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A short note on the two fluid model

E. Silva, Università Roma Tre

This short note introduces, in a simple form, a few topics on the so-
called two-fluid model. It does not replace a book chapter at all: it should
be intended as a guide to the Lectures. An (incomplete) list of appropriate
readings is reported in the Bibliography.
Where symbols are not defined, they refer to commonly intended signifi-
cance. The basics of superconductivity, such as the London equations, are
assumed to be known. Please note that ξ indicates here the Ginzburg-
Landau coherence length.
It is commonly found that the ac response of a superconductor has a ma-
jor importance. Depending on the audience, one may refer to important
information about the microscopic state (e.g., measurements of the gap am-
plitude), to important features for applications (e.g., transmission lines, ac-
celerating cavities, resonators for signal processing,...), and even to key ex-
periments to assess the nature of unconventional superconductors (e.g., the
discussion about “s-wave” or “d-wave” state in cuprates). Purpose of this
Note is to give some element to understand the seemingly simple two-fluid
model, and to bring to the attention of the student some of the links between
the trivial treatment of the two-fluid model, and the underlying microscopic
theory.

1.1 A few results from the microscopic theory

In this Section we report some results of the microscopic theory that will be
needed later on. We do not demonstrate the relations here reported, and
we refer to the Bibliography.

When a specimen is in the superconducting state, it attains the lowest
free-energy level. In other words, the ground state is the superconducting
state and any “normal” carrier appears as an excitation of such a state.
Such quasiparticles (QPs) have some very relevant differences with respect to
normal crystal electrons, most notably the gap in the excitation spectrum.1

1In this Section we are concerned with conventional, s-wave superconductors. See
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The gap appears in many familiar quantities, such as the spectrum of the
excitation and the density of states.

For what concerns the spectrum of excitations, we report in Fig. 1.1 the
energy of the QPs vs. the corresponding energy for a hypotetical crystal
electron.2 The fact that the plot is not a straight line implies that the two
objects are different: in fact, at low energy the QP spectrum exhibits a
gap ∆0. The fact that the plot approaches a straight line at high energies,
implies that well above the Fermi level QPs behave like crystal electrons: at
high energies, the presence of the gap has no strong relevance. The fact that
there are two branches (“hole-like” and “electron-like”) is a consequence of
the paired state ({k,−k}) over which excitations appear. The energies of the
QPs are related to the crystal electron spectrum by the following relation:

Ek =
√

(εk − EF )2 + ∆2
0 (1.1)
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Fig. 10.29. Excitation energy of quasipar-
ticles close to the Fermi energy. Hole-like
states are left of the origin, electron-like
states to the right side

with the second electron of the pair with the wave vector −k. Similarly, the
electron now being in state k′, interacts with the hole at −k′.

As mentioned above, the common ground state of the Cooper pairs is
separated from the quasiparticle states by the energy gap ∆0. The quasi-
particle density of states Ds(Ek) follows directly from the density of the
normal state since no state is lost in the superconducting transition, i.e.,
Ds(Ek) dEk = Dn(ηk) dηk, where Dn(ηk) represents the electronic density of
states in the normal conductor. In the vicinity of the Fermi energy, we may
put Dn(ηk) ≈ Dn(EF) = const., and we obtain

Ds(Ek) = Dn(ηk)
dηk

dEk
=





Dn(EF)
Ek√

E2
k − ∆2

0

for Ek > ∆0

0 for Ek < ∆0 .

(10.97)

In Fig. 10.30a, the predicted density of states Ds(Ek) of the quasiparticles
is drawn. At Ek = ∆0, the density of states is expected to diverge. For
ηk # ∆0, the quasiparticle density Ds(Ek) is expected to merge with Dn(ηk)
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Fig. 10.30. (a) Quasiparticle density of states versus excitation energy. (b) Exper-
imentally determined density of states of Pb versus normalized excitation energy.
The measurement was carried out with a Pb/MgO/Mg-tunnel junction [483]
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Figure 1.1: Quasiparticle spectrum: the energy of excited states (quasipar-
ticles, QPs) Ek are plotted vs. the corresponding crystal-electron energy,
εk. Should the two kinds of charge carriers be the same object, straight lines
should be plotted. The gap clearly characterizes the QPs.

