Fisica 1 per Ing. Elettronica \square e Fisica per Ing. Informatica \square

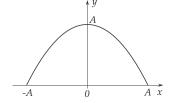
[A.A. 2008/2009 - Prima prova di esonero - 22 aprile 2009]

Soluzione del problema n. 1b

1. Dalle due leggi orarie:

$$y = A\sin^{2}(\omega t) = A\left[1 - \cos^{2}(\omega t)\right] = A\left[1 - \left(\frac{x}{A}\right)^{2}\right] = A - \frac{x^{2}}{A}$$

La traiettoria è parabolica e, poiché $\sin(\omega t)$ e $\cos(\omega t)$ variano tra -1 e 1, x varia nell'intervallo [-A,A] e y in [0,A].



2. Derivando rispetto al tempo le leggi orarie:

$$\begin{cases} v_x(t) = -A\omega \sin(\omega t) \\ v_y(t) = 2A\omega \cos(\omega t) \sin(\omega t) = A\omega \sin(2\omega t) \end{cases}$$

il cui modulo è $v(t) = \sqrt{v_x^2(t) + v_y^2(t)} = A\omega\sqrt{\sin^2(\omega t) + \sin^2(2\omega t)}$. Con i dati forniti, $v \simeq 0.77$ m/s.

3. Derivando rispetto al tempo le componenti della velocità:

$$\begin{cases} a_x(t) = -A\omega^2 \cos(\omega t) \\ a_y(t) = 2A\omega^2 \cos(2\omega t) \end{cases}$$

Dalle leggi orarie, si ha che x=0 quando $\cos(\omega t)=0$, e quindi $\cos(2\omega t)=-1$. Pertanto, quando il punto transita per (0,A), ha accelerazione pari a

$$\begin{cases} a_x = 0 \\ a_y = -2A\omega^2 \end{cases}$$

4. Poiché nel punto (0, A) l'accelerazione è ortogonale alla traiettoria (dal punto 3), si ha

$$R = \frac{v^2}{a}$$

con $v^2 = A^2 \omega^2$ (dal punto 2) e $a = 2A\omega^2$ (dal punto 3). Pertanto, R = A/2.

Soluzione del problema n. 2b

1. Dopo la fine del piano orizzontale, il punto segue una traiettoria parabolica con accelerazione (0, -g), velocità iniziale $(v_A, 0)$, e posizione iniziale (0, a), avendo scelto un sistema di riferimento con asse orizzontale sul suolo e asse verticale passante per il punto A. La traiettoria è pertanto

$$y(x) = a - \frac{g}{2v_A^2}x^2 ,$$

da cui, imponendo y(d) = 0,

$$v_A = d\sqrt{\frac{g}{2a}} \simeq 2.2 \text{ m/s}.$$

1

2. Derivando l'espressione della traiettoria rispetto a x, si ha

$$y'(x) = -\frac{g}{v_A^2}x ,$$

che, per x=d, dà $y'(d)=\tan(\varphi_B)=-gd/v_A^2$. Utilizzando il risultato del punto 1,

$$\tan(\varphi_B) = -\frac{2a}{d}$$
 \Rightarrow $\varphi_B = -\arctan 2 \simeq -1.1 \text{ rad}$

(il segno meno indica che la traiettoria è decrescente in quel punto). Allo stesso risultato si giunge calcolando le componenti della velocità all'istante corrispondente all'impatto di P al suolo.

3. Dalla conservazione dell'energia meccanica, $k\delta^2/2=mv_A^2/2,$ si ottiene

$$\delta = \sqrt{\frac{m}{k}} v_A = \sqrt{\frac{mg}{2ak}} d \simeq 0.10 \text{ m}$$

4. In questo caso l'energia finale differisce da quella iniziale per il lavoro compiuto dalla forza di attrito ($W_{\rm att}=-F_{\rm att}L,$ con $F_{\rm att}=\mu mg$ e L lo spazio percorso): $k\delta'^2/2=mv_A^2/2+\mu mgL$. Pertanto

$$\delta' = \sqrt{\frac{m}{k}(v_A^2 + 2\mu gL)} = \sqrt{\frac{mg}{k}\left(\frac{d^2}{2a} + 2\mu L\right)} \simeq 0.22~\mathrm{m}$$

Soluzione del problema n. 3b

1. Dalla condizione di equilibrio rotazionale intorno all'asse O (somma dei momenti esterni = 0) si ha

$$\frac{L}{2}mg\sin\theta = LT\cos\theta \qquad \Rightarrow \qquad T = \frac{mg}{2}\tan\theta \simeq 17 \text{ N}$$

2. Dalla condizione di equilibrio traslazionale (somma delle forze esterne = 0) si ha

$$\begin{cases} R_x = -T \\ R_y = mg \end{cases}$$

con R_x e R_y componenti orizzontale e verticale, rispettivamente, della reazione del vincolo sull'asse. Quindi

$$R = \sqrt{R_x^2 + R_y^2} = mg\sqrt{1 + \frac{1}{4}\tan^2\theta} \simeq 26 \text{ N}$$

3. Dalla conservazione dell'energia meccanica

$$E_c = \frac{mgL}{2}(1 - \cos\theta) \simeq 4.9 \text{ J}$$

4. Dalla relazione che lega velocità angolare ed energia cinetica di un corpo rigido in rotazione, $E_c = (1/2)I\omega^2$, con I = momento d'inerzia, si ha $\omega = \sqrt{2E_c/I}$. Poiché in questo caso $I = (1/3)mL^2$, si ha

2

$$\omega = \sqrt{\frac{3g}{L}(1 - \cos \theta)} \qquad \Rightarrow \qquad v = \omega L = \sqrt{3gL(1 - \cos \theta)} \simeq 3.8 \text{ m/s}$$