

Superconduttività

Conduttore perfetto, diamagnete perfetto

Sotto una ben precisa temperatura "critica", T_c , caratteristica del materiale:

Conduttore perfetto, diamagnete perfetto

Sotto una ben precisa temperatura "critica", T_c , caratteristica del materiale:

Superconduttore *≠* conduttore *perfetto*

Conduttore perfetto, diamagnete perfetto

Sotto una ben precisa temperatura "critica", T_c , caratteristica del materiale:

Annullamento della resistenza

<image>

Levitazione magnetica

L'interazione è repulsiva: la levitazione "Meissner" è *instabile*. Levitazione Meissner stabile richiede sagomature del superconduttore o del magnete

Correnti persistenti

Fenomeno comune

$$T_c^{(max)} = 9.25 \text{ K [Nb]}$$

Cuprati

Leghe, intermetallici, esotici, ...

grafico adattato da P.Canfield, S.Bud'ko, Scientific American, aprile 2005

Lunghezza di penetrazione

Il campo magnetico è espulso dal superconduttore decadendo su una lunghezza tipica: lunghezza di penetrazione di London

$$\lambda = \sqrt{rac{m_s}{\mu_0 n_s e_s^2}}$$

Dipende da T

Osservazione magnetoottica.

Univ. di Oslo

Campo critico

Un campo magnetico sufficientemente intenso - dipendente da T distrugge la superconduttività.

Campo critico

(Densità di) corrente critica

Una densità di corrente sufficientemente intensa - dipendente da T distrugge la superconduttività ("corrente di depairing")

"Superficie critica"

Risultati della teoria microscopica

Cooper (1956): una interazione attrattiva fra due elettroni, <u>comunque piccola</u>, in presenza di una sfera di Fermi occupata determina uno stato legato con $E_{2e} < 2E_F$

BCS (1957): esiste uno stato fondamentale in cui tutti gli elettroni formano *coppi*e, con coerenza di fase (stato più ordinato), con una gap nella densità degli stati di singola particella.

Meccanismo: distorsioni (ritardate) del reticolo. Più efficiente a basse T (vibrazioni termiche ridotte).

Coppia correlata.

Scattering con dissipazione (trasferimento netto di momento) —> rottura della coppia. Energie troppo piccole rispetto alla gap

-> supercorrente

Applicazioni (alcune)

Small scale

Application	Technical Points
Microwave filters in celluar stations	Low losses, smaller size, sharp filtering
Passive microwave devices, Resonators for oscillators	Lower surface losses, high quality factors, small size
Far-infrared bolometers	nonlinear tunneling SIS curves, high sensitivity
Microwave detectors	Uses nonlinear tunneling SIS curves, high conversion efficiency for mixing
X-ray detectors	High photon energy resolution
SQUID Magnetometers: Magneto-encephalography, NDT	Ultra-high sensitivity to magnetic fields
Voltage Standards	Quantum precision
Digital Circuits (SFQ)	Up to 750 GHz, ultra-fast, low-power

Filtri per comunicazioni satellitari

basse perdite a microonde

Reti wireless: dispositivi a elevata selettività per sfruttare la banda. Filtri superconduttori: basse perdite. Alta T_c: criogenia "semplice".

Comunicazioni satellitari: Vantaggi dei componenti HTC: miniaturizzazione, selettività Aspetto critico: tenuta in potenza (nonlinearità –> generazione di armoniche –> disturbi) Nonlinearità: dovute alla generazione e moto di flussoni con il campo rf. —> importanza del controllo artificiale del pinning.

Roma Tre: presentato un progetto regionale per la realizzazione in YBCO/BaZrO (2009)

Large scale

Application	Technical Points
Power cables	High current densities
Current Limiters	Uses highly nonlinear nature of transition
Transformers	High current densities and magentic fields, has lower losses
Motors/Generators	Smaller weight and size, lower losses
Energy Storage Magnets	Need high fields and currents
	Smaller weight and size, lower losses
NMR magnets (MRI)	Ultra high field stability, large air gaps
Cavities for Accelerators	High microwave powers
Magnetic bearins	Low losses, self-controlled levitation
Large magnetic fields for fusion reactors	Mechanical stress, current carrying

Produzione di alti campi magnetici.

Elevata corrente critica di depinning.

Immagini da risonanza magnetica (diagnostica medica).

Alti campi = più contrasto.

Non esistono tecnologie alternative

Produzione di alti campi magnetici.

Elevata corrente critica di depinning.

Magneti da laboratorio e per usi biomedici senza liquidi criogenici. Attualmente in vendita magneti in tecnologia "alta Tc"

Possibili installazioni in ambienti difficili, o "sul campo"

Magnete da 5 Tesla (con criogeneratore)

www.hts-110.com

Produzione di alti campi magnetici.

Elevata corrente critica di depinning.

Cavi superconduttori per i magneti nei reattori per fusione nucleare...

sviluppo di YBCO/ BaZrO in corso

ENEA

... nei grandi acceleratori

Non esistono tecnologie alternative

Superconducting Fault Current Limiters Corrente critica finita

Switch da impedenza bassa (idealmente nulla) a impedenza alta in caso di guasto sulla rete: gli spike di corrente non danneggiano gli impianti.

Superconducting Fault Current Limiters Corrente critica finita

Sfruttando la transizione allo stato normale, bobine superconduttrici ad alta T_c possono assorbire picchi di corrente lunghi vari millisecondi, evitando che porzioni di rete vengano isolate (black out). Si autoripristinano ritornando nello stato super.

Installazioni nella rte: Germania (2004) USA (Southern California Edison)

Zenergy, prodotto commerciale

Non esistono tecnologie con stesse performance

Accumulatori: flywheels

Sospensione per ancoraggio di flussoni

Accumulatori meccanici: energia viene immagazzinata in corpi rigidi rotanti, e può essere trasformata in energia elettrica.

Possibilità di accumulare energia nei periodi di minor uso. Più efficienti delle batterie.

- attriti sui punti di contatto
- centraggio dei sistemi rotanti

Superconduttori (stato misto) con forte pinning:

- sospensione magnetica
- auto centranti!

Numerosi progetti nel mondo. Boeing + Argonne National Labs

Figure 5. A HTS array for levitation systems requiring more than one high-temperature superconductor.

Trasformatori

basse perdite ac

Tecnologia in rame:

- 3-6 % energia persa
- oli di raffreddamento infiammabili
- molto voluminosi

Tecnologia "alta Tc":

- <1 % energia persa
- "amichevoli per l'ambiente" (azoto)
- 50% meno massivi e voluminosi

Numerose installazioni pilota (~10-40 MVA) attualmente operative nella rete elettrica statunitense, giapponese e europea.

41 kVA superconducting transformer European project READY

"Retrofit" di reti elettriche esistenti.

resistenza nulla

Parità di diametro: cavi superconduttori trasportano corrente migliaia di volte maggiore di cavi in rame.

Confronto dimensionale cavi 1000 MVA