The second important quantity that we will need in the following is the
QP density of states. In general, the crystal electron density of states (DOS,
N(E)) is a varying function of the energy (we refer to 3D metals here).

further on for d-wave superconductors
2Please note that the QP energy is referred to the Fermi energy.
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However, close to EF , that is the region in which we are mostly interested,
the energy variation of the DOS is not strong, and it can be taken as a
constant (for simplicity). One finds, for the QP DOS, the relation:

Nqp(E) =




N(EF ) Ek√

E2
k−∆2

0

for Ek > ∆0

0 for Ek < ∆0

(1.2)

which is plotted in figure 1.2. Note once more that the QP energy is mea-
sured from the Fermi energy EF .
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Figure 1.2: QP density of states in a s-wave superconductor in the super-
conducting state.

1.2 Two fluid model

The basic assumption of the two-fluid model is that the total current (den-
sity) can be written as a sum of two separate components, given by the
current brought by Cooper pairs (“supercurrent”, ~Js) and quasiparticles
(“normal current”, ~Jn):

~J = ~Js + ~Jn (1.3)

This assumption implies that two kinds of charge carriers act indepen-
dently, without interaction between them. In terms of the three relevant
length, λ, ξ0, ` (ξ0 is the microscopic correlation length, giving a measure
of the Cooper pair spatial correlation - “size” of the Cooper pair), one can
safely apply the two-fluid model when the response is:
1. local, λ� ξ0, `, so that the current at a certain location is not influenced
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by the electric field at different locations, and
2. clean, `� ξ0, so that the scattering processes (involved in QP response)
do not affect the behavior of the Cooper pair.

We will see later an explicit calculation in this limit.
Thus, when the two-fuid model can be applied, the problem reduces

to separately obtaining the “normal” and “superfluid” conductivities, σn
and σs, respectively, that link the electric field to the respective current
component: ~Jn,s = σn,s ~E. Once the conductivities have been obtained,
from Eq.(1.3) one has the total conductivity σ = σn + σs.

The quasiparticle conductivity can be easily obtained from the Drude
model. Let us take the simplest, trivial form of the Drude model as a simple
example. We start from the equation of motion of nn quasiparticles (per unit
volume) of charge q. They give rise to a current ~Jn = nnq~vn. The equation
of motion has to include the scattering, and the simplest expression takes
the form:3

m
d~vn
dt

= q ~E − m

τ
~vn (1.4)

where the drag term m
τ ~vn is due do QP scattering. In the harmonic regime,

where ~Jn(t) = ~Jeiωt and ~E(t) = ~Eeiωt, one finds the well-known Drude
conductivity:

σn =
nnq

2

m

1

iω + 1/τ
(1.5)

The superfluid conductivity directly comes from the first London equa-
tion:

d ~Js
dt

=
nsq

2

m
~E (1.6)

which can be easily derived from the fluxoid quantization [1], or from the
free acceleration of charge carriers (see Eq.(1.4) with τ → ∞).4 Using the
same harmonic regime as above, one gets

σs = −i
nsq

2

mω
= − i

µ0ωλ2
(1.7)

where we have used the definition of the London penetration depth, and we
identified the superfluid charge carrier density with the bulk order parame-
ter, ns = |ψ∞|2.

It will prove useful to introduce the total carrier density, n, and the
quasiparticle and superfluid fractions, xn and xs, so that xn + xs = 1 and
n = ns + nn = n(xs + xn).

3This exceedingly simple model is presented for illustrative purposes. In general, one
has to perform the appropriate integration in ~k space, e.g. using the Boltzmann equation
formalism.

