C$$

Constraint

$$S^T = C^T \eta \, e^{\pi i \rho} e^{\pi i \mu} C$$

⇒ cyclic relation

$$S^{T}S^{-1} = C^{T}\eta e^{2\pi i\rho}e^{2\pi i\mu}\eta^{-1}\left(C^{T}\right)^{-1}$$

(monodromy around infinity = monodromy around 0)

Isomonodromicity Thm. The data (μ, ρ, S, C) are locally independent from the point of Frobenius manifold

Reconstruction by solving a Riemann - Hilbert problem

$$(\mu, \rho, S, C) \rightarrow (Y_0(u, z), Y_{R/L}(u, z)) \rightarrow (\Psi(u), V(u)) \rightarrow Fr(\mu, \rho, S, C; \mu_1)$$

(depends on the choice of an eigenvalue μ_1)

Global structure

$$M = \bigcup_{\sigma \in \operatorname{Br}_n/\operatorname{stabilizer of }(S,C)} Fr(\mu, \rho, S^{\sigma}, C^{\sigma}, \mu_1)$$

Action of the braid group Br_n $S \mapsto S^{\sigma}, \quad C \mapsto C^{\sigma}$

$$S \mapsto S^{\sigma}, \quad C \mapsto C^{\sigma}$$

$$S^{\sigma_i} = K_i S K_i, \quad C^{\sigma_i} = C K_i, \quad i = 1, \dots, n-1$$

$$(K_i)_{kk} = 1, \quad k \neq i, \ i+1$$

$$(K_i)_{ii} = -s_{i,i+1}, \quad (K_i)_{i,i+1} = (K_i)_{i+1,i} = 1$$

all other entries equal 0

Thm. Any semisimple Frobenius manifold can be obtained by this construction

Thus, semisimple Frobenius manifolds parameterized by the monodromy data (μ, ρ, S, C) satisfying above properties

Charts of the semisimple Frobenius manifold are labeled by points in the orbit of the monodromy data with respect to the action of the braid group

Quantum cohomology

X smooth projective variety, $\dim_{\mathbb{C}} X = d, \quad H^{\mathrm{odd}}(X) = 0$

 $\overline{M}_{0,m,\beta}(X)$ moduli space of stable rational maps

$$f: (\mathbf{P}^1, x_1, \dots, x_m) \to X$$

of degree $\beta = f_*[\mathbf{P}^1] \in H_2(X; \mathbb{Z})$

 $x_1, \ldots, x_m \in \mathbf{P}^1$ marked points, $x_i \neq x_j$

Evaluation maps

$$\operatorname{ev}_i : \overline{M}_{0,m,\beta}(X) \to X, \quad f \mapsto f(x_i)$$

n-dimensional Frobenius manifold, $n = \dim H^*(X)$

Choose a basis $\gamma_1 = 1, \gamma_2, \dots, \gamma_n \in H^*(X), \quad \deg \gamma_i = 2q_i$

Potential of the Frobenius manifold $M = QH^*(X)$

$$F(v) = \sum_{m} \sum_{\alpha_1, \dots, \alpha_m} \frac{v^{\alpha_1} \dots v^{\alpha_m}}{m!} \sum_{\beta \in H_2(X; \mathbb{Z})} \int_{\overline{M}_{0, m, \beta}(X)} \operatorname{ev}_1^*(\gamma_{\alpha_1}) \dots \operatorname{ev}_m^*(\gamma_{\alpha_m})$$

Thm. (Kontsevich, Manin) Triple derivatives $c_{\alpha\beta}^{\gamma}(v) = \eta^{\gamma\delta} \frac{\partial^3 F(v)}{\partial v^{\delta} \partial v^{\alpha} \partial v^{\beta}}$ are structure constants of a family of associative algebras

$$\eta_{\alpha\beta} = \int_X \gamma_\alpha \wedge \gamma_\beta$$
 invariant inner product

Euler vector field $E = \sum_{i=1}^n \left[(1 - q_\alpha) v^\alpha + \langle c_1(X), \gamma^\alpha \rangle \right] \frac{\partial}{\partial v^\alpha}$

Basis in $H^*(X) \Rightarrow$ basis of horizontal sections of $\tilde{\nabla}$ near z=0 (hence the fundamental matrix $Y_0(z)$)

Define

$$\theta_i(z) = \sum_{m} \sum_{\alpha_1, \dots, \alpha_m} \frac{v^{\alpha_1} \dots v^{\alpha_m}}{m!} \sum_{\beta \in H_2(X; \mathbb{Z})} \int_{\overline{M}_{0, m+1, \beta}(X)} \operatorname{ev}_1^*(\gamma_{\alpha_1}) \dots \operatorname{ev}_m^*(\gamma_{\alpha_m}) \frac{\operatorname{ev}_{m+1}^*(\gamma_i)}{1 - z \, \psi_{m+1}}$$

$$\psi_{m+1} = c_1 \left(\mathcal{L}_{m+1} \right), \quad \text{tautological line bundle} \qquad \frac{\sum_{m+1}^{m+1} \mathbf{P}^1}{\overline{M}_{0,m+1,\beta}(X)}$$

The basis $(\theta_1(z), \dots, \theta_n(z)) z^{\mu} z^{\rho}$

$$\mu = \frac{1}{2} \operatorname{deg} - \frac{d}{2} \operatorname{id}, \quad \rho = c_1(X).$$

$$\mu, \ \rho: H^*(X) \to H^*(X)$$

Basis of horizontal sections of $\tilde{\nabla}$ near $z=\infty$ from a "basis" E_1,\ldots,E_n in K(X)

When quantum cohomology is semisimple?

