Fisica della Materia Condensata. Prof. Paola Gallo.

Prova del I appello di esame - 16 Gennaio 2024

Istruzioni - Esame completo: svolgere tutti e quattro gli esercizi in quattro ore. Recupero del primo esonero: svolgere gli esercizi 1 e 2 in due ore. Secondo esonero: risolvere gli esercizi 3 e 4 in due ore.

1 Esercizio 1

Siano dati due campioni A e B entrambi con base monoatomica. Uno dei due ha reticolo quadrato di parametro reticolare a e l'altro reticolo rettangolare di parametri reticolari b e c (b < c) e fattore di impacchettamento 0.51. I due campioni vengono studiati con una radiazione di lunghezza d'onda $\lambda = 3$ Å. Per il campione A i primi 3 picchi di diffrazione si osservano per angoli pari a 24.2, 34.5 e 49.57°. Per il campione B i primi 3 picchi di diffrazione si osservano per angoli pari a 30, 46.9 e 56.7°.

- 1. Studiare il fattore di struttura dei due reticoli (quadrato e rettangolare) e determinare per entrambi i primi tre vettori di reticolo reciproco che fanno diffrazione. (5 punti)
- 2. Identificare il tipo di reticolo dei campioni A e B. (5 punti)
- 3. Determinare i parametri reticolari a, b e $c \theta = 55^{\circ}$. (5 punti)

2 Esercizio 2

Una catena lineare monoatomica è disposta e libera di muoversi lungo l'asse \hat{x} . Sia M=10 u.m.a. la massa degli atomi nella catena e $\rho=4.30$ u.m.a. Å la densità lineare di massa e $v_s=830 \mathrm{m/s}$ la velocità del suono.

- 1. Ricavare la relazione di dispersione in approssimazione armonica e per interazione a primi vicini e disegnare le curve di dispersione fononica nella Prima Zona di Brillouin. (5 punti)
- 2. Determinare la costante di forza della catena, la temperatura di Debye e la capacità termica per unità di volume a $T=700~{\rm K.}$ (5 punti)

3. Discutere la capacità termica per unità di volume a basse ed alte temperature per una catena lineare biatomica. (5 punti)

3 Esercizio 3

Un reticolo bidimensionale contiene $N_y=2\cdot 10^8$ file di atomi disposti lungo l'asse x, separate l'una dall'altra da una distanza a=2.0 Å. Ogni fila contiene $N_x=3\cdot 10^8$ atomi monovalenti separati da a=2.0 Å. Il potenziale cristallino a cui sono soggetti gli elettroni quasi liberi vale:

$$U = -U_1 \cos\left(\frac{2\pi}{a}x\right) - U_2 \cos\left(\frac{2\pi}{a}y\right)$$

dove $U_1 = 1.5 \text{ eV}, U_2 = 1 \text{ eV}.$

- 1. Disegnare la prima zona di Brillouin e indicare i valori del vettore \vec{k} ai bordi zona nelle direzioni (1,0) e (0,1) e calcolarne il valore numerico. (5 punti)
- 2. Calcolare il valore delle gap che si aprono in corrispondenza dei termini del potenziale cristallino. (5 punti)
- 3. Determinare il comportamento del il cristallo. (5 punti)

4 Esercizio 4

Un semiconduttore viene drogato con densità di donatori $N_d = 10^{14} cm^{-3}$. L'energia della gap vale $E_G = 0.99 eV$, l'energia di ionizzazione dei donatori è pari a $\epsilon_d = 10.5 meV$. Le masse efficaci di elettroni e lacune sono uguali ed indipendenti dalla temperatura e pari a $3.7 \cdot 10^{-30} \text{Kg}$.

- 1. Il semiconduttore viene posto alla temperatura $T_1 = 10K$, determinare in quale regime si trova il semiconduttore e calcolare la densità di elettroni in banda di conduzione. (5 punti)
- 2. Il semiconduttore viene successivamente portato a $T_2 = 400K$. Si determini quanti livelli donori sono ionizzati e si calcoli di nuovo la densità di elettroni in banda di conduzione. (5 punti)
- 3. Si calcoli la conducibilità a $T_3 = 600K$ sapendo che la mobilità degli elettroni è pari a $0.75 \text{ m}^2/\text{Vs}$ e che il tempo di rilassamento degli elettroni è pari a 3 volte quello delle lacune. (5 punti)

1 u.m.a. =
$$1.67 \cdot 10^{-24}$$
g, $K_B = 8.6167 \cdot 10^{-5}$ eV K⁻¹, $h = 4.136 \cdot 10^{-15}$ eV s.