4There are several caveats to this approach. The interested reader can be referred to
[2] for a discussion.
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In the Literature one finds the two-fluid conductivity as written in many
slightly different ways. We will report for future reference the expressions
that we will refer to in the following. The total conductivity can be written
as:

σ = σs + σn = σ1 − iσ2 (1.8)

and the term ωτ in σn can often be neglected (but one should be careful: this
assumption, almost straightforward for normal metals in the sub-GHz range,
may be not justified in cuprate superconductors below Tc, or at frequencies
near the THz regime -a typical combination of the recent research).

One might argue that the most neutral (with respect to further assump-
tions) expression is

σ =
nnq

2

m

1

iω + 1/τ
− i

µ0ωλ2
(1.9)

In this case, nn is the concentration of QP, q = e and m are the electron
charge and QP effective mass, respectively, and iω + 1/τ can be taken as
appropriate average over the QP spectrum. λ is a measurable quantity of
the superconducting state. With ωτ � 1, Eq.(1.9) acquires the immedi-
ate circuital analogous of two parallel impedances: a resistance (resistivity)
σ−1
n = σ−1

1 = m/nnq
2τ and an inductance (inductivity) µ0λ

2 = 1/ωσ2. This
consideration justifies the commonly employed, albeit slightly imprecise, sen-
tence “the superconducting electrons short-circuit the normal electrons at
low frequencies”.

Introducing xn and xs with the sum rule:

xn + xs = 1 (1.10)

(thus implicitly considering the superfluid charge carriers as “superlectrons”,
with the same charge as QPs), introducing the dc Drude conductivity σ0 =
nq2τ/m, one can also write

σ = σ0

[
xs
iωτ

+
xn

1 + iωτ

]
(1.11)

In terms of characteristic lengths, one introduces the so-called skin depth:

δ =

√
2

ωµ0σ0
(1.12)

(see also below), and the two-fluid conductivity can be manipulated to yield:

σ =
1

ωµ0

[
− i

λ2
+

2

δ2

xn
1 + iωτ

]
(1.13)
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Note that in the whole two-fluid treatment the microscopic aspects have
been carefully “hidden” in:
1. the temperature dependence of xn and xs
2. the QP relaxation time τ , which does not necessarily coincide with the
relaxation time in the normal state.

Since λ2(T ) = λ2(0)/xs(T ),5 a measure of the temperature dependence
of λ might yield information on the microscopic details, through xs. Thus,
a connection between microscopic and ‘two-fluid” parameters would prove
useful.

1.3 A connection between the two-fluid conduc-
tivity and the microscopic parameters

The two-fluid conductivity is a very common tool to analyse the experimen-
tal data. Thus, we provide here an example (in the local and clean limit)
on how a seemingly classical analysis can yield insights into the microscopic
mechanisms.

We start from a result (that we do not demonstrate here) of the BCS
theory (see [3]). In the clean limit, the QP conductivity (σn, in our notation)
can be written explicitly to yield:

σn =
nq2

m

∫ +∞

−∞

(
−∂fFD

∂E

)
Nqp(E)

N(EF )

1

iω + 1/τ
dE (1.14)

Where fFDis the Fermi-Dirac distribution. Multiplying and dividing by∫ +∞
−∞

(
−∂fFD

∂E

)
Nqp(E)dE, one gets:

σn =
nq2

m

∫ +∞

−∞

(
−∂fFD

∂E

)
Nqp(E)

N(EF )
dE

〈
1

iω + 1/τ

〉
(1.15)

where 〈〉 indicates the average over the distribution
(
−∂fFD

∂E

)
Nqp(E)
N(EF ) . Eq.(1.15)

can be brought to the following familiar Drude-like form:

σn =
nq2τn
m

xn

〈
τ/τn

1 + iωτ

〉
= σ0xn

〈
τ/τn

1 + iωτ

〉
(1.16)

once one makes the (somewhat intuitive) identification:

xn =

∫ +∞

−∞

(
−∂fFD

∂E

)
Nqp(E)

N(EF )
dE (1.17)

(so that nn = nxn), and the QP relaxation time τ has been normalized
by the normal state relaxation time τn. Remember that QP are not strictly

5Whence the name “superfluid fraction” for the measurable quantity λ2(0)/λ2(T ).
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“normal” crystal electrons, and as such they can undergo different scattering
processes (an example will be given in the analysis of cuprates).