Conjecture (B.D. '98; A.Bayer & Yu.I.Manin '01)

Semisimplicity of $QH^*(X)$ \Leftrightarrow existence of a full exceptional collection E_1, \ldots, E_n in $Der^b(X)$ in the derived category of coherent sheafs on X

$Der^b(X)$ complexes of coherent sheaves on X

$$\cdots \to C_i \to C_{i-1} \to \ldots$$

up to quasiisomorphisms (introduced by J.-L. Verdier)

Ordered collection of objects $E_1, \ldots, E_n \in Der^b(X)$

is exceptional if
$$Ext^k(E_i, E_j) = 0, \quad k > 0, \quad \forall i, j$$

$$Hom(E_i, E_i) = \mathbb{C}, \quad i = 1, \dots, n$$

$$Hom(E_i, E_j) = 0 \quad \text{for} \quad i > j$$

It is full if E_1, \ldots, E_n generate $Der^b(X)$

Example (A.Beilinson '78) $X = \mathbf{P}^d$

Full exceptional collection $\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2), \dots, \mathcal{O}(d)$

Question 2: description of the monodromy data of $QH^*(X)$ in the semisimple case

Conjecture, Part 2 (B.D. '98). Basic vectors of horizontal sections of $\tilde{\nabla}$ near $z=\infty$ are in one-to-one correspondence with objects $E_1,\ldots,E_n\in Der^b(X)$ of a full exceptional collection. The Stokes matrix in this basis coincides with the Gram matrix of Mukai pairing

$$S_{ij} = \chi(E_i^* \otimes E_j) = \sum_{k \ge 0} (-1)^i \dim Ext^k(E_i, E_j)$$

Motivations: S.Cecotti, C.Vafa; E.Zaslow; M.Kontsevich Particular cases: B.D., D.Guzzetti, K.Ueda, A.Takahashi; B.Kim, C.Sabbah

Question 3: central connection matrix CDefine an operator

vector bundles on $X \to \text{cohomology of } X$

$$E \mapsto \frac{1}{(2\pi)^{\frac{d}{2}}} \Gamma(X) \wedge \tilde{\operatorname{ch}}(E)$$

Here $\Gamma(X)$ is the gamma-genus of TX $ilde{\ch}(E)$ is the Chern character of E followed by the operator $(2\pi i)^{rac{\deg}{2}}$

Gamma-genus

Recall construction of Hirzebruch characteristic classes

Given a formal series $K(t) = 1 + a_1t + a_2t^2 + \dots$

and a d-dimensional vector bundle E over X define

$$K(E) = K(t_1) \dots K(t_d) = 1 + a_1(t_1 + \dots + t_d) + a_2(t_1^2 + \dots + t_d^2) + a_1^2(t_1t_2 + \dots + t_{d-1}t_d) + \dots$$
$$= 1 + a_1c_1(E) + a_2c_1^2(E) + (a_1^2 - 2a_2)c_2(E) + \dots \in H^*(X)$$

For gamma-genus take $K(t) = \Gamma(1-t) = 1 + \gamma \, t + \mathcal{O}(t^2)$

Notice
$$\log \Gamma(1-t) = \gamma t + \sum_{n=2}^{\infty} \frac{\zeta(n)}{n} t^n$$

Conjecture, Part 3.

Bases of horizontal sections near a semisimple point in $QH^st(X)$

- at z = 0: from a basis $\gamma_1, \dots, \gamma_n \in H^*(X)$
- at $z = \infty$: from a full exceptional collection E_1, \dots, E_n in $Der^b(X)$

Central connection matrix $C = (C_{ij})$

$$\frac{1}{(2\pi)^{\frac{d}{2}}}\Gamma(X) \wedge \tilde{\operatorname{ch}}(E_j) = \sum_{i=1}^n C_{ij}\gamma_i$$

Motivations: H.Iritani '08, L.Katzarkov, M.Kontsevich, T.Pantev '08

Verified for $X={f P}^d$ (B.D., using results by D.Guzzetti monodromy of $(z\,\partial_z)^{d+1}\,\Phi=[(d+1)z]^{d+1}\Phi$)

More recently: for Grassmannians (S.Galkin, V.Golyshev, H.Iritani); G.Cotti for $G_{2,4}$)

$$(z\,\partial_z)^5\Phi - 2^{10}z^5\partial_z\Phi - 2^{11}z^4\Phi = 0$$

Global structure of $QH^*(X)$

Action of the braid group Br_n on the monodromy data

$$S, C \mapsto S^{\sigma}, C^{\sigma}$$

by analytic continuation of isomonodromy deformations corresponds to the action of Br_n on full exceptional collections by *mutations*

$$(E_1,\ldots,E_n)\mapsto (E_1^{\sigma},\ldots,E_n^{\sigma})$$

(J.-M.Drézet & J.Le Potier '85; A.Gorodentsev & A.Rudakov '87)

Question: are the charts in

$$QH^*(X) = \bigcup_{\sigma \in \operatorname{Br}_n/\operatorname{stabilizer of }(S,C)} Fr(\mu, \rho, S^{\sigma}, C^{\sigma}, \mu_1)$$

in one-to-one correspondence with full exceptional collections in $\operatorname{Der}^b(X)$?