The important link between BCS theory and two-fluid is given by Eq.(1.17):
in the assumption that the two fluids are uncorrelated, using the sum rule,
Eq.(1.10) yields an explicit expression for the temperature dependence of
the superfluid fraction:

xs = 1− xn = 1−
∫ +∞

−∞

(
−∂fFD

∂E

)
Nqp(E)

N(EF )
dE (1.18)

At sufficiently low temperatures, one finds (the calculation is reported in
Sec.1.4) the important relation:

xs(T ) ' 1−
√

2π∆(0)

kT
e−∆(0)/kT (1.19)

where ∆(0) is the gap extrapolated at zero temperature. Thus, a mea-
surement of λ at low T yields the size of the gap, if an activated process is
detected. Otherwise, if activated behavior is not detected, it may contribute
to evidence for nonconventional superconductivity (see Sec.1.7).

1.4 Derivation of Eq.(1.19)

In this Section we derive Eq.(1.19). We will refer all the energies to the Fermi
level, E − EF → E. We indicate with ∆ the gap. To evaluate the integral,
we recall Eq.(1.2), that allows to write (note that Nqp(E) = Nqp(−E)):

∫ +∞

−∞

(
−∂fFD

∂E

)
Nqp(E)

N(EF )
dE = 2

∫ +∞

∆

(
−∂fFD

∂E

)
Nqp(E)

N(EF )
dE (1.20)

Inserting Nqp(E) = E/
√
E2 −∆2, one writes:

2

∫ +∞

∆

(
−∂fFD

∂E

)
E√

E2 −∆2
dE = 2

∫ +∞

∆

(
−∂fFD

∂E

)
d

dE

√
E2 −∆2dE

= 2

∫ +∞

∆

(
∂2fFD
∂E2

)√
E2 −∆2dE

where the last equality has been obtained by integrating by parts, and re-
calling that ∂fFD/∂E → 0 (E → ∞). Now, if a gap exists, the QP en-
ergy is necessarily larger than the gap itself (remember that we are mea-
suring the gap from EF , and there are no accessible states between EF
and EF + ∆, see figure 1.1, this is explicitly stated with ∆ as the lower
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limit of integration), so that at sufficiently low T one can approximate
∂2fFD/∂E

2 ≈ (−1/kT )2 exp−E/kT . Thus, one can write

2

∫ +∞

∆

(
∂2fFD
∂E2

)√
E2 −∆2dE ≈ 2

∫ +∞

∆

(
− 1

kT

)2

e−E/kT
√
E2 −∆2dE

= 2

∫ ∞

0
e−δe−x

√
x(x+ 2δ)dx

where we have changed the integration variable as x = (E−∆)/kT , and we
have defined δ = ∆/kT . The latter integral has an explicit expression, that
can be found in the tables [4]. The analytical result reads:

2

∫ ∞

0
e−δe−x

√
x(x+ δ)dx = 2

1√
π

2∆

kT
Γ

(
3

2

)
K−1(δ)

Where Γ is the Euler Gamma function, Γ(3/2) =
√
π/2, and K−1 is

the modified Bessel function of order −1. Using the fact that K−x = Kx

when x ∈ R, and recalling that we are in the limit of low temperature, so
that ∆/kT = δ � 1 and ∆ ≈ ∆(0), we use the asymptotic expression [4]
K1(δ) ≈

√
π
2δ e−δ to obtain the desired result:

xn =

∫ +∞

−∞

(
−∂fFD

∂E

)
Nqp(E)dE '

√
2π∆(0)

kT
e−∆(0)/kT (1.21)

which, together with the sum rule, Eq.(1.10), demonstrates Eq.(1.19).

1.5 Surface impedance: normal metals.

When a specimen is much thicker than the electromagnetic (e.m. in the
following) screening length (to be specified later), the e.m. field decays al-
most exponentially in the specimen, and the measured e.m. response is not
directly the conductivity. We introduce in the following the concept of sur-
face impedance, limiting the treatment to (i) the local limit, (ii) plane wave
e.m. field, (iii) normal incidence of the e.m. field over a planar surface of a
semi-infinite specimen, and (iv) harmonic regime, eiωt. Many details are not
worked out, and can be found in any treatise of classical electromagnetism
(e.g., [5])

Assume a semiinfinite specimen, occupying the {x > 0} half space, and
a magnetic field ~H ‖ ẑ. The Maxwell equations:

∇× ~H = ~J +
∂ ~D

∂t
(1.22)

∇× ~E = −∂
~B

∂t
(1.23)



A short note on the two fluid model 9

can be combined (making the curl of the first) with the constitutive equa-
tions (we assume a nonmagnetic material, µ = µ0)

~D = ε ~E (1.24)

~J = σ ~E (1.25)

to yield, in the harmonic regime ( ~H(t) = ~Heiωt), the decay of the magnetic
field and the complex attenuation constant:

~H(x) = ~H(0)e−γx (1.26)

γ = iω

√
µ0ε

(
1− i

σ

ωε

)
(1.27)

When σ � ωε, appropriate to a good conductor, one can approximate

γ ' iω

√
µ0ε

(
−i

σ

ωε

)
= (1 + i)

√
µ0ωσ

2
=

1 + i

δ
(1.28)

Where the last equality defines the complex skin depth δ. When a real
conductivity can be considered, one recovers Eq.(1.12).

Due to the exponential decay of the e.m. field inside the (super)conductor,
the response is given by an integration over the propagation direction (here,
x). One defines the appropriate response function, the surface impedance,
as:

Zs =
E‖∫∞

0 J(x)dx
=
E‖

H‖
= Rs + iXs (1.29)

where the subscript “‖” indicates the component of the appropriate vector
parallel to the surface of the sample, the second equality comes from Eq.s
(1.22) and (1.26), and the last equality defines the surface resistance Rs and
the surface reactance Xs. In the harmonic regime and the geometry here
proposed, from Eq. (1.23) and the fact that ~E(x) = ~E(0)e−γx one finds
−γE‖ = −iωµ0H‖, so that :

Zs =

√
µ0

ε

1√
1− iσ/ωε

' (1 + i)

√
µ0ω

2σ
=

1 + i

σδ
(1.30)

where the approximate equality holds in good conductors.
When σ ∈ R, one speaks of the normal skin effect. In this case one finds:

Rs = Xs =

√
µ0ω

2σ
=

1

σδ
(1.31)

An important feature resides in the frequency dependence: in conventional
metals in the normal skin effect regime one has the so-called square root
scaling,

Rs = Xs ∝ ω1/2 (1.32)

This frequency scaling is often observed to a good approximation in normal
metals. As we will see, superconductors behave differently.
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1.6 Surface impedance: superconductors.

In a superconductor, while one can safely assume σ � ωε, the conductivity
is complex, as given by Eq.(1.8). Thus, in general, the complex surface
impedance takes the form

Zs =

√
iµ0ω

σ1 − iσ2
(1.33)

However, one can easily find6 that even at temperatures as close to the tran-
sition as T = 0.95Tc, one has σ2 � σ1. Thus, one can expand Eq.(1.33) to
first order in the small parameter iσ1/σ2, to obtain the following approxi-
mate relations:

Zs ' i

√
µ0ω

σ2
+

√
µ0ω

2

σ1

σ
3/2
2

(1.34)

Using σ2 ' 1/mu0ωλ
2, and σ1 ' σ0(τ/τn)xn, one finds

Xs ' µ0ωλ (1.35)

Rs '
µ2

0σ0

2

τ

τn
ω2λ3xn (1.36)

In conventional superconductor it is customary to take τ/τn = 1. However,
this factor is of significant importance in cuprates, so it is useful to write it
down explicitly in order to keep track of the approximations.

Eq.s (1.35) and (1.36) yield an essential tool for the interpretation of the
experiments: in a wide temperature range (not too close to Tc), a measure
of the surface reactance is a direct measurement of the London penetra-
tion depth, in particular for what concerns the temperature dependence.
Moreover, the simple two-fluid model predicts (again, in a wide temper-
ature range) the so called quadratic frequency scaling (ω2) in the surface
resistance. This point is relevant both for fundamental physics, and for ap-
plications: with lowering frequency, the losses drop much faster than in a
normal conductor.

The same Eq.s (1.35) and (1.36) can be exploited further in the low-T
limit, where Eq.s (1.19) and (1.21) hold. In that case, one can take λ ≈ λ(0)
in Eq.(1.36) (low T , λ saturates), and find:

Rs ' Ae−∆(0)/kT (1.37)

where A ∼ T−1/2 depends weakly on temperature, so that the low tem-
perature surface resistance is dominated by the exponential. Thus, one has
immediately logRs = logA− ∆(0)

kT . A plot of logRs vs. 1/T should yield a
straight line, whose slope is a direct measure of the superconducting gap.

6The reader is invited to check this assertion as an exercise, by choosing some super-
conducting material and respective material parameters.
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1.7 Two-fluid model and d-wave superconductors.

We present here an extremely succint overview of the behavior of the two-
fluid conductivity in a d-wave superconductor.

A d-wave superconductor has, as one of the most relevant features, that
the superconducting gap is not fully developed in momentum space, and
it has a ~k dependence. The specific shape of ∆k arises from the specific
pairing mechanism and heavily influences the physical properties of the su-
perconductor. In conventional superconductors the experiments showed an
isotropic (s-wave) gap symmetry which is naturally explained within BCS
phonon coupling. On the other hand, in cuprates the experimental results
point to an anisotropic gap for which the most widely accepted form is the
dx2−y2 , described in momentum space by the function:7

∆k = ∆0 cos(2φ) (1.38)

where the constant ∆0 > 0 is the maximum gap amplitude and φ is the
angle that the vector k in the kx-ky momentum plane makes with the kx
axis. A plot of equation (1.38) in the kx-ky plane is provided in figure 1.3
and compared to the isotropic s-wave (fully gapped) gap.

+

ky

kx
+

- -

+

ky

kx

- -

+

+

+

-

-

+

ky

kx

Figure 1.3: Isotropic s-wave and dx2−y2 gap symmetries in momentum space.

A key feature of the dx2−y2 gap amplitude, besides its in-plane anisotropy,
is the presence of zeroes (nodes) in specific regions of the Fermi surface.
This fact can be appreciated by computing the averaged density of states
N̄(E), which is the quantity that enters effectively in defining many physical
properties. It can be shown that the average QP density of states takes the

7It should be emphasized that nodal QP with a DOS given by equation 1.4 are common
to many gap symmetries, provided the existence of nodal lines. The present choice of a
dx2−y2 symmetry is for illustrative purposes only.
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form:

N̄(E) =
1

2π

∫ 2π

0

N̄(E, φ)

N(EF )
dφ

where:

N̄(E) =

{
N(EF ) E

[E2−∆2
0 cos2(2φ)]1/2

, E > ∆0(φ)

0, E < ∆0(φ)

so that it it turns out:

N̄(E) =

{
2
π
E
∆0
K
(
E
∆0

)
for 0 ≤ E < ∆0

2
πK

(
∆0
E

)
for E > ∆0

where K is the complete elliptic integral function of the first kind [4].

d-wave
s-wave

E0 ∆

1

0

N(E)/NF
Nqp(Ek)

N(EF)

EkΔ0

Figure 1.4: DOS of a d-wave superconductor, with isotropic s-wave DOS
given for comparison.

The effective DOS is plotted in figure 1.4 together with the result for the
isotropic s-wave gap discussed in Sec.1.1. The presence of nodes in the gap
has a dramatic impact on the physics of d-wave superconductors. Besides
the different divergences at E = ∆0 (logarithmic and square root for d- and
s- wave, respectively), the main fundamental feature is the presence of a
non-zero DOS down to the Fermi level. Moreover, the DOS varies linearly
with E

∆0
close to EF , at E � ∆0. Due to the features of the the Fermi-

Dirac function, the states close to the Fermi level (in the region of linear
E dependence) are the most relevant in the determination of the physical
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properties. Thus, it is mostly the low energy excitations that dictate the
physics of cuprates: a very different situation with respect to fully gapped,
s-wave superconductors.

The low-energy states states allow for the existence of zero-energy exci-
tations with respect to the superconducting ground state. These excitations,
the so-called nodal quasiparticles (QP), can therefore be created by any en-
ergy perturbation of the superconducting system, however small. The most
dramatic effect is the removal of the activated behaviors at low T of many
thermal and electrodynamic properties, typical of conventional supercon-
ductors, replaced by power law dependences.

The existence of nodes in the gap can be inferred from various types
of measurements. An elementary, semi-qualitative argument is given in the
following. Let us reconsider Eq.(1.17) in the light of the QP DOS, Eq.(1.39)
and figure 1.4. For energies above the gap (E > ∆0) one does not expect sig-
nificant variation in xn with respect to the fully-gapped bcs result. However,
the low-energy part is dramatically different: in the integral (Eq.(1.17)) we
need to consider the energy range ∆0 > E > 0. Thus, we can write ap-
proximately, for the d-wave QP fraction, xn,d ≈ xn(T ) +xn,lowE(T ). At low
temperature we still expect an activated behavior for xn as in Eq.(1.21),
possibly with some different numerical coefficient. However, at low T one
has to add the low energy term, taking into account the states below the
gap. Accordingly to Eq.(1.20), one writes:

xn,lowE = 2

∫ ∆0

0

(
−∂fFD

∂E

)
N̄(E)dE (1.39)

≈ 2

∫ ∆0

0

(
−∂fFD

∂E

)
αEdE ' 2

∫ ∞

0

(
−∂fFD

∂E

)
αEdE (1.40)

= 2α

∫ ∞

0
fFDdE = 2kTα ln(2) = CT (1.41)

where from (1.39) to (1.40) we made use of the fact that the Fermi function
drops rapidly above E = 0 (remember that energies are here measured from
EF ), so that it acts as a very rapid cutoff in the integration. Thus, we have
(i) linearly approximated N̄(E) ≈ αE in the full range of integration, and (ii)
extended the integration to +∞, without significantly affecting the overall
result. From (1.40) to (1.41) we first integrated by parts, using fFD(∞) = 0,
and then made use of [6]

∫∞
0 fFD(E)dE = kT

∫∞
0 (eu + 1)−1 du = kT ln(2).

The final result is that, in a d-wave superconductor,8 quasiparticles are
excited at any temperature, proportionally to the absolute temperature: in
addition to the activated process, there exist a nonactivated, linear excita-
tion process of QP. This feature yields enormous changes in the temperature
dependence of the London penetration depth and of the surface resistance.

8In general, in a superconductor with lines of nodes in the gap.
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To exemplify, consider the temperature dependence of λ. This quan-
tity is directly measurable by the surface reactance, Eq.(1.35). Thus, one
gets λ−2(T ) = λ−2(0)xs(T ). In a d-wave superconductor at low T one
should clearly observe λ−2(T ) = A−BT , as experimentally found in several
cuprates.
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